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FODULE OVERVIEYY

Objective: Provide an introduction to the practice of bioinformatics
as well as a practical guide to using common bioinformatics
databases and algorithms

1.1.» Introduction to Bioinformatics

1.2.» Sequence Alignment and Database Searching

1.3 » Structural Bioinformatics

1.4» Genome Informatics: High Throughput Sequencing Applications
and Analytical Methods



WEEK TWO REVIEW

M Answers to last weeks homework (19/19):
Answers week 2

M Muddy Point Assessment (11/19):
Responses

- “More time to finish the assignment”

- ‘I felt there was too much material to cover in one lab”
- “The [NCBI] sites were so slow”

- “More time with HMMER would be helpful”

- “Very nice lab”


https://ctools.umich.edu/access/content/group/cd806bd4-a051-4873-9be1-4a158109a66b/Background_Reading/Bioinf525_HomeWork_1.2_W16.pdf
https://docs.google.com/forms/d/1yseKhk9YbvtU1Q4OMAc1S7USCpgQcCV5NrGyBNP3Izc/viewanalytics#start=publishanalytics
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T HD VWEEK S HOMEVV R

M Check out the “Background Reading” material online:
» Achievements & Challenges in Structural Bioinformatics

» Protein Structure Prediction

» Biomolecular Simulation
» Computational Drug Discovery

M Complete the lecture 1.3 homework questions:
http://tinyurl.com/bioinf525-quiz3



http://bioinformatics.oxfordjournals.org/content/early/2014/12/06/bioinformatics.btu769.full.pdf
https://ctools.umich.edu/access/content/group/cd806bd4-a051-4873-9be1-4a158109a66b/Background_Reading/StructurePrediction.pdf
https://ctools.umich.edu/access/content/group/cd806bd4-a051-4873-9be1-4a158109a66b/Background_Reading/Biomolecular%20Simulation-%20A%20Computational%20Microscope%20for%20Molecular%20Biology.pdf
https://ctools.umich.edu/access/content/group/cd806bd4-a051-4873-9be1-4a158109a66b/Background_Reading/DrugDesign.pdf
http://tinyurl.com/bioinf525-quiz3

“Bioinformatics is the application of computers
to the collection, archiving, organization, and
analysis of biological data.”

... A hybrid of biology and computer science



“Bioinformatics is the application of computers
to the collection, archiving, organization, and
analysis of biological data.”

Bioinformatics is computer aided biology!



“Bioinformatics is the application of computers
to the collection, archiving, organization, and
analysis of biological data.”

Bioinformatics is computer aided biology!

Goal: Data to Knowledge



So what is structural bioinformatics?



So what is structural bioinformatics?
... computer aided structural biology!

Aims to characterize and interpret biomolecules and
their assembles at the molecular & atomic level



Why should we care?



Why should we care?

Because biomolecules are “nature’s robots”

... and because it is only by coiling into
specific 3D structures that they are able to
perform their functions
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Sequence Structure Function

* Unfolded chain of * Ordered in a * Active In specific
amino acid chain precise 3D “conformations”
* Highly mobile arrangment * Specific associations

* |nactive * Stable but dynamic & precise reactions




In daily life, we use machines
with functional structure and moving parts
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Genomics is a great start ....

Track Bike—=DL 175

REF. IBM
NO. NO. DESCRIPTION
1 156011 Track Frame 21", 22", 23", 24", Team Red
2 157040 Fork for 21" Frame
2 157039 Fork for 22" Frame
2 157038 Fork for 23" Frame
2 157037 Fork for 24" Frame
3 191202 Handlebar TTT Competition Track Alloy 15/16"
4 Handlebar Stems TTT, Specify extension
5 191278 Expander Bolt
6 191272 Clamp Bolt
T 145841 Headset Complete 1 x 24 BSC
8 145842 Ball Bearings
9 190420 175 Raleigh Pistard Seta Tubular Prestavalve 27"
10 190233 Rims 27" AVA Competition (36H) Alloy Prestavalve
11 145973 Hub» Large Flange Campagnolo Pista Track Alloy (pairs)
12 190014 Spokess 11 5/8"
13 145837 Sleeve
14 145636 Bal| Bearings
15 145170 Bottom Bracket Axle
16 145838 Cone for Sleeve
17 146473 L.H. Adijustable Cup
18 145833 Lockring
19 145239 Straps for Toe Clips
20 145834 Fixing Bolt
21 145835 Fixing Washer
22 145822 Dustcar
23 145823 R.H. and L.H. Crankset with Chainwheel
24 146472 Fixed Cup
25 145235 Toe Clipssy Christophesy Chrome (Medium)
26 145684 Pedalssy Extra Lights Pairs
27 123021 Chain
28 145980 Seat Post
29 Seat Post Bolt and Nut
30 167002 Saddles Brooks
31 145933 Track Serockets Specify 12, 13, 14y 15y or 16 T.

