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TOPICS
>Properties of Biological Systems

->Analytic Methods in Systems Biology
—>Networks and Biological Systems

->Case Examples:
—->The noncoding genome and transcriptional programs of gene
regulation;
—>Developmental programs of neurogenesis restore function in the
damaged human brain;
—->Systems pharmacology: New approaches for understanding
adverse events associated with neuropsychiatric medications.

- Tools, Resources — how can these be applied to your research?

—>Gene Set Enrichment Analysis (GSEA), Gene Ontology
—>Pathway analysis

>GTEXx Portal
—>FactorBook, TransFac Pro®







Properties of Biological Systems

->They are complex, consisting of different components that
may be similar to each other or not, simple or complex;

->They exhibit non-linear dynamics which are not easily
understood by humans — sometimes modeling of biological
systems requires computational approaches such as
stochastic, multi-dimensional differential equations;

->They are multi-scalar, combining atomic, molecular,
supramolecular, subcellular, cellular, physiological and
behavioral components;

->They exhibit emergent properties, whose attributes cannot
always be understood through decomposition and the use of
reductionist approaches;

->They become increasingly more complex as they are
examined and understood.



Size does not equal complexity
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The nonlinear properties of biological systems can often be
modeled using more better and simpler linear approaches

—>Linear system models: (1) Support a large array of mathematical
techniques than current nonlinear math, and (2) Can often be used to
analyze the nonlinearity of biological systems.

EXAMPLE

Superposition: If the Inputs and Outputs of a system can be summed-
Input™ =O0utputtl and /nput’2 =0utput12 , then,
InputT + Input2 = Output™ + Output?? .

- Unfortunately, the dynamics of biological systems are nonlinear, but
we can “flatten out” that part of the nonlinear system that is of
interest;

=>This is justified by the theorem of Hartman and Grobman, which
states that under most conditions, important clues about the behavior
of a non-linear system can be deduced using a linear model [1].

[1] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems & Bifurcations of Vector
Fields. Springer. 1983



Example of a Multiscale Biological System — The Stress Response
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Example of Emergent Properties of a Biological System —
[Protein kinase C] in a glutamate receptor signaling pathway [1]
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When feedback is present,
successive spikes become larger.
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When feedback is absent,
successive spikes flat-line.

“These properties include the following: (i) Extended signal duration. The coupling of fast
responses to the slow responses confers on the system the ability to regulate output for
considerable periods after withdrawal of the initial signal. (ii) Activation of feedback
loops...These properties of signaling networks raise the possibility that information for
“learned behavior” of biological systems may be stored within intracellular biochemical
reactions that comprise signaling pathways.” [1]

[1] Bhalla US, lyengar R. Emergent properties of networks of biological signaling pathways.
Science. 283, 381-386 (1999).



Biological systems often become increasingly more complex
as they are examined and understood — Genomewide association studies (GWAS)
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->Recognition that many genetic associations involve

the regulatory, noncoding genome;

» ->Change in statistical threshold — e.g., SNPs could be

rescued by pathway analysis. But, regulatory SNPs
should be in high LD with reported ‘lead’ SNPs.

2016 - ?

-

->Demonstration that SNPs connected by CTCF-
associated histone loops can provide epigenomic
“linkage” with weak haplotype linkage [1];

[1] Tang Z et al. CTCF-mediated human 3D genome
architecture reveals chromatin topology for
transcription. Cell. 163, 1-17 (2015).



More examples - Properties of Biological Systems

A »

~90 billion neurons that form 100

Complexity Human brain . . .
trillion synaptic connections

Temporal Ras protein 12-24nm in diameter;

complexity clustering Lifetime of 100 msec

Tissue hysteresis

Titan protein in
the cardiac wall

Responsible for 320 £ 46 pJ/mm2/
sarcomere

Bistable dynamics

On/off control of
mitosis

Bistable steady-state response of
Cyclin-Dependent Kinase 1 to
phosphorylation by Cyclin B1

Emergent property

Human brain

Human-specific consciousness

Emergent property

Schools of fish

Self-organizing systems that have
not yielded to reductionist methods

Nonlinearity

Bat sonar

Can only be modeled by meta-
heurisitic differential equations
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GOALS, INPUTS,
AND INITIAL

EXPLORATION

MODEL SELECTION

MODEL DESIGN

MODEL ANALYSIS
AND DIAGNOSIS

MODEL USE AND
APPLICATIONS

Model Development

Scope, goals, objectives

Data, information and prior knowledge

!

