
Barry Grant
bjgrant@umich.edu

http://thegrantlab.org

Introduction To

mailto:bjgrant@umich.edu
http://thegrantlab.org

Working with Unix
How do we actually use Unix?

Download example data from:
http://tinyurl.com/day1-unix

Then at your terminal type:
> mv ~/Downloads/bootcamp_01_unix.tar.gz ~/Desktop/.
> cd ~/Desktop/
> tar zxvf bootcamp_01_unix.tar.gz
> ls bootcamp_01_unix

http://tinyurl.com/day1-unix

Inspecting text files
• less - visualize a text file:

 ◦ use arrow keys

 ◦ page down/page up with “space”/“b” keys

 ◦ search by typing "/"

 ◦ quit by typing "q"

• Also see: head, tail, cat, more

Creating text files
Creating files can be done in a few ways:
• With a text editor (such as nano, emacs, or vi)
• With the touch command ($ touch a_file)
• From the command line with cat or echo and

redirection (>)

• nano is a simple text editor that is
recommended for first-time users. Other text
editors have more powerful features but also
steep learning curves

Creating and editing
text files with nano

In the terminal type:
> nano yourfilename.txt

• There are many other text file editors (e.g. vim,
emacs and sublime text, etc.)

Do it Yourself!

Finding the Right Hammer
(man and apropos)

• You can access the manual (i.e. user
documentation) on a command with man, e.g:

> man pwd

• The man page is only helpful if you know the
name of the command you’re looking for.
apropos will search the man pages for keywords.

> apropos "working directory"

Combining Utilities with
Redirection (>, <) and Pipes (|)

• The power of the shell lies in the ability to
combine simple utilities (i.e. commands) into
more complex algorithms very quickly.

• A key element of this is the ability to send the
output from one command into a file or to pass it
directly to another program.

• This is the job of >, < and |

Side-Note: Standard Input and
Standard Output streams

Two very important concepts that unpin Unix
workflows:

• Standard Output (stdout) - default destination of
a program's output. It is generally the terminal
screen.

• Standard Input (stdin) - default source of a
program's input. It is generally the command
line.

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

Do it Yourself!

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

 > ls /usr/bin | less # sdout piped to less (no file created)

>
|

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

 > ls /usr/bin | less # sdout piped to less (no file created)

> ls -l /usr/bin # extra optional input argument “-l”

-arg

>
|

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

 > ls /usr/bin | less # sdout piped to less (no file created)

> ls /nodirexists/ # stderr to screen

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

 > ls /usr/bin | less # sdout piped to less (no file created)

> ls /nodirexists/ > binlist.txt # stderr to screen

Do it Yourself!

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

 > ls /usr/bin | less # sdout piped to less (no file created)

> ls /nodirexists/ 2> binlist.txt # stderr to file

>
|

2>

Do it Yourself!

Output redirection summary

<
<<

>
>>
2>

2>>
-arg

||

ls -l

ls -l > list_of_files

ls -l | grep partial_name > list_of_files

We have piped (|) the stdout of one command
into the stdin of another command!

ls -l /usr/bin/ | grep “tree” > list_of_files

grep: prints lines containing a string.
Also searches for strings in text files.

Do it Yourself!

Basics File Control
Viewing &

Editing
Files

Misc.
useful

Power
commands

Process
related

ls mv less chmod grep top

cd cp head echo find ps

pwd mkdir tail wc sed kill

man rm nano curl uniq Crl-c

ssh |
(pipe) touch source git Crl-z

>
(write to file) cat R bg

<
(read from file) python fg

Side-Note: grep ‘power command’

• grep - prints lines containing a string pattern. Also searches
for strings in text files, e.g.

 > grep --color "GESGKS" sequences/data/seqdump.fasta

REVKLLLLGAGESGKSTIVKQMKIIHEAGYSEEECKQYK

• grep is a ‘power tool’ that is often used with pipes as it
accepts regular expressions as input (e.g. “G..GK[ST]”)
and has lots of useful options - see the man page for details.

Do it Yourself!

grep example using
regular expressions

• Suppose a program that you are working with complains that
your input sequence file contains non-nucleotide characters.
You can eye-ball your file or …

> grep -v “^>” seqdump.fasta | grep --color “[^ATGC]”

Do it Yourself!

Exercises:
(1). Use “man grep” to find out what

the -v argument option is doing!

