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FIODULE OVERVIEVY

Objective: Provide an introduction to the practice of bioinformatics
as well as a practical guide to using common bioinformatics
databases and algorithms

1.1.» Introduction to Bioinformatics

1.2.» Sequence Alignment and Database Searching

1.3 » Structural Bioinformatics

1.4» Genome Informatics: High Throughput Sequencing Applications
and Analytical Methods

WEEKTWO REVIEW

™ Answers to last weeks homework (19/19):
Answers week 2

™ Muddy Point Assessment (11/19):
Responses

- “More time to finish the assignment”

- “I felt there was too much material to cover in one lab”
- “The [NCBI] sites were so slow”

- “More time with HMMER would be helpful”

- “Very nice lab”
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™ Check out the “Background Reading” material online:

» Achievements & Challenges in Structural Bioinformatics
» Protein Structure Prediction

» Biomolecular Simulation
» Computational Drug Discovery

™ Complete the lecture 1.3 homework questions:
http://tinyurl.com/bioinf525-quiz3

“Bioinformatics is the application of computers
to the collection, archiving, organization, and

analysis of biological data.”

... A hybrid of biology and computer science




“Bioinformatics is the application of computers
to the collection, archiving, organization, and
analysis of biological data.”

Bioinformatics is computer aided biology!

So what is structural bioinformatics?

Why should we care?

“Bioinformatics is the application of computers
to the collection, archiving, organization, and
analysis of biological data.”

Bioinformatics is computer aided biology!

Goal: Data to Knowledge

So what is structural bioinformatics?
... computer aided structural biology!

Aims to characterize and interpret biomolecules and
their assembles at the molecular & atomic level

Why should we care?

Because biomolecules are “nature’s robots”

... and because it is only by coiling into
specific 3D structures that they are able to
perform their functions
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Structure Function

Sequence

* Unfolded chain of * Orderedina * Active in specific
amino acid chain precise 3D “conformations”
* Highly mobile arrangment * Specific associations

* Inactive * Stable but dynamic & precise reactions

In daily life, we use machines
with functional structure and moving parts




Genomics is a great start ....
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... but not the end

= We want the full spatiotemporal picture, and an
ability to control it
= Broad applications, including drug design,

=i i medical diagnostics, chemical manufacturing,
3 | e and energy

Extracted from The Inner Life of a Cell by Cellular Visions and Harvard

[YouTube link: https: .youtube. watch?v= k4Pr2i8 |

Sequence Structure Function

* Unfolded chain of * Orderedina * Active in specific
amino acid chain precise 3D “conformations”

* Highly mobile arrangment * Specific associations

* Inactive * Stable but dynamic & precise reactions

KEY CONCEPT: ENERGY LANDSCAPE

Native

Compact,
Ordered

Unfolded
Expanded, Disordered

KEY CONCEPT: ENERGY LANDSCAPE

1 millisecond
T Barrier crossing time

~exp(Barrier Height)

0.1 microseconds Barrier -
Height Native
’ Compact,
l Ordered
Unfolded
Expanded, Disordered Molten

Globule

Compact, Disordered




KEY CONCEPT: ENERGY LANDSCAPE

1 millisecond
m Barrier crossing time

- Multiple Native Conformations
B icioseconds (e.g. ligand bound and unbound)

NG
Unfolded w% _%
State Molte %

Expanded, Disordered

Compa

OUTLINE:

» Overview of structural bioinformatics
* Major motivations, goals and challenges

» Fundamentals of protein structure
+ Composition, form, forces and dynamics

» Representing and interpreting protein structure
* Modeling energy as a function of structure

» Example application areas
* Predicting functional dynamics & drug discovery

OUTLINE:

» Overview of structural bioinformatics
* Major motivations, goals and challenges

» Fundamentals of protein structure
+ Composition, form, forces and dynamics

» Representing and interpreting protein structure
* Modeling energy as a function of structure

» Example application areas

TRADITIONAL FOCUS PROTEIN, DNA
AND SMALL MOLECULE DATA SETS
WITH MOLECULAR STRUCTURE

o . . . Protein DNA Small Molecules
* Predicting functional dynamics & drug discovery (PDB) (NDB) (CCDB)
Motivation 1: Motivation 1:

Detailed understanding of
molecular interactions

Provides an invaluable structural
context for conservation and
mechanistic analysis leading to

functional insight.

