
Barry Grant
bjgrant@umich.edu

http://thegrantlab.org

mailto:bjgrant@umich.edu
http://thegrantlab.org

What is Git?
(1) An unpleasant or contemptible

person. Often incompetent,
annoying, senile, elderly or
childish in character.

(2) A modern distributed version
control system with an emphasis
on speed and data integrity.

What is Git?
(1) An unpleasant or contemptible

person. Often incompetent,
annoying, senile, elderly or
childish in character.

(2) A modern distributed version
control system with an emphasis
on speed and data integrity.

Version Control
Version control systems (VCS) record changes
to a file or set of files over time so that you can

recall specific versions later.

There are many VCS available, see:
https://en.wikipedia.org/wiki/Revision_control

https://en.wikipedia.org/wiki/Revision_control

Client-Server vs Distributed VCS

Distributed version control systems (DCVS) allows
multiple people to work on a given project without

requiring them to share a common network.

Client-server approach Distributed approach

http://tinyurl.com/distributed-advantages

http://tinyurl.com/distributed-advantages

http://tinyurl.com/distributed-advantages

Git offers:
• Speed
• Backups
• Off-line access
• Small footprint
• Simplicity*
• Social coding

Git is now the most popular free VCS!

http://tinyurl.com/distributed-advantages

Where did Git come from?
Written initially by Linus Torvalds to
support Linux kernel and OS
development.

Meant to be distributed, fast and
more natural.

Capable of handling large projects.

Now the most popular free VCS!

Why use Git?

Q. Would you write your lab book in
 pencil, then erase and overwrite it
 every day with new content?

Q. Would you write your lab book in
 pencil, then erase and overwrite it
 every day with new content?

Version control is the lab notebook of the digital
world: it’s what professionals use to keep track of
what they’ve done and to collaborate with others.

Why use Git?
• Provides ‘snapshots’ of your project during development

and provides a full record of project history.

• Allows you to easily reproduce and rollback to past
versions of analysis and compare differences. (N.B. Helps
fix software regression bugs!)

• Keeps track of changes to code you use from others such
as fixed bugs & new features

• Provides a mechanism for sharing, updating and
collaborating (like a social network)

• Helps keep your work and software organized and available

Obtaining Git

https://help.github.com

https://help.github.com

Configuring Git

Configuring Git
First tell Git who you are
> git config --global user.name “Barry Grant”
> git config --global user.email “bjgrant@umich.edu”

Configuring Git
First tell Git who you are
> git config --global user.name “Barry Grant”
> git config --global user.email “bjgrant@umich.edu”
Optionally enable terminal colors
> git config --global color.ui true

Do it Yourself!

Using Git

Using Git
1. Initiate a Git repository.
2. Edit content (i.e. change some files).
3. Store a ‘snapshot’ of the current file state.*

Initiate a Git repository

Initiate a Git repository
> cd Desktop
> mkdir git_class # Make a new directory
> cd git_class # Change to this directory
> git init # Our first Git command!
> ls -a # what happened?

Do it Yourself!

Side-Note: The .git/ directory

• Git created a ‘hidden’ .git/ directory inside your
current working directory.

• You can use the ‘ls -a’ command to list (i.e. see)
this directory and its contents.

• This is where Git stores all its goodies - this is Git!

• You should not need to edit the contents of the .git
directory for now but do feel free to poke around.

Important Git commands
> git status # report on content changes

> git add <filename> # stage/track a file
> git commit -m “message” # snapshot

Important Git commands
> git status # report on content changes

> git add <filename> # stage/track a file
> git commit -m “message” # snapshot

You will use these three commands again and again in your Git workflow!

Git TRACKS your directory content

• To get a report of changes (since last commit) use:
 > git status

• You tell Git which files to track with:
 > git add <filename>
 This adds files to a so called STAGING AREA
 (akin to a “shopping cart” before purchasing).

• You tell Git when to take an historical SNAPSHOT of
your staged files (i.e. record their current state) with:

 > git commit -m ‘Your message about changes’

Eva creates a README text file
(this starts as untracked)

Adds file to STAGING AREA*
(tracked and ready to take a snapshot)

Commit changes*
(records snapshot of staged files!)

Example Git workflow

Example Git workflow
• Eva creates a README text file

• Adds file to STAGING AREA*

• Commit changes*

• Eva modifies README and adds a ToDo text file

• Adds both to STAGING AREA*

• Commit changes*

Hands on example!

1. Eva creates a README file

> # cd ~/Desktop/git_class
> # git init

> echo "This is a first line of text." > README
> git status # Report on changes
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)

Do it Yourself!