Type of model

l

Variables, interconnections

Equations, parameter values

}

Consistency, robustness

Validation of dynamics

| Exploration of possible behaviors |

}

Hypothesis testing, simulation, discovery, exploration

Manipulation and optimization

Modified from: E.O. Voit. A First Course in Systems Biology. Garland Science, Taylor and Francis Group.

New York. ISBN 978-0-8153-4467-4 (2013).




Model Selection

DETERMINISTIC PROBABILISTIC / STOCHASTIC

Each element has a planned value in
advance.

System elements are not random, but
they are random variables drawn from
a distribution.

Each element has a predecessor and
a successor.

Three or more point estimates in the
system model can be sampled to
determine element duration random
variables.

The longest path through the network
is the critical path.

Critical path through network may
change over time.

The total duration of the system has a
fixed value, thus it is deterministic.

The total duration of the system time
IS random.

The total values of the system outputs
is the sum of all outputs.

The total values of the system outputs
IS a random number.




Model Selection: Deterministic

Type-> : ORRELA

Objective=> | Attempts to determine causation. Association provides useful in biomedicine.

: Complex; Requires comprehensive | Simple linear regression can be used. Can
Attributes / : _ ) . 5
& accurate data input; Causation | predict a patient’s response to a drug when

Example - hard to prove — changes over time. | combining clinical and genotype data.

Use > Rich data input; Numerically well | Sparse but adequate data available. Clinical/
S€ defined variables & algorithms. scientific utility, does not prove causation.

Can be used to explain how positive and Whether linear or nonlinear, can robustly

negative feedback loops can change the predict correlation between x and y, but

product concentrations of a metabolic pathway. does not explain connection between x
and y.

Modified from: E.O. Voit. A First Course in Systems Biology. Garland Science, Taylor and Francis
Group. New York. ISBN 978-0-8153-4467-4 (2013).




ean|y-aa9153 eliog




Graph-based network models

->Commonly used to visualize interactions in a biological system;
->Used for modeling new and unknown interactions;

>Functional annotation of novel molecules using matching and
clustering methods;

->ldentification of metabolic signaling pathways;

->Detection of the centrality of protein and gene regulatory networks.
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SNPs that classify lithium response are from a single pathway in brain

~ A- P‘ m|h<26a 5p (and oth ﬁNAs w/seed UCAAGUA)
=~ \
P %/ K&n{e‘
) l E/LO \¥

A ‘Gpcr

% Enzyme

?.’" G-protein coupled receptor

@ Group/complex

B lon channel

37 Kinase

Jj) Ligand-dependent nuclear receptor

NS C:O Transcription regulator
$J Transporter

SL'QZ O Other

L Mature microRNA

— Relationship
—— Relationship

[1] Higgins GA, Allyn-Feuer A, Barbour E, Athey BD. A glutamatergic network mediates lithium response in bipolar
disorder as defined by epigenome pathway analysis. Pharmacogenomics. 16(14), 1547-1563 (2015).



All significant lithium pharmacogenomic response effects can be traced to this pathway
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SNPs in the lithium response pathway cause lithium-induced adverse events
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Eric Davidson, Caltech

Network Models: Gene Regulatory Networks (GRNSs)

O In the network
B Nodes are Genes
B |nputis Transcription Factors (proteins)
B OQOutputis Gene Expression
B Arrows show interaction

Gins Primary
Input regulatory outputs =
signals S Changed RNA
and protein
component complements
feedback circuitry

il

Terminal
outputs =
Changed cell

behaviors and
structures

1
|
|
|

A

Endoderm 1Sea Urchin
Mesoderm

micromere/PMC  Blimp1

|—w¢r’
L

Foxa Gatae

PMC GRN
elta J. l
Gem Gatac
Ets1

skeleton pigment cells  blastocoelar cells endoderm
Sea Star
v v P
Tbr Blimp1 Otx
1 i
L= 1 ]
Delta <'| " I’ }1 V I
Bra Foxa Gatae |
____________________ -
I I
| |
Ets1 -Gatéac—q
blastocoelar cells endoderm




Network Models: Weighted Co-Expression Analysis

Define a Gene Co-expression Similarity

D (EmE [
Define a Family of Adjacency Functions ul J
Determine the AF Parameters ;}
Define a Measure of Node Dissimilarity !il'i
RN TN L
Identify Network Modules (Clustering) l\‘ﬂmﬂ\
Relate Network Concepts to Each Other i re

Relate the Network Concepts to
External Gene or Sample Information

b R
s
e

Figure 1: Flowchart and illustration of gene co-expression network analysis.
A typical figure has been placed to the right of each step.

