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Next Up:
• Overview of structural bioinformatics 
• Motivations, goals and challenges 


• Fundamentals of protein structure 
• Structure composition, form and forces


• Representing, interpreting & modeling protein structure 
• Visualizing and interpreting protein structures

• Analyzing protein structures

• Modeling energy as a function of structure 

• Drug discovery & Predicting functional dynamics



Key concept: 
Potential functions describe a systems 

energy as a function of its structure
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Two main approaches:
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V(R) = Ebonded + Enon.bonded

For physics based potentials  
energy terms come from physical theory



Sum of bonded and non-bonded  
atom-type and position based terms 

V(R) = Ebonded + Enon.bonded
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V(R) = Ebond.stretch
+Ebond.angle
+Ebond.rotate
+Evan.der.Waals
+Eelectrostatic

}
}

Ebonded

Enon.bonded

Total potential energy
The potential energy can be given as a sum of 
terms for: Bond stretching, Bond angles, Bond 

rotations, van der Walls and Electrostatic 
interactions between atom pairs



Now we can calculate the potential energy 
surface that fully describes the energy of a 

molecular system as a function of its geometry 
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Key concept: 
Now we can calculate the potential energy 
surface that fully describes the energy of a 

molecular system as a function of its geometry 
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F(x) = − dV/dx



Moving Over The Energy Surface

•Energy Minimization 
drops into local minimum

•Molecular Dynamics 
uses thermal energy to 
move smoothly over 
surface

•Monte Carlo Moves are 
random. Accept with 
probability:

exp(−ΔV/dx)
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PHYSICS-ORIENTED APPROACHES
Weaknesses

Fully physical detail becomes computationally intractable
Approximations are unavoidable

(Quantum effects approximated classically, water may be treated crudely)
Parameterization still required

Strengths
Interpretable, provides guides to design
Broadly applicable, in principle at least
Clear pathways to improving accuracy

Status
Useful, widely adopted but far from perfect
Multiple groups working on fewer, better approxs

Force fields, quantum
entropy, water effects

Moore’s law: hardware improving



–Johnny Appleseed

Put Levit’s Slide here on Computer Power Increases!



SIDE-NOTE: GPUS AND ANTON 
SUPERCOMPUTER
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Two main approaches:
(1). Physics-Based
(2). Knowledge-Based

POTENTIAL FUNCTIONS DESCRIBE A SYSTEMS 
ENERGY AS A FUNCTION OF ITS STRUCTURE



KNOWLEDGE-BASED DOCKING POTENTIALS

Histidine 

Ligand  
carboxylate

Aromatic 
stacking



Example: ligand carboxylate O to protein histidine N
Find all protein-ligand structures in the PDB with a ligand carboxylate O

1.   For each structure, histogram the distances from O to every histidine N
2.   Sum the histograms over all structures to obtain p(rO-N)
3.   Compute E(rO-N) from p(rO-N)

ENERGY DETERMINES PROBABILITY 
(STABILITY)

Boltzmann distribution
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Boltzmann:

Inverse Boltzmann:

Basic idea: Use probability as a proxy for energy



KNOWLEDGE-BASED POTENTIALS
Weaknesses

Accuracy limited by availability of data

Strengths
Relatively easy to implement
Computationally fast

Status
Useful, far from perfect
May be at point of diminishing returns

(not always clear how to make improvements)



- Break -
Download MGL Tools: See class website! 



Computer Aided 
Drug Discovery



THE TRADITIONAL EMPIRICAL PATH TO 
DRUG DISCOVERY

Compound library 
(commercial, in-house, 

synthetic, natural)

High throughput screening  
(HTS)

Hit confirmation

Lead compounds 
(e.g., µM Kd)

Lead optimization
(Medicinal chemistry)

Potent drug candidates 
(nM Kd) 

Animal and clinical  
evaluation



COMPUTER-AIDED DRUG DISCOVERY

Aims to reduce number of compounds 
synthesized and assayed

Lower costs

Reduce chemical waste

Facilitate faster progress

N.B. Comparable experimental screens 
often out of reach of academia 
(facilities, cost)