Detailed understanding of
molecular interactions

Computational modeling can
provide detailed insight into
functional interactions, their
regulation and potential
consequences of perturbation.

Grant et al. PLoS. Comp. Biol. (2010)




Motivation 2:
Lots of structural data is
becoming available

Structural Genomics has
contributed to driving
down the cost and time
required for structural
determination

Total Number of Structures in RCSB PDB

115,306
(1202016)

Data from: http://www.rcsb.org/pdb/statistics/

{target

selection,

Motivation 2:

Lots of structural data is
becoming available

Structural Genomics has
contributed to driving
down the cost and time
required for structural

determination XX
PDB

Image Credit:"'Structure determination assembly line” Adam Godzik

Motivation 3:

Theoretical and
computational predictions
have been, and continue
to be, enormously
valuable and influential!

SUMMARY OF KEY MOTIVATIONS

Sequence > Structure > Function
+ Structure determines function, so understanding structure
helps our understanding of function

Structure is more conserved than sequence
- Structure allows identification of more distant evolutionary
relationships

Structure is encoded in sequence
+ Understanding the determinants of structure allows design and
manipulation of proteins for industrial and medical advantage
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* Analysis
* Visualization

Contacts

150 200 250 300
150 200 250 300
\

» Comparison

* Prediction
* Design

Exposure

RMSD

50 100 150 200 250 300
Residue No.

Grant et al. JMB. (2007)

Goals:

* Analysis

* Visualization
» Comparison
* Prediction

* Design

Scarabelli and Grant. PLoS. Comp. Biol. (2013)
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Goals: Goals:
* Analysis * Analysis

« Visualization
» Comparison
* Prediction

* Design

Grant et al. PLoS One (201 1,2012)

« Visualization
» Comparison
* Prediction

* Design

Grant et al. PLoS Biology (201 1)

B JOR RESEARCH ARESE
AL CHALL ENGES

Include but are not limited to:

* Protein classification

« Structure prediction from sequence

« Binding site detection

« Binding prediction and drug design

* Modeling molecular motions

* Predicting physical properties (stability, binding affinities)
« Design of structure and function

stete

With applications to Biology, Medicine, Agriculture and Industry

NEXT UP:

» Overview of structural bioinformatics

* Major motivations, goals and challenges

» Fundamentals of protein structure

+ Composition, form, forces and dynamics

» Representing and interpreting protein structure

* Modeling energy as a function of structure

» Example application areas

* Predicting functional dynamics & drug discovery




mi=t ARCEHICA| STRUCTURE OF PRGTE[E

Primary > Secondary > Tertiary > Quaternary
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amino acid Alpha Polypeptide Assembled
residues helix chain subunits

Image from: http:/www.ncbi.nlm.nih.gov/books/NBK2 158 1/
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Image from: http:/www.ncbi.nlm.nih.gov/books/NBK2 158 1/
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Image from: http:/www.ncbi.nlm.nih.gov/books/NBK2 1581/

AMINO ACIDS POLYMERIZE THROUGH
PEPTIDE BOND FORMATION

f P P H0 Pl o
— CH— — CH— 4
OH,N—CH c\oe + ©uN TH c\oe 2 ©H,N—cu—c—uu—clu—c\oe
Peptide bond R
side chains
backbone

N-terminal > C-terminal

Image from: http:/www.ncbi.nlm.nih.gov/books/NBK2 158 1/

B FIDES CAN ADOPT DIFFERERER
CONFORMATIONS BY VARYING THEIR
PHI & PSI BACKBONE TORSIONS

C-terminal
N-terminal
Bond angles and lengths Peptide bond is planer
are largely invariant (Ca, C, O, N, H, Ca all

lie in the same plane)

Image from: http:/www.ncbi.nlm.nih.gov/books/NBK2 158 1/

PHI vs PSI PLOTS ARE KNOWN AS
RAMACHANDRAN DIAGRAMS

180
)—————— Antiparallel B sheet

T Typelitum

- ~~parallel .