Zhang, B. and Horvath S. A general framework for weighted gene co-expression network
analysis. (2005). Statistical App. Genet. Mol. Biol. 4(1), 1-43.



Table 2. Module eigengene significance for co-expression modules.

Schizophrenia dataset Antipsychotic-free dataset
WGCNA Modules # genes t Adjusted p-value t Adjusted p-value Expressed in brain
Green 367 —6.26 3.8x1071° -0.99 48x107" -
Magenta 226 5.51 3.5x107% —0.24 9.6x10™°" -
Tan 129 -4.92 8.8x10°% -2.61 4.8x107 % 61%
Red 344 —4.63 3.6x107% —1.60 22x107% -
Turquoise 789 437 13 x107% 1.97 1.2x107% -
Yellow 399 —3.82 1.3x107% -1.26 3.6x1077 -
Salmon 121 3.02 25x107% 2.51 48x107% 52%
Blue 610 2.95 3.2x107% 2.04 1.2x107" -
Cyan 115 2.87 41x107% -0.13 9.6x107° -
Greenyellow 197 2.59 9.7x10”% -251 48x107% -
Black 321 —-2.09 3.6x107% 0.33 9.6x107° -
Pink 290 —2.03 42x107% —0.05 9.6x107% -
Purple 205 —-1.07 29x107° - - -
Brown 447 —0.24 8.1x107° - - -

The modules that were found by WGCNA in the first dataset are listed together with the number of genes they contain (shown in the second column). Differences in
cases and controls were tested using a linear model with FDR correction. Results for the medicated cases versus controls are presented in column three and four. The
modules that were found to be differentially expressed were also tested for significance between cases and controls in the antipsychotic-free set, and results are
presented in the fifth and sixth column. The last column indicates the percentage of module content that was also found to be expressed in brain (log,>4). For all
genes in the other modules, this was found to be 45%. For the Tan module, this was significantly higher (Fisher p=4.3x107%).
doi:10.1371/journal.pone.0039498.t002

De Jong S et al. A gene co-expression network in whole blood of schizophrenia patients Is
independent of antipsychotic use and enriched for brain-expressed genes. (2012) PLoS One. 7

(6), 39498
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Figure 2. Visual representation of connections of genes in the Tan schizophrenia module. This figure shows target genes of the probes in
the Tan schizophrenia module with the strongest connections only (r >0.64). Blue-colored nodes represent brain-expressed genes. Square-shape
nodes indicate cis-regulation. Node size is related to the number of connections of that particular gene; a highly connected gene (i.e. ‘hub gene’) is
therefore larger than genes with fewer connections. Red text indicates genes previously implicated in schizophrenia. Image created using Cytoscape
software [69].

doi:10.1371/journal.pone.0039498.g002






Case Examples

->The noncoding genome and transcriptional programs of gene
regulation;

->Developmental programs of neurogenesis that restore function
In the damaged human brain;

->Systems pharmacology: New approaches for understanding
adverse events associated with neuropsychiatric medications.



Spatial distribution of transcriptional domains in the nucleus

Inter-chromosomal loop Chromosome territory
between territories forms
Transcription Factory (TF):

Polarization of gene transcription
within territories: Genes located
inside are less active

Topologically Associating
Domains (TADs) are the
basic conserved unit of
chromosome organization,
and are composed of
loop domains.

Nucleolus

Lamina-associating domain (LAD) .
on inner surface of nuclear

membrane represses transcription
of 20% of genes located here

Nuclear pore complex is
associated with specific
mechanisms of transcription

Nucleolar-associating domain (NAD)
contains heterochromatin and represses gene transcription

From: Higgins, GA et al. The epigenome, 4D nucleome and next-generation neuropsychiatric
pharmacogenomics. Pharmacogenomics. (2015) 16(14), 1649-1669.



The epigenome regulates gene transcription

Loop domain assembly

Condensed
at expressed gene Nucleosome

kil A Linker .
chromatin Histone tails with DNA core particle

post translational
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From: Higgins, GA et al. The epigenome, 4D nucleome and next-generation neuropsychiatric
pharmacogenomics. Pharmacogenomics. (2015) 16(14), 1649-1669.