= But a parts list is not

enough to
understand how a
bicycle works



... but not the end

= \We want the full spatiotemporal picture, and an
ability to control it

= Broad applications, including drug design,

medical diagnostics, chemical manufacturing,
and energy



et

Extracted from The Inner Life of a Cell by Cellular Visions and Harvard
[YouTube link: https://www.youtube.com/watch?v=y-uuk4Pr2i8 ]



https://www.youtube.com/watch?v=y-uuk4Pr2i8

Sequence Structure Function

* Unfolded chain of * Ordered in a * Active In specific
amino acid chain precise 3D “conformations”
* Highly mobile arrangment * Specific associations

* |nactive * Stable but dynamic & precise reactions




KEY CONCEPT: ENERGY LANDSCAPE

Native

Compact,
Ordered

Ut

Unfolded
Expanded, Disordered



KEY CONCEPT: ENERGY LANDSCAPE

1 millisecond
Barrier crossing time
~exp(Barrier Height)

0.1 microseconds Barrier

Compact,
Ordered

Unfolded
Expanded, Disordered

Globule

Compact, Disordered



KEY CONCEPT: ENERGY LANDSCAPE

1 millisecond
m Barrier crossing time

Multiple Native Conformations
(e.g.ligand bound and unbound)

0.1 microseconds

Unfolded

State
Expanded, Disordered




OUTLINE:

» Overview of structural bioinformatics

* Major motivations, goals and challenges

» Fundamentals of protein structure

» Composition, form, forces and dynamics

» Representing and interpreting protein structure

* Modeling energy as a function of structure

» Example application areas

* Predicting functional dynamics & drug discovery
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» Overview of structural bioinformatics
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» Representing and interpreting protein structure

* Modeling energy as a function of structure

» Example application areas

* Predicting functional dynamics & drug discovery
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DITIONAL FOCUS PROTEIN, DNA

D SMALL MOLECULE DATA SETS

WITH MOLECULAR STRUCTURE

Protein DNA Small Molecules
(PDB) (NDB) (CCDB)



Motivation 1:
Detailed understanding of
molecular interactions

Provides an invaluable structural
context for conservation and
mechanistic analysis leading to

functional insight.
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Motivation 1:
Detailed understanding of
molecular interactions

Computational modeling can

provide detailed insight into

functional interactions, their
regulation and potential

consequences of perturbation.

Grant et al. PLoS. Comp. Biol. (2010)



| 15,306
(1/20/2016) °

Motivation 2:
Lots of structural data is
becoming available

Structural Genomics has
contributed to driving
down the cost and time
required for structural .

determination = = = =0 - sesesscessceessen® 2

Total Number of Structures in RCSB PDB

Data from: http://www.rcsb.org/pdb/statistics/



http://www.rcsb.org/pdb/statistics/

Motivation 2:
Lots of structural data is
becoming available

X :
e Y comlision )

Structural Genomics has
contributed to driving
down the cost and time |@ [struc. validation
required for structural (-

determination

Image Credit:"Structure determination assembly line” Adam Godzik
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Motivation 3:

Theoretical and
computational predictions
have been, and continue
to be, enormously
valuable and influential!