Bsheet |
Js—ahelix
| (left-handed)

.
a— 3ohelix  TYPelitum

-180° [ 180° —180° [ 180°

« Steric hindrance dictates torsion angle preference
* Ramachandran plot show preferred regions of ¢ and ¢ dihedral
angles which correspond to major forms of secondary structure

Image from: http:/www.ncbi.nlm.nih.gov/books/NBK2 158 1/




2 OR SECONDARY STRUCTURE THfiiSiss
ALPHA HELIX & BETA SHEET

a-helix
® Most common from has 3.6 residues per turn
(number of residues in one full rotation)

e Hydrogen bonds (dashed lines) between
residue j and i+4 stabilize the structure

e The side chains (in green) protrude outward

3, ,-helix and wt-helix forms are less common

Hydrogen bond: i=i+4

Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 | 581/

2 OR SECONDARY STRUCTURE THfiiSiss
ALPHA HELIX & BETA SHEET

In antiparallel 3-sheets
o Adjacent B-strands run in opposite directions
e Hydrogen bonds (dashed lines) between NH and CO
stabilize the structure
o The side chains (in green) are above and below the sheet
Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 | 581/

2 OR SECONDARY STRUCTURE THfiiSiss
ALPHA HELIX & BETA SHEET

In parallel 3-sheets
® Adjacent B-strands run in same direction

® Hydrogen bonds (dashed lines) between NH and CO
stabilize the structure

o The side chains (in green) are above and below the sheet
Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 | 581/

What Does a Protein Look like?

* Proteins are stable (and hidden) in water

* Proteins closely interact with water




* Proteins are close packed solid but flexible objects (globular)

* Due to their large size and complexity it is often
hard to see whats important in the structure

* Backbone or main-chain representation can help
trace chain topology

* Backbone or main-chain representation can help
trace chain topology & reveal secondary structure

» Simplified secondary structure representations are
commonly used to communicate structural details

* Now we can clearly see 2°, 3° and 4° structure
* Coiled chain of connected secondary structures

BISRIFAGEMENTS REELECTE [INTRINS|E FIEEX| Bl IS RS

Superpositio{of a;ll 482 structures in RCSB PDB
(23/09/2015)




BISRIFAGEMENTS REELECTE [INTRINS|E FIEEX| Bl IS RS

Principal component analysis (PCA) of experimental structures

KEY CONCEPT: ENERGY LANDSCAPE

1 millisecond
m Barrier crossing time

Multiple Native Conformations
(e.g. ligand bound and unbound)

RN
um @%W%};

0.1 microseconds

State
Expanded, Disordered
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Key forces affecting structure:

Hydrogen-  Hydrogen-

* H-bonding bond donor  bond acceptor
. N—H------- N
Van der Waals 5 5 &
¢ Electrostatics N—H-=------ (o]
* Hydrophobicity O—H----n-- N
* Disulfide Bridges
O—Hrswmmss 0
- d —

26A<d<3.1A

0
D_/H_\ 150° < 8 < 180°

Key forces affecting structure:

, A B
* H-bondin - T %
g AE= T127 %
* Van der Waals Repulsion
* Electrostatics AR r

* Hydrophobicity
* Disulfide Bridges

Attraction \ﬁ

—d— 3Ah<d<4h

Key forces affecting structure:

. — d——d=28A
* H-bonding 0 nM
* Van der Waals ~dfe @N-
No H

* Electrostatics carboxyl group and amino group

* Hydrophobicity
* Disulfide Bridges

(some time called IONIC BONDs or SALT BRIDGEs)

c ) E = Energy
k = constant
% qé - Kaq, 4, D = Dielectric constant (vacuum = 1; H,O = 80)
r T Dr g & g, = electronic charges (Coulombs)

r = distance (A)

Key forces affecting structure:

* H-bonding

* Van der Waals

* Electrostatics

* Hydrophobicity
* Disulfide Bridges

The force that causes hydrophobic molecules or nonpolar portions of molecules to
aggregate together rather than to dissolve in water is called Hydrophobicity (Greek,
“water fearing”). This is not a separate bonding force; rather, it is the result of the
energy required to insert a nonpolar molecule into water.