(2). How could we also show line number
for each match along with the output?

(tip you can grep the output of
“man grep” for ‘line number’)

• Suppose a program that you are working with complains that
your input sequence file contains non-nucleotide characters.
You can eye-ball your file or …

> grep -v “^>” seqdump.fasta | grep --color -n “[^ATGC]”

• First we remove (with -v option) lines that start with a “>”
character (these are sequence identifiers).

• Next we find characters that are not A, T, C or G. To do this we
use ^ symbols second meaning: match anything but the
pattern in square brackets. We also print line number (with -n
option) and color output (with --color option).

grep example using
regular expressions

Do it Yourself!

Key Point: Pipes and redirects
avoid unnecessary i/o

• Disc i/o is often a bottleneck in data processing!

• Pipes prevent unnecessary disc i/o operations by
connecting the stdout of one process to the stdin of
another (these are frequently called “streams”)

> program1 input.txt 2> program1.stderr | \
program2 2> program2.stderr > results.txt

• Pipes and redirects allow us to build solutions from
modular parts that work with stdin and stdout
streams.

Unix ‘Philosophy’ Revisited

“Write programs that do one
thing and do it well. Write
programs to work together and
that encourage open standards.
Write programs to handle text
streams, because that is a
universal interface.”

— Doug McIlory

Pipes provide speed, flexibility and
sometimes simplicity…

• In 1986 “Communications of the ACM magazine” asked famous
computer scientist Donald Knuth to write a simple program to
count and print the k most common words in a file alongside their
counts, in descending order.

• Kunth wrote a literate programming solution that was 7 pages
long, and also highly customized to this problem (e.g. Kunth
implemented a custom data structure for counting English words).

• Doug McIlroy replied with one line:

> cat input.txt | tr A-Z a-z | sort | uniq -c | sort -rn | sed 10q

Key Point:

You can chain any number of programs
together to achieve your goal!

This allows you to build up fairly complex
workflows within one command-line.

Shell scripting

#!/bin/bash
This is a very simple hello world script.
echo "Hello, world!”

Exercise:
• Create a "Hello world"-like script using command line tools

and execute it.

• Copy and alter your script to redirect output to a file using
> along with a list of files in your home directory.

• Alter your script to use >> instead of >. What effect does
this have on its behavior?

Do it Yourself!

Variables in shell scripts

#!/bin/bash
Another simple hello world script
message='Hello World!'
echo $message

• “message” - is a variable to which the string 'Hello
World!' is assigned

• echo - prints to screen the contents of the variable
"$message"

Do it Yourself!

Side-Note: Environment Variables

$PATH ‘special’
environment variable

• What is the output of this command?

> echo $PATH

• Note the structure: <path1>:<path2>:<path3>

• PATH is an environmental variable which Bash
uses to search for commands typed on the
command line without a full path.

• Exercise: Use the command env to discover more.

Q. Why have we been showing you this?

• On Day-4, we will be talking about how to submit
your work to the FLUX high performance
computing cluster.

• The scripts you use to submit your work on FLUX
are basically bash shell scripts (with some
special comments read by the scheduler at the
top including instructions where to put stdout
and stderr).

Summary
• Built-in unix shell commands allow for easy data

manipulation (e.g. sort, grep, etc.)

• Commands can be easily combined to generate
flexible solutions to data manipulation tasks.

• The unix shell allows users to automate repetitive
tasks through the use of shell scripts that promote
reproducibility and easy troubleshooting

• Introduced the 21 key unix commands that you will
use during ~95% of your future unix work…

Basics File Control
Viewing &

Editing
Files

Misc.
useful

Power
commands

Process
related

ls mv less chmod grep top

cd cp head echo find ps

pwd mkdir tail wc sed kill

man rm nano curl uniq Crl-c

ssh |
(pipe) touch source git Crl-z

>
(write to file) cat R bg

<
(read from file) python fg

Connecting to remote
machines (ssh & scp)

• Most high-performance computing (HPC) resources can
only be accessed by ssh (Secure SHell)

> ssh [user@host.address]
> ssh barry@scs.gpcc.itd.umich.edu
> ssh -X barry@flux-login.engin.umich.edu

• The scp (secure copy) command can be used to copy
files and directories from one computer to another.

> scp [file] [user@host]
> scp localfile.txt bgrant@bigcomputer.net:/remotedir/.