2. Adds to ‘staging area’

> git add README # Add README file to staging area
> git status # Report on changes
On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: README

3. Commit changes

> git commit -m “Create a README file” # Take snapshot
[master (root-commit) 8676840] Create a README file
1 file changed, 1 insertion(+)
create mode 100644 README

> git status # Report on changes
On branch master
nothing to commit, working directory clean

4. Eva modifies README file
and adds a ToDo file

> echo "This is a 2nd line of text." >> README
> echo "Learn git basics" >> ToDo

> git status # Report on changes
On branch master

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: README

Untracked files:
(use "git add <file>..." to include in what will be committed)

ToDo

no changes added to commit (use "git add" and/or "git commit -a")

5. Adds both files to ‘staging area’

> git add README ToDo # Add both files to ‘staging area’
> git status # Report on changes
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: README
new file: ToDo

6. Commits changes

> git commit -m "Add ToDo and modify README"
[master 7b679fa] Add ToDo and modify README
2 files changed, 2 insertions(+)
create mode 100644 ToDo

> git status
On branch master
nothing to commit, working directory clean

Example Git workflow
• Eva creates a README text file

• Adds file to STAGING AREA*

• Commit changes*

• Eva modifies README and adds a ToDo text file

• Adds both to STAGING AREA*

• Commit changes*

1.

2.

3.

4.

5.

6.

…But, how do we see the history of our project changes?

> git log
commit 7b679fa747e8640918fcaad7e4c3f9c70c87b170
Author: Barry Grant <bjgrant@umich.edu>
Date: Thu Jul 30 11:43:40 2015 -0400

Add ToDo and finished README

commit 86768401610770ae32e2fd4faee07d1d5c68619c
Author: Barry Grant <bjgrant@umich.edu>
Date: Thu Jul 30 11:26:40 2015 -0400

Create a README file
#

git log: Timeline history of
snapshots (i.e. commits)

> git log
commit 7b679fa747e8640918fcaad7e4c3f9c70c87b170
Author: Barry Grant <bjgrant@umich.edu>
Date: Thu Jul 30 11:43:40 2015 -0400

Add ToDo and finished README

commit 86768401610770ae32e2fd4faee07d1d5c68619c
Author: Barry Grant <bjgrant@umich.edu>
Date: Thu Jul 30 11:26:40 2015 -0400

Create a README file
#

git log: Timeline history of
snapshots (i.e. commits)

Past

Side-Note: Git history is akin
 to a graph

7b67…

8676…

HEAD
Nodes are commits labeled by their

unique ‘commit ID’.

(This is a CHECKSUM of the commits
author, time, commit msg, commit content

and previous commit ID).

HEAD is a reference (or ‘pointer’) to the
currently checked out commit (typically the

most recent commit).

Time

Projects can have complicated
graphs due to branching

7b67…

8676…

HEAD

Master

59d6…

Feature BugFix

1g9k…

39x2…

Branches allow you to work independently
of other lines of development we will talk

more about these later!

Key Points:

You explicitly and iteratively tell git what files to
track (“git add”) and snapshot (“git commit”).

Git keeps an historical log “(git log”) of the
content changes (and your comments on these

changes) at each past commit.

It is good practice to regularly check the status
of your working directory, staging arena repo

(“git status“)

Break

> git status # Get a status report of changes since last commit

> git add <filename> # Tell Git which files to track/stage

> git commit -m ‘Your message’ # Take a content snapshot!

> git log # Review your commit history

> git diff <commit.ID> <commit.ID> # Inspect content differences

> git checkout <commit.ID> # Navigate through the commit history

Summary of key Git commands:

Your
Directory

‘Staging
Area’

Local
Repository

add

commit

checkout

diff

diff <commit.ID>

status

log

> git diff 8676 7b67
diff --git a/README b/README
index 73bc85a..67bd82c 100644
--- a/README
+++ b/README
@@ -1 +1,2 @@
This is a first line of text.
+This is a 2nd line of text.
diff --git a/ToDo b/ToDo
new file mode 100644
index 0000000..14fbd56
--- /dev/null
+++ b/ToDo
@@ -0,0 +1 @@
+Learn git basics

git diff: Show changes
between commits

7b67…

8676…

> git diff 7b67 8676
diff --git a/README b/README
index 67bd82c..73bc85a 100644
--- a/README
+++ b/README
@@ -1,2 +1 @@
This is a first line of text.
-This is a 2nd line of text.
diff --git a/ToDo b/ToDo
deleted file mode 100644
index 14fbd56..0000000
--- a/ToDo
+++ /dev/null
@@ 1 +0,0 @@
-Learn git basics

git diff: Show changes
between commits

7b67…

8676…

> git diff 8676 ## Difference to current HEAD position!
diff --git a/README b/README
index 73bc85a..67bd82c 100644
--- a/README
+++ b/README
@@ -1 +1,2 @@
This is a first line of text.
+This is a 2nd line of text.
diff --git a/ToDo b/ToDo
new file mode 100644
index 0000000..14fbd56
--- /dev/null
+++ b/ToDo
@@ -0,0 +1 @@
+Learn git basics