Applications...
• Discriminate between good and poor binders, or provide 

a priority ranking to a collection of ligands


• Provide in-depth mechanistic characterization of specific 
ligand or group of ligands


• Provide valuable guidance for medicinal chemists trying 
to synthesize ligands with improved properties (affinities  
and potencies) 


      Q. “How can we modify an already active 
ligand to make it even more active?”



Computational Ligand Docking

• Screening and ranking compounds as potential ligands (a.k.a. virtual screening) 
• Improving "lead" compounds (a.k.a. ligand optimization, more on this later...) 

– This is a common practice among seasoned computational chemists
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Two main approaches:
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SCENARIO 1:
RECEPTOR-BASED DRUG DISCOVERY

HIV Protease/KNI-272 complex

Structure of Targeted Protein Known: Structure-Based Drug Discovery



PROTEIN-LIGAND DOCKING

VDW

Dihedral

Screened Coulombic
+ -

Potential function  
Energy as function of structure

Docking software 
Search for structure of lowest energy

Structure-Based Ligand Design



STRUCTURE-BASED VIRTUAL SCREENING

Candidate ligands

Experimental assay

Compound 
database

3D structure of target 
(crystallography, NMR, 

bioinformatics 
modeling)

Virtual screening  
(a.k.a. computational docking)

Ligands

Ligand optimization  
Med chem, 

crystallography, modeling

Drug candidates



COMPOUND LIBRARIES

Commercial 
(in-house pharma) Government (NIH) Academia



Docking at its core is a 
shape matching problem

LIGAND PROTEIN+



LIGAND PROTEIN+

Determines best fit 
based on interatomic 

interactions

Docking at its core is a 
shape matching problem



PROTEIN-LIGAND  
complex

Bonding Interactions
• Bond length
• Bond angels
•  Torsions

Non-Bonding Interactions
• van der Waal’s interactions
• H-bonds
• Charge-Charge interactions
• pi-pi, pi-cation, etc.

V(R) = Ebonded + Enon.bonded



Do it Yourself!

Hand-on time!  

You can use the classroom computers or your own 
laptops. If you are using your laptops then you will need 

to install MGLTools 

http://thegrantlab.org/bggn213/

http://thegrantlab.org/bggn213/


A Docking Program 
Generates a… 

 1. Binding Pose
A model of the ordination of 
the ligand in the binding site of 
the receptor.

 2. Docking Score
A numerical value 
representing the quality of the 
pose. Often presented as 
binding energy.



Scoring functions enable different 
docking results to be compared

• Scoring functions aim to estimate ligand binding affinity, or the free 
energy of binding (ΔG), so that different poses can be compared 

- The posses with the most negative values are predicted to have the 
tightest interactions

• Scoring functions are constructed from a weighted sum of all 
possible molecular interactions that contribute to binding 

- Including H-bonds, van der Waals forces, 
electrostatic interactions, etc. and 
penalties for steric clashes and loss of 
entropy


• Scoring systems are optimized and 
validated by fitting to experimental values 
for known receptor-ligand interactions



COMMON SIMPLIFICATIONS USED IN  
PHYSICS-BASED DOCKING

Quantum effects approximated classically

Protein often held rigid

Configurational entropy neglected

Influence of water treated crudely



Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



e.g. MAP Kinase Inhibitors

Using knowledge of 
existing inhibitors to 
discover more

Scenario 2
Structure of Targeted Protein Unknown: 

Ligand-Based Drug Discovery



Why Look for Another Ligand if You Already Have Some?

Experimental screening generated some ligands, but they don’t 
bind tightly enough

A company wants to work around another company’s chemical 
patents

An high-affinity ligand is toxic, is not well-absorbed, difficult to 
synthesize etc.

Drug resistance variants of the receptor have emerged... 



LIGAND-BASED VIRTUAL SCREENING

Compound Library Known Ligands

Molecular similarity
Machine-learning

Etc.