Hi-C chromatin capture defines the spatial organization of the human

genome as topologically-associating domains (TADs)
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Topologically-associated domains (TADs) are the basic unit of
transcription and contain enhancer-promoter chromatin loops

Ordinary Ordinary
D?mam Domain

Loop
Domain

POLR2A
Enhancer oTCF

Loop Cohesin CTCF

From: Higgins, GA et al. The epigenome, 4D nucleome and next-generation neuropsychiatric
pharmacogenomics. Pharmacogenomics. (2015) 16(14), 1649-1669.



Control of gene transcription largely takes place in these
enhancer-promoter loops

In the human genome, there are approximately:
-1,000,000 enhancers

->100,000 promoters
Ordinary domain
Loop domain
190 Kb

CTCF anchor
/ 130 Kb (arrowhead indicates

motrf orientation)
Rao SSP et al. A 3D map of the human genome at kilobase resolution reveals principles of
chromatin looping. Cell. (2014). doi.org/10.1016/j.cell.2014.11.021




Pathway Discovery of Adverse Events




Spatial mapping using Hi-C data explains basis of QT prolongation
during treatment with the antipsychotic drug quetiapine

NOS1AP
Chr1:162039581

rs4959235
Chr6: 33593370

-

Aberg K et al. Genome-wide association
study of antipsychotic-induced QTc
interval prolongation. Pharmacogenomics.
12:165-72. (2012).

Aarnoudse AJL et al. Common NOS1AP variants are associated with
a prolonged QTc interval in the Rotterdam Study. Circulation.
116(1): 10-16 (2007).

Chang KC et al. Nitric oxide synthase 1 adaptor protein, an emerging
new genetic marker for QT prolongation and sudden cardiac death.
Acta Cardiol. Sin. 29:217-225. (2013);

Crotti L et al. NOS1AP is a genetic modifier of the long-QT
syndrome. Circulation, 120(17):1657-1663 (2009).

Jamshidi Y et al. Common variation in the NOS1AP gene is
associated with drug-induced QT prolongation and ventricular
arrhythmia. J. Amer. Coll. Cardiol. 60: 841-850. (2012);

Kapoor A et al. QT Interval-International GWAS Consortium: An
enhancer polymorphism at the cardiomyocyte intercalated disc
protein NOS1AP locus is a major regulator of the QT interval.
Amer. J. Human Genet. 94: 854-869. (2014);

Jamshidi Y et al. Common variation in the NOS1AP gene is
associated with drug-induced QT prolongation and ventricular
arrhythmia. J. Amer. College Cardiol. 60(9): 841-850 (2012).

Lehtinen AB et al. Association of NOS1AP genetic variants with QT
interval duration in families from the Diabetes Heart Study.
Diabetes. 57(4):1108-1114 (2008).

Tomas M, Napolitano C, De Giuli L et al. Priori Polymorphisms in the
NOS1AP gene modulate QT interval duration and risk of
arrhythmias in the long QT syndrome. J. Amer. Coll. Cardiol. 55:
2745-2752. (2010);

Roden DM. Drug-induced prolongation of the QT interval. New
England J. Med. 350(10), 1013-1022 (2004).




Valproic Acid Induces the NEUROD1 Transcriptional Program

TRAUMATIC
BRAIN INJURY
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Valproic Acid Induces the NEUROD1 Transcriptional Program
of Neurogenesis Following Brain Injury
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Differential gene expression
following VPA therapy
in an animal model of TBI
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Linked transcriptional programs of neurogenesis, differentiation
and neuron survival were identified in the dataset, representing
VPA-activation of NEUROD1-mediated pathways.



Valproic Acid Induces the NEUROD1 Transcriptional Program
of Neurogenesis Following Brain Injury
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TOOLS, RESOURCES

—->Gene Set Enrichment Analysis (GSEA), Gene Ontology

Amigo 2 Panther Gene Ontology Browser
http://amigo.geneontology.org/amigo

->Pathway analysis

Pathway commons: http://www.pathwaycommons.org/about/
Cytoscape: http://www.cytoscape.org/

Commercial

Ingenuity Pathway Analysis® (IPA®; Qiagen GmbH)
Pathway Studio® (Elsevier)

MetaCore® (Thomson Reuters)

- GTEXx Portal: http://www.gtexportal.org/home/

->Transcription factors:

FactorBook: http://www.factorbook.org/human/

TransFac Pro® (Biobase International; Qiagen GmbH)



CONTACT INFORMATION (feel free to contact me at any time):

Gerry Higgins, Ph.D., M.D.
gehiggin@med.umich.edu
734-545-2731

Room 2035A Palmer Commons