SUMMARY OF K

Y MOTIVATIONS

Sequence > Structure > Function
- Structure determines function, so understanding structure
helps our understanding of function

Structure is more conserved than sequence
- Structure allows identification of more distant evolutionary

relationships

Structure is encoded in sequence
- Understanding the determinants of structure allows design and
manipulation of proteins for industrial and medical advantage



Goals:

* Analysis

* Visualization
« Comparison
* Prediction

* Design
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Grant et al. [MB. (2007)



Goals:

* Analysis

* Visualization
« Comparison
* Prediction

* Design

Scarabelli and Grant. PLoS. Comp. Biol. (201 3)
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Scarabelli and Grant. PLoS. Comp. Biol. (201 3)



Goals:

* Analysis

* Visualization
« Comparison
* Prediction

* Design

Grant et al. unpublished



Goals:

* Analysis

* Visualization
« Comparison
* Prediction

* Design

Grant et al:PLoS Ore (201 | 70l



Goals:

* Analysis

* Visualization
« Comparison
* Prediction

* Design

Grant et al. PLoS Biology (201 1)



1 JOR RESEARCH ARDEE
AND CHALLENGES

Include but are not limited to:

* Protein classification

» Structure prediction from sequence

 Binding site detection

 Binding prediction and drug design

* Modeling molecular motions

* Predicting physical properties (stability, binding affinities)
» Design of structure and function

e elc...

With applications to Biology, Medicine, Agriculture and Industry



NEXT UP:

» Overview of structural bioinformatics

* Major motivations, goals and challenges

» Fundamentals of protein structure

» Composition, form, forces and dynamics

» Representing and interpreting protein structure

* Modeling energy as a function of structure

» Example application areas

* Predicting functional dynamics & drug discovery



e HICAL STRUCTURE OF FROS TS

Primary > Secondary > Tertiary > Quaternary
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Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 [ 58 |/



http://www.ncbi.nlm.nih.gov/books/NBK21581/
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Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 [ 58 | /



http://www.ncbi.nlm.nih.gov/books/NBK21581/
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PHYSIOCHEMICAL PROPERTIES

Positively charged R groups

Aromatic R groups
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NH
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Phenylalanine Tyrosine Tryptophan

Nonpolar, aliphatic R groups
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Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 [ 58 |/



http://www.ncbi.nlm.nih.gov/books/NBK21581/

O ACIDS POLYMERIZE T FIRCITIEES
PEPTIDE BOND FORMATION

R H,0 R O
.. AP A° |l P
OH,N—CH—C + ©H,;N—CH—C 2 @H3N—CH—c—NH—CH—C/
Ng© .|‘ N® / | No®
Peptide bond "

side chains

N-terminal C-terminal

Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 [ 58 | /



http://www.ncbi.nlm.nih.gov/books/NBK21581/

FEEDES C AN ADORE DIFF EREEE
R ORMATIONS By VARYING FiEiEIE
PHI & PS| BACKBONE TORSIONS

N-terminal

Bond angles and lengths Peptide bond is planer
are largely invariant (Ca, C, O, N, H, Ca all
lie in the same plane)

Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 [ 58 | /



http://www.ncbi.nlm.nih.gov/books/NBK21581/

il v PO PLOT S ARE KINOWVY I 2
RAMACHANDRAN DIAGRAMS

180° 1 180°
' +
| Antiparallel B sheet
@
‘\‘t‘Type Il turn
r , Parallel .
‘ ‘ P sheet
< 3 »— o helix
[ HRTR N . . (left-handed) -
¥ o0 @ ¥ o° &
L 3 helix Typelitum +,
____________________ a helix (right-handed)
""" e ! | o\ !
—~180° 0° 180° —180° 0° 180°
¢ ¢

« Steric hindrance dictates torsion angle preference

 Ramachandran plot show preferred regions of ¢ and  dihedral
angles which correspond to major forms of secondary structure

Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 [ 58 | /



http://www.ncbi.nlm.nih.gov/books/NBK21581/

EOR SEC ONDARY STRUC TURE |ieS
ALPHA HELIX & BETA SHEE]

o-helix
® Most common from has 3.6 residues per turn
(number of residues in one full rotation)

e Hydrogen bonds (dashed lines) between
residue i and j+4 stabilize the structure

® The side chains (in green) protrude outward

e 3. ,-helix and st-helix forms are less common

Hydrogen bond: i=i+4

Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 [ 58 | /



http://www.ncbi.nlm.nih.gov/books/NBK21581/

BB SFEC ONDARY S51TRUC TURE |
ALPHA HELIX & BETA SHEET

In antiparallel p-sheets
e Adjacent B-strands run in opposite directions

e Hydrogen bonds (dashed lines) between NH and CO
stabilize the structure

e The side chains (in green) are above and below the sheet
Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 [ 58 | /



http://www.ncbi.nlm.nih.gov/books/NBK21581/

BB SFEC ONDARY S51TRUC TURE |
ALPHA HELIX & BETA SHEET

In parallel p-sheets
e Adjacent B-strands run in same direction

e Hydrogen bonds (dashed lines) between NH and CO
stabilize the structure

e The side chains (in green) are above and below the sheet
Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 [ 58 | /



http://www.ncbi.nlm.nih.gov/books/NBK21581/

What Does a Protein Look like?
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* Proteins are stable (and hidden) in water
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* Proteins closely interact with water