Forces affecting structure: NEXT UP:

/'c‘\ /*-'N\ » Overview of structural bioinformatics
o o
* H-bonding bl P * Major motivations, goals and challenges
HzC\ Ao AN
* Van der Waals s 5 c/C"H .
J N » Fundamentals of protein structure
. stei — 3
* Electrostatics Cysteine  Oxidation [ s aw 4 2e + Composition, form, forces and dynamics
* Hydrophobicity B feen X0
s,
y /CHZ H,,,C/CH2 » Representing and interpreting protein structure
; ; ; H ~ -
* Disulfide Bridges N N \ECQ * Modeling energy as a function of structure
Other names: H l(l)
Zysﬁlzz br;d%e Cysteine Cystine » Example application areas
isulfide bridge
+ Predicting functional dynamics & drug discover
Hair contains lots of disulfide bonds g 4 g 4
which are broken and reformed by heat
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pDB FILE FORMAT

Chain name

Amino Acid / Sequence Number
\ / /
Element \ / /e Coordinates-----
\ \ /7 x Y z (etc.)

ATOM 1 N ASP L 1 4.060 7.307 5.186 ...
ATOM 2 CA ASP L 1 4.042 7.776 6.553 ...
ATOM 3 ¢ ASP L 1 2.668 8.426 6.644 ...
ATOM 4 O ASPL 1 1.987 8.438 5.606 ...
ATOM 5 CB ASP L 1 5.090 8.827 6.797 ...
ATOM 6 CG ASP L 1 6.338 8.761 5.929 ...
ATOM 7 ODl1 ASP L 1 6.576 9.758 5.241 ...
ATOM 8 O0D2 ASP L 1 7.065 7.759 5.948 ...

\\

Element position within amino acid
« PDB files contains atomic coordinates and
associated information.

KEY CONCEPT: POTENTIAL FUNCTIONS DESCRIBE
¢ 515 TEMS ENERGY AS A FUNCTION OfF e
STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based

KEY CONCEPT: POTENTIAL FUNCTIONS DESCRIBE
¢ OIS TEMS ENERGY AS A FUNCTION OfF e
STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based

PHYSICS-BASED POTENTIALS
ENERGY TERMS FROM PHYSICAL THEORY

UR) = 5 Keode—ro)?+ 3 k"0 — 60)* + \/ T~
bonds angles i
Usona TS
ST KPR+ cos (nig; + 6;)] + \/
dihedrals ! [ @
Usihedrat
12 6 7
a, g, _—
DD ey (i) ( ”) +Y Y WAV
T Tij i g7 €T % %
Unonbond
Upgnq = oscillations about the equilibrium bond length &f/ = R QY
U,pgle = oscillations of 3 atoms about an equilibrium bond angle - N/ E\'_‘ (/S
Ulginearal = torsional rotation of 4 atoms about a central bond b4 A ¢ ‘\_
U, onbona = Non-bonded energy terms (electrostatics and Lenard-Jones)

CHARMM PE. function, see: http://www.charmm.org/

TOTAL PROTENTIAL ENERGY

*The total potential energy
or enthalpy fully defines the

system , u.

*Tle forces ore the
greaients of the energy .

F() = 'JWJK'TR energy s & sum of

#‘.“ s independent terms for:
| l / Bond, Bend angles,

Torsion angles ond non—
Pasition =

U —

Evergy ,

bonded atom pairs.
Slide Credit: Michael Levitt
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el (ICS-ORIENTED APPROAC Rl

Weaknesses
Fully physical detail becomes computationally intractable
Approximations are unavoidable
(Quantum effects approximated classically, water may be treated crudely)
Parameterization still required

Strengths
Interpretable, provides guides to design
Broadly applicable, in principle at least
Clear pathways to improving accuracy

Status
Useful, widely adopted but far from perfect
Multiple groups working on fewer, better approxs
Force fields, quantum
entropy, water effects
Moore’s law: hardware improving