HEAD

git diff: Show changes
between commits

7b67…

8676…

HEAD advances automatically with
each new commit

HEAD 7b67…

8676…

To move HEAD (back or forward)
on the Git graph (and retrieve the
associated snapshot content) we

can use the command:

> git checkout <commit.ID>

> more README
This is a first line of text.
This is a 2nd line of text.

> git log --oneline
7b679fa Add ToDo and finished README
8676840 Create a README file

git checkout: Moves HEAD

7b67…

8676…

HEAD

> more README
This is a first line of text.
This is a 2nd line of text.

> git log --oneline
7b679fa Add ToDo and finished README
8676840 Create a README file

> git checkout 86768
You are in 'detached HEAD' state…<cut>…
HEAD is now at 8676840... Create a README file

> more README
This is a first line of text.

> git log --oneline
8676840 Create a README file

7b67…

8676…HEAD

git checkout: Moves HEAD
(e.g. back in time)

Do it Yourself!

> git checkout master
Previous HEAD position was 8676840... Create a README file
Switched to branch 'master'

> git log --oneline
7b679fa Add ToDo and finished README
8676840 Create a README file

> more README
This is a first line of text.
This is a 2nd line of text.

7b67…

8676…

HEAD

git checkout: Moves HEAD
(e.g. back to the future!)

Side-Note: There are two* main ways to
use git checkout

• Checking out a commit makes the entire working
directory match that commit. This can be used to
view an old state of your project.

> git checkout <commit.ID>

• Checking out a specific file lets you see an old
version of that particular file, leaving the rest of
your working directory untouched.

> git checkout <commit.ID> <filename>

You can discard revisions
with git revert

• The git revert command undoes a committed
snapshot.

• But, instead of removing the commit from the
project history, it figures out how to undo the
changes introduced by the commit and appends
a new commit with the resulting content.

> git revert <commit.ID>

• This prevents Git from losing history!

Removing untracked files
with git clean

• The git clean command removes untracked files from
your working directory.

• Like an ordinary rm command, git clean is not
undoable, so make sure you really want to delete the
untracked files before you run it.

> git clean -n # dry run display of files to be ‘cleaned’

> git clean -f # remove untracked files

GUIs
Tower (Mac only)

GitHub_Desktop (Mac, Windows)
SourceTree (Mac, Windows)

SmartGit (Linux)
RStudio

Demo Tower

https://git-scm.com/downloads/guis

https://git-scm.com/downloads/guis

Side-Note: Using Git with RStudio

2: File > New Project > New Directory > Empty Project
1: Tools > Global Options > Git/SVN

1 2

Two initial steps within RStudio:

Make sure these are ticked!

Summary
• Git is a popular ‘distributed’ version control

system that is lightweight and free

• Introduced basic git usage and encouraged you
to adopt these ‘best practices’ for your future
projects

• Next lecture we will cover GitHub and BitBucket
two popular hosting services for git repositories
that have changed the way people contribute to
open source projects

Learning Resources
• Try Git. Overrated hands-on git tutorial in your browser.

< https://try.github.io/levels/1/challenges/1 >

• Set up Git. If you will be using Git mostly or entirely via
GitHub, look at these how-tos.

< https://help.github.com/categories/bootcamp/ >

• Getting Git Right. Excellent Bitbucket git tutorials
< https://www.atlassian.com/git/ >

• Pro Git. A complete, book-length guide and reference to
Git, by Scott Chacon and Ben Straub.

< http://git-scm.com/book/en/v2 >

https://try.github.io/levels/1/challenges/1
https://help.github.com/categories/bootcamp/
https://www.atlassian.com/git/
http://git-scm.com/book/en/v2

Side-Note: Changing your
default git text editor

• You can configure the default text editor that will
be used when Git needs you to type in a
message.

> git config --global core.editor nano

• If not configured, Git uses your system’s default
editor, which is generally Vim.