Proteins are close packed solid but flexible objects (globular)



* Due to their large size and complexity it is often
hard to see whats important in the structure



* Backbone or main-chain representation can help
trace chain topology



* Backbone or main-chain representation can help
trace chain topology & reveal secondary structure



* Simplified secondary structure representations are
commonly used to communicate structural details

* Now we can clearly see 2°, 3° and 4° structure
* Coiled chain of connected secondary structures



o AC EMENTS REFLECT IINTRINSIC FLEXISIHERES

Superposition of all 482 structures in RCSB PDB
(23/09/2015)



Bl A CEMEN TS REFLECT N TRINSIC 7l BB

Principal component analysis (PCA) of experimental structures



KEY CONCEPT: ENERGY LANDSCAPE

1 millisecond
m Barrier crossing time

Multiple Native Conformations
(e.g.ligand bound and unbound)

0.1 microseconds

Unfolded

State
Expanded, Disordered




Key forces affecting structure:

* H-bonding

* Van der Waals

* Electrostatics

* Hydrophobicity
* Disulfide Bridges

Hydrogen-  Hydrogen-
bond donor bond acceptor

N——H==oenes N
O~ O O
N—H==vmws 0
O—H--===-- N
O—Hsusnes O
d
0 2.6 A<d<3.1A

A
150° < 0 < 180°



Key forces affecting structure:
. A B
* H-bonding AE= T127 6
Van der Waals Repulsion

* Electrostatics AR .

o HydrOph0b|C'ty Attraction
* Disulfide Bridges

— d— 3A<d<4A




Key forces affecting structure:

* H-bonding

 \Van der Waals

e Electrostatics

* Hydrophobicity
* Disulfide Bridges

—d——d=2.8A
H
e @ N-
No H

carboxyl group and amino group

(some time called IONIC BONDs or SALT BRIDGEs)

Coulomb’s law

Kdq,d,

E = Dr

E = Energy
K = constant
D = Dielectric constant (vacuum = 1; H,O = 80)

d; & g, = electronic charges (Coulombs)

o

r = distance (A)




Key forces affecting structure:

* H-bonding

* Van der Waals

* Electrostatics

* Hydrophobicity
* Disulfide Bridges

The force that causes hydrophobic molecules or nonpolar portions of molecules to
aggregate together rather than to dissolve in water is called Hydrophobicity (Greek,
“water fearing”). This is not a separate bonding force; rather, it is the result of the
energy required to insert a nonpolar molecule into water.



http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7577/
http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7680/

Forces affecting structure:

* H-bonding

* Van der Waals

* Electrostatics

* Hydrophobicity
* Disulfide Bridges

Other names:
cystine bridge
disulfide bridge

Cysteine

_H
S

=

H /CH2
.
\N/ \Icl:/
S
Cysteine

Oxidation

Reduction

S'\

H /CH2

C
\N/ \C/

I
H o

Cystine

+ 2HY + 2e-

Hair contains lots of disulfide bonds
which are broken and reformed by heat




NEXT UP:

» Overview of structural bioinformatics

* Major motivations, goals and challenges

» Fundamentals of protein structure

» Composition, form, forces and dynamics

» Representing and interpreting protein structure

* Modeling energy as a function of structure

» Example application areas

* Predicting functional dynamics & drug discovery
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CRYSTAL STRUCTURE AT 1.9 ANGSTROMS RESOLUTION OF HUMAN
IMMUNODEFICIENCY VIRUS (HIV) II PROTEASE COMPLEXED WITH L-
735,524, AN ORALLY BIOAVAILABLE INHIBITOR OF THE HIV PROTEASES

DOI:10.2210/pdbilhsg/pdb

_

Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) 11 protease complexed with L-735,524, an
orally bicavailable inhibitor of the HIV proteases.