SIDE-NOTE: GPUS AND ANTON
SUPERCOMPUTER

;s B B

Performance
(simulated ns day"')

3
T

SIDE-NOTE: GPUS AND ANTON
SUPERCOMPUTER

;s B B

Performance
(simulated ns day"')

3
T

KEY CONCEPT: POTENTIAL FUNCTIONS DESCRIBE
¢ SIS TEMS ENERGY AS A FUNCTION OfF e
STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based

KNOWLEDGE-BASED DOCKING POTENTIALS

Ligand
carboxylate

Aromatic
stacking
3,4




ENERGY DETERMINES PROBABILITY
(STABILITY)

Basic idea: Use probability as a proxy for energy

W
A

X

Boltzmann:
p(r) e e—E(r)/RT

Inverse Boltzmann:

E(r)=-RTIn[p(r)]

Probability Energy

Example: ligand carboxylate O to protein histidine N

Find all protein-ligand structures in the PDB with a ligand carboxylate O
1. For each structure, histogram the distances from O to every histidine N
2. Sum the histograms over all structures to obtain p(r_)
3. Compute E(rq.) from p(ro.y)

PMF (kcal/mol)

KNOWLEDGE-BASED DOCKING
POTENTIALS

F RN IMUegoe & Martin, || Med Ehemi (999 427

A few types of atom pairs, out of several hundred total

Aromatic carbons Aliphatic carbons

Nitrogen*/Oxygen™

3.0 ——— 30— 7
| ] [ ‘ 1 3.0 T —l
20 — NCOC | 20 { 201 Y |
t | | cFcF s [ | FCF 1
10 ' L[ OCNC o] 1 Bl CFC
o PRI I SR o
0.0 i mﬂﬂ»,m.,,f <| 0.0 LJ,.. ~ | & oo L
-1.0 ¥l 1 10 | 1 & 0

v
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20 .
700 20 40 60 80 100 120 00 20 40 60 80 100 120

Atom-atom distance (Angstroms)

1 1D E Ewe(g)(”;/)

pairs (if)

KNOWLEDGE-BASED POTENTIALS

Weaknesses
Accuracy limited by availability of data

Strengths
Relatively easy to implement
Computationally fast

Status
Useful, far from perfect
May be at point of diminishing returns
(not always clear how to make improvements)

NEXT UP:

» Overview of structural bioinformatics
* Major motivations, goals and challenges

» Fundamentals of protein structure
+ Composition, form, forces and dynamics

» Representing and interpreting protein structure
* Modeling energy as a function of structure

» Example application areas
¢ Predicting functional dynamics & drug discovery

PREDICTING FUNCTIONAL DYNAMICS

* Proteins are intrinsically flexible molecules with internal
motions that are often intimately coupled to their
biochemical function

— E.g. ligand and substrate binding, conformational activation,
allosteric regulation, etc.

* Thus knowledge of dynamics can provide a deeper
understanding of the mapping of structure to function

— Molecular dynamics (MD) and normal mode analysis (NMA) are
two major methods for predicting and characterizing molecular

motions and their properties

MOLECULAR DYNAMICS SIMULATION

* Use force-field to find
Potential energy between
all atom pairs

* Move atoms to next state

* Repeat to generate
trajectory

McCammon, Gelin & Karplus, Nature (1977)
[ See: https://www.youtube.com/watch?v=ui1ZysMFcKk |




P Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

& T Tt el

P Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

& T Tt Tl

P At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

Nucleic motion described classically

LR — 5.8
dt?

’ Empirical force field
ER) = ¥ ER+ ¥
bonded )

m

P Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

& T Tt el

P At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

Nucleic motion described classically

‘ Empirical force field
E(R)= ¥ ER)+ ¥ E(R
bonded

non—bonded

P Use the forces to calculate velocities and move atoms to new positions
(by integrating numerically via the “leapfrog” scheme)

BASIC ANATOMY OF A MD SIMULATION

P Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

& T Tt Tl

P At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

Nucleic motion described classically

R, = —V.E(R)

m

e

10

‘ Empiricg 1“\5
E(R t\mes“'
ma\‘\‘l m
any!