Chen, Z.. , LI,LY.. , Chen, E.. , Hall, D.L.., Darke, P.L.., Culberson, C.. , Shafer, J.A. , Kuo, L.C..
Journal: (1994) J).Biol.Chem, 269: 26344-26348

PubMed: 7929352 1
Search Related Articles in PubMed =

PubMed Abstract:

L-735,524 is » potent, orally bicavailable inhibitor of human immunodeficiency virus (HIV) protease currently in 8 Phase 11 chinical trial.
We report here the three-dimensional structure of L-735,524 complexed to HIV-2 protease 2t 1.9-A resolution, as well as the structure
of the native HIV-2 protease at 2.5-A resolution. The structure of HIV-2 protease is found to be essentially identical to that of HIV-1
protease. In the crystal lattice of the HIV-2 protease complexed with L-735,524, the inhibitor is chelated to the active site of the
homodimeric enzyme in one orientation, This feature allows an unambiguous assignment of protein-ligand interactions from the electron
density map. Both Fourler and difference Fourier maps reveal clearly the dosure of the flap domains of the protease upon L-735,524
binding. Spedfic interactions between the enzyme and the inhibitor indude the hydroxy group of the hydroxyaminopentane amide
moiety of L-735,524 ligating to the carboxyl groups of the essential Asp-25 and Asp-25" enzymic residues and the amide oxygens of the
inhibitor hydrogen bonding to the backbone amide nitrogen of lle-50 and lle-50" via an intervening water molecule. A second bridging
water molecule is found between the amide nitrogen N2 of L-735,524 and the carboxy! axygen of Asp-29". Although other hydrogen
bonds a'so add to binding, an equally significant contribution to affinity arises from hydrophobic interactions between the protease and
the inhibitor throughout the pseudo-symmetric S1/51', S2/52", and S3/53' regions of the enzyme. Except for its pyridine ring, all
lipophilic moieties (t-butyl, indanyl, benzyl, and piperidyl) of L-735,524 are rigidly defined in the active site.

Keywords:
Aspartic Acid Endopeptidases, Binding Sites, Crystallography, X-Ray, Drug Resistance, HIV Protease, HIV Protease Inhibitors, Indinavir,
Pyridines

Related Structures:
Primary Citation of: 1HSG 1HSH 1MSI

Organizational Affiliation:
Department of Biclogical Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486.

Click on abstract words and keywords to add them to the search box.
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LB HILE FORMIG

Chain name

Amino Acid / Sequence Number
\ / /
Element \ / /  eme——— Coordinates-----
\ \ / / X Y z
ATOM 1 N ASP L 1 4.060 7.307 5.186
ATOM 2 CA ASP L 1 4.042 7.776 6.553
ATOM 3 C ASP L 1 2.668 8.426 6.644
ATOM 4 O ASP L 1 1.987 8.438 5.606
ATOM 5 CB ASP L 1 5.090 8.827 6.797
ATOM 6 CG ASP L 1 6.338 8.761 5.929
ATOM 7 ODl1 ASP L 1 6.576 9.758 5.241
ATOM 8 0OD2 ASP L 1 7.065 7.759 5.948
\\

Element position within amino acid

 PDB files contains atomic coordinates and
assoclated information.
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Two main approaches:
(1). Physics-Based
(2). Knowledge-Based



i oICS BASED POTERNAL S
ENERGY TERMS FROM PHYSICAL THEORY

U(é) = Z k?(md(ri - T’())2 + Z kzqngle(ei X 90)2 + \/ _/W

bonds angles
N ~

- /

“~~ -~

Ubo-n d Uan gle

> kML + cos (nids + ;)] +

giz'hcd‘ra,l S

D /
i g €T
U.ngle = 0scillations of 3 atoms about an equilibrium bond angle N\ /
U ginedra) = torsional rotation of 4 atoms about a central bond Ve

U = non-bonded energy terms (electrostatics and Lenard-Jones)

nonbond

By
\Bo/
Unonbond
Upong = Oscillations about the equilibrium bond length ' \rlf e
0
| |

CHARMM PRE. function, see: http://www.charmm.org/
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i

i;_!"'|l_="l'.|:,:|.ll :

TOTAL PROTENTIAL ENERGY

*The total potentioal energy
or tnthﬂlpﬂ Full-j detines the

system , (.

*Tle lorces are the
grocients of the eneragy .