P Useth- ~ \“era'te ‘f.‘al.e velocities and move atoms to new positions
pEPKr \.g numerically via the “leapfrog” scheme)
p RE
At At F(t)
./, .\ ¥ ) v(f+7) = v(t—7)+TAt
r(t+At) = rt)+ot+ %)Ar

Qo

MD Prediction of Functional Motions

“close”

0.00 ns

0.00 ns

60.00 ns.

Yao and Grant, Biophys J. (2013)

Simulations Identify Key Residues
Mediating Dynamic Activation

c d

N K31/D146

2 GDI
@ 0

2o |CTP GDP,

3 ¥

ERE

gor

2530354045
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Yao ... Grant, Journal of Biological Chemistry (2016)
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G protein

Activation couplin,
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GPCR

G protein

PROTEINS JUMP BETWEEN MANY, HIERARCHICALLY
ORDERED “CONFORMATIONAL SUBSTATES”

A8xoug

.. | partial unfolding,
Dy
_ms 7| larger structural
collective motions /ﬂ‘\, rearrangements

localized
motions

G
A

Conformational Coordinate

H. Frauenfelder et al., Science 229 (1985) 337

Improve this siide

MOLECULAR DYNAMICS IS VERY E]

Example: F,-ATPase in water (183,674 atoms) for 1 nanosecond:
=> 106 integration steps
=> 8.4 * 10! floating point operations/step
[n(n-1)/2 interactions]

Total: 8.4 * 10" flop
(on a 100 Gflop/s cpu: ca 25 years!)

... but performance has been improved by use of:

multiple time stepping ca. 2.5years
fast multipole methods ca. 1vyear
parallel computers ca. 5days
modern GPUs ca. 1day

(Anton supercomputer ca. minutes)

COARSE GRAINING: NORMAL MODE ANALYSIS (NMA)

* MD is still time-consuming for large systems

* Elastic network model NMA (ENM-NMA) is an example of a
lower resolution approach that finishes in seconds even for
large systems.

EE ¢ 1bead/

{ 1 amino acid
%T * Connected by
l springs

(%]
Atomistic Coarse Grained

NMA models the protein as a network of elastic strings

Proteinase K

NEXT UP:

» Overview of structural bioinformatics
* Major motivations, goals and challenges

» Fundamentals of protein structure
+ Composition, form, forces and dynamics

» Representing and interpreting protein structure

* Modeling energy as a function of structure

» Example application areas
+ Predicting functional dynamics & drug discovery




THE TRADITIONAL EMPIRICAL PATH T
DRUG DISCOVER Y

Compound library
(commercial, in-house,
synthetic, natural) \

High throughput screening

HTS) N

Hit confirmation

Lead compounds

(e-g-, KM Ky) \

Lead optimization
(Medicinal chemistry)

Animal and clinical €= potent drug candidates
evaluation ("M K,)

COMPUTER-AIDED LIGAND DESIGN

Aims to reduce number of compounds synthesized and assayed

Lower costs

Reduce chemical waste Scor
coring
Visual

Facilitate faster progress analysis

in vitro
assays

Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based

Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based

SCENARIO I:
FECEPTOR-BASED DRUG DISCOVERE

Structure of Targeted Protein Known: Structure-Based Drug Discovery

HIV Protease/KNI-272 complex

PROTEIN-LIGAND DOCKING

Structure-Based Ligand Design

Docking software
Search for structure of lowest energy Potential function
Energy as function of structure

o—0
VDW

0+—
Screened Coulombic

e

Dihedral




STRUCTURE-BASED VIRTUAL SCREENING

Compound
database

3D structure of target
(crystallography, NMR,

\ / modeling)

Virtual screening
(e.g., computational docking)

/ Candidate ligands

Ligand optimization
Med chem, crystallography, Experimental assay
modeling l

Ligands —> Drug candidates

COMPOUND LIBRARIE

Commercial
(in-house pharma)

Government (NIH) Academia

FRAGMENTAL STRUCTURE-BASED
SCREENING

“Fragment” library 3D structure of target

Fragment docking

Multiple non active-site pockets identified

Small organic probe fragment affinities map multiple potential
binding sites across the structural ensemble.

»
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Ensemble docking & candidate inhibitor testing Proteins and Ligand are Flexible
Top hits from ensemble docking against distal pockets were tested for Protein
inhibitory effects on basal ERK activity in glioblastoma cell lines.
Ensemble computational docking Compound effect on U251 cell line Ligand
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Complex




COMMON SIMPLIFICATIONS USEEF
PHYSICS-BASED DOCKING

Quantum effects approximated classically
Protein often held rigid
Configurational entropy neglected

Influence of water treated crudely

Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based

Scenario 2
Structure of Targeted Protein Unknown: Ligand-Based Drug Discovery

e.g. MAP Kinase Inhibitors

Using knowledge of
\ existing inhibitors to
discover more

Why Look for Another Ligand if You Already Have Some?

Experimental screening generated some ligands, but they don’t bind tightly
A company wants to work around another company’s chemical patents

An high-affinity ligand is toxic, is not well-absorbed, etc.

LIGAND-BASED VIRTUAL SCREENING

Compound Library Known Ligands

Molecular similarity
Machine-learning
Etc.

¢

Candidate ligands

Optimization l
Med chem, crystallography, Assay

modeling \ l

Actives ———3 Potent drug candidates

CHEMICAL SIMILARITY
LIGAND-BASED DRUG-DISCOVERY

Compounds
(available/synthesizable)

Different
Don’t bother

Test experimentally




CHEMICAL FINGERPRINTS
B ARY STRUCTURE K
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Tanimoto Similarity T = N, =0.25

or Jaccard Index, T ’
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POTENTIAL DRAWBACKS OF PLAIN
CHEMICAL SIMILARITY

May miss good ligands by being overly conservative

May put too much weight on irrelevant details
- Examine ligand shape and common substructures
- Build pharmacophore models
- Statistics and machine learning on chemical descriptors

Maximum Common Substructure

N H

N

34

common™

Pharmacophore Models
DOdppako (drug) + opa (carry)

-~ AN
. ( Bulky hydrophobe
A 3-point pharmacophore N e

Molecular Descriptors
More abstract than chemical fingerprints

Physical descriptors
molecular weight
charge , N
dipole moment '@‘1)’\& (e
number of H-bond donors/acceptors @
number of rotatable bonds

hydrophobicity (log P and clogP)

* Rotatable bonds

Topological
branching index
measures of linearity vs interconnectedness

Etc. etc.




A High-Dimensional “Chemical Space”

Each compound is at a point in an n-dimensional space
Compounds with similar properties are near each other

Descriptor 3

Descriptor 2

Point representing a
© compound in descriptor
space

Apply multivariate statistics and machine learning for descriptor-selection.
(e.g. partial least squares, support vector machines, random forest, etc.)

CAUTIONARY NOTES

* “Everything should be made as simple as it can be but not simpler”
A model is never perfect. A model that is not quantitatively accurate in
every respect does not preclude one from establishing results relevant
to our understanding of biomolecules as long as the biophysics of the
model are properly understood and explored.

* Calibration of the parameters is an ongoing and imperfect process
Questions and hypotheses should always be designed such that they do
not depend crucially on the precise numbers used for the various
parameters.

* A computational model is rarely universally right or wrong
A model may be accurate in some regards, inaccurate in others. These
subtleties can only be uncovered by comparing to all available
experimental data.

SUMMARY

Structural bioinformatics is computer aided structural
biology

Described major motivations, goals and challenges of
structural bioinformatics

Reviewed the fundamentals of protein structure

Introduced both physics and knowledge based
modeling approaches for describing the structure,

energetics and dynamics of proteins computationally

ACHIEVEMENTS CHALLENGES

Ry

Y-

S~
Y.
u

llan Samish et al. Bioinformatics 2015;31:146-150

IBFORMING SYSTEMS BIOECHE

Literature and ontologies

Gene expression
[ oo g - F
oA

Protein sequence
N il
DNA & RNA sequence <D <
%f = Protein structure
DNA & RNA structure 3

Protein families,
motifs and domains

Protein interactions

) !