F{ﬂ'-}= 'JWCI‘H: ® e energy is G sum of
ﬂ‘ - independent terms for:
P & Bond, Bond snafes,
: / | Torsion anales and non—
bonded atom pairs.

Slide Credit: Michael Levitt



MOVING OVER THE ENERGY SURFACE

@ Enﬂgﬂ thl]‘ﬂl}ﬂui_‘.llﬂlﬂ. Arops

inte lecal wadnimom,

® Moleculer I'.'ullnmm'cﬁ Wses

thermal Ener gLy bo mowe

— Enﬂ’?ﬂ L —

a't-mul.r,hij OWY  Surt Gee

® Monte Coarle Mows ore

roncom . Pocepk with
probobility exp (-AUAT).

Slide Credit: Michael Levitt



e OIS ORIENT

D APPROIAL T

Weaknesses
Fully physical detail becomes computationally intractable
Approximations are unavoidable
(Quantum effects approximated classically, water may be treated crudely)
Parameterization still required

Strengths
Interpretable, provides guides to design
Broadly applicable, in principle at least
Clear pathways to improving accuracy

Status

Useful, widely adopted but far from perfect
Multiple groups working on fewer, better approxs
Force fields, quantum
entropy, water effects
Moore’s law: hardware improving
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SIDE-NOTE: GPUS AND ANTON
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KEY CONCEPT: POTENTIAL FUNCTIONS DESCRIBE

= E S ENERGY A A FUNC IO G EES
STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based



PNV EDGE-BASED DOCKING PO EIN FHEES

Hisadin®

Ligand
carboxylate

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Yy Aromatic
: ¢ stacking




ENERGY DETERMINES PROBABILITY
(STABILITY)

Basic idea: Use probability as a proxy for energy

Boltzmann:
—E(r)/RT

p(r)xe

Inverse Boltzmann:

E(r)=-RTIn|p(r]

%

Probability Energy

X

Example: ligand carboxylate O to protein histidine N

Find all protein-ligand structures in the PDB with a ligand carboxylate O
1. For each structure, histogram the distances from O to every histidine N
2. Sum the histograms over all structures to obtain p(rq_,)

3. Compute E(ry_y) from p(rgy)



PMF (kcal/mol)

EOVWIL FDGE-BASED DO KIFNG
POLENTIALD

(e MUegoe & Marting | Med. Chem (19971 422

A few types of atom pairs, out of several hundred total

. A : : : ;
Nitrogen™*/Oxygen Aromatic carbons Aliphatic carbons
3.0 — ‘ e L I 3,o| o —
. . | | . [
20 r . T 1 20 r < L ;
| ‘ NCOC 1 | cFcF s 29 |  CFCF
tof 1 OCNC 1.0 | | E 10} |
W[ SEPII  oy 0.0 | | A ——— :"8; . |
0.0 ! :\-,\IF'JJ/ p . I\/,,-r"""f_ | ; 0.0 . L T —
-1.0 } ; -1.0 | 1% 40l
=2.0 . N L i =20 . L s b o I 2.0 AT TRRPUY WU TR TR S y—
00 20 40 6.0 80 10.0 12.0 00 20 40 6.0 80 10.0 120 00 20 40 60 80 10.0 12.0

Atom-atom distance (Angstroms)

Eprot—lig % Evdw + E Etype(ij) (I/;])

pairs (i)



KNOWL

Weaknesses

e

—-BAS

JFCH

Accuracy limited by availability of data

Strengths

Relatively easy to implement
Computationally fast

Status

Useful, far from perfect

May be at point of diminishing returns

SN TIAT

(not always clear how to make improvements)



NEXT UP:

» Overview of structural bioinformatics

* Major motivations, goals and challenges

» Fundamentals of protein structure

» Composition, form, forces and dynamics

» Representing and interpreting protein structure

* Modeling energy as a function of structure

» Example application areas

* Predicting functional dynamics & drug discovery




PREDICTING FUNCTIONAL DYNAMICS

* Proteins are intrinsically flexible molecules with internal
motions that are often intimately coupled to their

biochemical function
— E.g. ligand and substrate binding, conformational activation,
allosteric regulation, etc.

 Thus knowledge of dynamics can provide a deeper
understanding of the mapping of structure to function

— Molecular dynamics (MD) and normal mode analysis (NMA) are
two major methods for predicting and characterizing molecular

motions and their properties




MOLECULAR DYNAMICS SIMULATION

» Use force-field to find
Potential energy between
all atom pairs

e Move atoms to next state

* Repeat to generate
trajectory

McCammon, Gelin & Karplus, Nature (1977)
| See: https://www.youtube.com/watch?v=ui1ZysMFcKKk |



https://www.youtube.com/watch?v=ui1ZysMFcKk

2 Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

5711 2



2 Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

5711 2

2 At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

Nucleic motion described classically
'Hl.,j—,)R,j — —V,E(R)
dt* |

Empirical force field

e —

E(R)= ¥ E(R+ Y Ei(R)

bonded non—bonded




2 Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

5711 2

2 At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

Nucleic motion described classically

Empirical force field
E(R)= ¥ E(R)+ ¥ Ei(R)

bonded non—bonded

2 Use the forces to calculate velocities and move atoms to new positions
(by integrating numerically via the “leapfrog” scheme)

At i At F(t
.............. 4...f TS—
r(t+At) = r(t) +(t + = At




BASIC ANATOMY OF A MD SIMULATION

2 Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

5711 2

2 At each time step calculate pair-wise atomic forces (F(t)) |
(by evaluating force-field gradient)

Nucleic motion described classically

772.,;2[?} o _ﬁaE(ﬁ)
dt® '

any
2 Useth- - \“e(a‘e _.ate velocities and move atoms to new positions

v RE‘)EP:" ~.«ig numerically via the “leapfrog” scheme)

© At At F(t)
‘ v(t+=) = w(t-—)+—LAt
‘ ‘ 2 2 m
t
® |.ii00 = +v(r+%)m




MD Prediction of Functional Motions
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Simulations Identify Key Residues
Mediating Dynamic Activation

c d
2o K31/D146
P g oI
« ¥ Nucleofide Soq |CTP coP
VD@@ T = -
8 -
.......... e o -
o_ T T T T T

Yao ... Grant, Journal of Biological Chemistry (2016)
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PROTEINS JUMP BETWEEN MANY, HIERARCHICALLY
ORDERED “CONFORMATIONAL SUBSTATES”

.. partial unfolding,
'n
vy }| larger structural
rearrangements

localized
motions

A

A310U7

T —

Conformational Coordinat%

H. Frauenfelder et al., Science 229 (1985) 337



Improve this slide

MOLECULAR DYNAMICS IS VERY E.

Example: F,-ATPase in water (183,674 atoms) for 1 nanosecond:

=> 10° integration steps
=> 8.4 * 10'! floating point operations/step
[n(n-1)/2 interactions]

Total: 8.4 * 10!/ flop
(on a 100 Gflop/s cpu: ca 25 years!)

... but performance has been improved by use of:

multiple time stepping ca. 2.5 years
fast multipole methods ca. 1year
parallel computers ca. 5days
modern GPUs ca. 1day

(Anton supercomputer ca. minutes)



COARSE GRAINING: NORMAL MODE ANALYSIS (NMA)

 MD is still time-consuming for large systems

e Elastic network model NMA (ENM-NMA) is an example of a
lower resolution approach that finishes in seconds even for
large systems.

* 1 bead/
1 amino acid
e Connected by
sSprings

Atomistic Coarse Grained



NMA models the protein as a network of elastic strings

Proteinase K




NEXT UP:

» Overview of structural bioinformatics

* Major motivations, goals and challenges

» Fundamentals of protein structure

» Composition, form, forces and dynamics

» Representing and interpreting protein structure

* Modeling energy as a function of structure

» Example application areas

* Predicting functional dynamics & drug discovery




e I RADITIONAL EMPIRICAL PAT FE
RUG DISCOVER |

Compound library
(commercial, in-house,

synthetic, natural) \

High throughput screening

(HTS) \
Hit confirmation

N\

Lead compounds

(e.g., UM Ky) N\

Lead optimization
(Medicinal chemistry)

v

Animal and clinical €= potent drug candidates
evaluation (nM K,)



EONIPUTER-AID

D LIGAND DESiEEs

Aims to reduce number of compounds synthesized and assayed

Lower costs

Ensemble Docking

v
Scoring

v
Visual

anaiysis
in vitro
assays
000 +00ZINC

v

in vitro
assays

Reduce chemical waste

Facilitate faster progress



Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



SCENARIO I
i OR-BASED DRUG DISE O

Structure of Targeted Protein Known: Structure-Based Drug Discovery

HIV Protease/KNI-272 complex

£



PROTEIN-LIGAND DOCKING

Structure-Based Ligand Design

Docking software
Search for structure of lowest energy Potential function
Energy as function of structure

Q—@®
VDW

O—d

Screened Coulombic

Dihedral



I RUC [UR

—-BAS

Compound
database

/7

Ligand optimization

Med chem, crystallography,

DVIRTUAL 501

-NING

3D structure of target
(crystallography, NMR,

\ / modeling)

Virtual screening
(e.g., computational docking)

|

Candidate ligands

|

Experimental assay

modeling \ l

Ligands ——> Drug candidates
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http://www.beilstein-institut.de/bozen2002/proceedings/Jhoti/jhoti.html

Multiple non active-site pockets identified

Small organic probe fragment affinities map multiple potential
binding sites across the structural ensemble.
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Ensemble docking & candidate inhibitor testing

Top hits from ensemble docking against distal pockets were tested for
inhibitory effects on basal ERK activity in glioblastoma cell lines.

Ensemble computational docking Compound effect on U251 cell line
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Compound testing in
cancer cell lines

PLoS One (2011, 2012)
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Proteins and Ligand are Flexible

Protein




P ION SIMPLIFICATIONS USEETISS
1 OICS-BASED DOCKHN

Quantum effects approximated classically
Protein often held rigid
Configurational entropy neglected

Influence of water treated crudely



Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



Scenario 2
Structure of Targeted Protein Unknown: Ligand-Based Drug Discovery

e.g. MAP Kinase Inhibitors

Using knowledge of
existing inhibitors to
discover more




Why Look for Another Ligand if You Already Have Some?

Experimental screening generated some ligands, but they don’t bind tightly
A company wants to work around another company’s chemical patents

An high-affinity ligand is toxic, is not well-absorbed, etc.
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L EICAL SIMILARIE
LIGAND-BASED DRUG-DISCOVERY

Compounds
(available/synthesizable)

Different

Test experimentally

— Don’t bother



CHEMICAL FINGERPRINTS
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P EN L IAL DRAVWBACKS OF FiL Al

&

HICAL SIPHEARE

May miss good ligands by being overly conservative

May put too much weight on irrelevant details
- Examine ligand shape and common substructures
- Build pharmacophore models
- Statistics and machine learning on chemical descriptors



Maximum Common Substructure
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Pharmacophore Models
Dappako (drug) + Qopa (carry)

_ Bulky hydrophobe
A 3-point pharmacophore




Molecular Descriptors
More abstract than chemical fingerprints

Physical descriptors
molecular weight

charge WN
dipole moment /1* )k ,‘
number of H-bond donors/acceptors

number of rotatable bonds * Rotatable bonds

hydrophobicity (log P and clogP)
Topological

branching index
measures of linearity vs interconnectedness

Etc. etc.



A High-Dimensional “Chemical Space”

Each compound is at a point in an n-dimensional space
Compounds with similar properties are near each other

Descriptor 3

Descriptor 2

Point representing a
@ compound in descriptor
space

Apply multivariate statistics and machine learning for descriptor-selection.
(e.g. partial least squares, support vector machines, random forest, etc.)



CAUTIONARY NOTES

e “Everything should be made as simple as it can be but not simpler”
A model is never perfect. A model that is not quantitatively accurate in
every respect does not preclude one from establishing results relevant
to our understanding of biomolecules as long as the biophysics of the
model are properly understood and explored.

 Calibration of the parameters is an ongoing and imperfect process
Questions and hypotheses should always be designed such that they do
not depend crucially on the precise numbers used for the various
parameters.

* A computational model is rarely universally right or wrong
A model may be accurate in some regards, inaccurate in others. These
subtleties can only be uncovered by comparing to all available
experimental data.



SUMMARY

Structural bioinformatics is computer aided structural

biology

Described major motivations, goals and challenges of
structural bioinformatics

Reviewed the fundamentals of protein structure

Introduced both physics and knowledge based
modeling approaches for describing the structure,
energetics and dynamics of proteins computationally



ACHIEVEMENTS CHALLENGES

llan Samish et al. Bioinformatics 2015;31:146-150
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Literature and ontologies

Gene expression
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DNA & RNA structure

Protein families,
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