Candidate ligands

Assay

Actives

Optimization  
Med chem, crystallography, 

modeling

Potent drug candidates



CHEMICAL SIMILARITY  
LIGAND-BASED DRUG-DISCOVERY

Compounds 
(available/synthesizable)

Compare with known ligands
Different

Test experimentally

Similar

Don’t bother



CHEMICAL FINGERPRINTS 
BINARY STRUCTURE KEYS
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CHEMICAL SIMILARITY FROM 
FINGERPRINTS  

NI=2Intersection

NU=8Union

Tanimoto Similarity 
(or Jaccard Index), T



+ 1

Bulky hydrophobe

Aromatic

5.0 ±0.3 Å 3.2 ±0.4 Å

2.8 ±0.3 Å

Pharmacophore Models
Φάρμακο (drug) + Φορά (carry)

A 3-point pharmacophore



Molecular Descriptors 
More abstract than chemical fingerprints

Physical descriptors
molecular weight
charge
dipole moment
number of H-bond donors/acceptors
number of rotatable bonds
hydrophobicity (log P and clogP)

Topological
branching index
measures of linearity vs interconnectedness

Etc. etc.

Rotatable bonds



A High-Dimensional “Chemical Space”
Each compound is a point in an n-dimensional space

Compounds with similar properties are near each other

Descr
iptor 1

Descriptor 2

D
es

cr
ip

to
r 3

Point representing a 
compound in descriptor 
space

Apply multivariate statistics and machine learning for descriptor-
selection. (e.g. partial least squares, PCA, support vector machines, 

random forest, deep learning etc.)



Key Challenge: Proteins & Ligand are Flexible

+

Ligand

Protein

Complex

ΔGo



Proteins are flexible, which is a limitation in current rigid docking approaches… but 
when combined with molecular dynamics bioinformatics can be a powerful tool!

More on this later...



Proteinase K 

NMA (Normal Mode Analysis) is a bioinformatics 
method to predict the intrinsic dynamics of biomolecules

https://bioboot.github.io/bggn213_F19/lectures/#12

Do it Yourself!

https://bioboot.github.io/biggn213_SF9/lectures/#12


• Normal Mode Analysis (NMA) is a bioinformatics method 
that can predict the major motions of biomolecules. 

NMA in Bio3D 

pdb <- read.pdb("1hel") 
modes <- nma( pdb )
m7 <- mktrj(modes, mode=7, file="mode_7.pdb")

library("bio3d.view")
view(m7, col=vec2color(rmsf(m7)))

Then you can open the resulting  mode_7.pdb file in VMD
- Use "TUBE" representation and hit the play button...

Or use the bio3d.view view() function



• Structural bioinformatics is computer aided structural biology

• Described major motivations, goals and challenges of structural 
bioinformatics 

• Reviewed the fundamentals of protein structure

• Explored how to use R to perform structural bioinformatics analysis!

• Introduced both physics and knowledge based modeling approaches 
for describing the structure, energetics and dynamics of proteins 
computationally

• Introduced both structure and ligand based bioinformatics 
approaches for drug discovery and design

SUMMARY



Reference Slides
Molecular Dynamics (MD) and Normal Mode Analysis 

(NMA) Background and Cautionary Notes

[ Muddy Point Assessment ]

https://goo.gl/forms/nHmtEwJB7xaEZHua2


PREDICTING FUNCTIONAL DYNAMICS

• Proteins are intrinsically flexible molecules with internal 
motions that are often intimately coupled to their 
biochemical function

– E.g.  ligand and substrate binding, conformational 
activation, allosteric regulation, etc.

• Thus knowledge of dynamics can provide a deeper 
understanding of the mapping of structure to function 

– Molecular dynamics (MD) and normal mode analysis 
(NMA) are two major methods for predicting and 
characterizing molecular motions and their properties



McCammon, Gelin & Karplus, Nature (1977) 
[ See: https://www.youtube.com/watch?v=ui1ZysMFcKk ]

• Use force-field to find 
Potential energy between 
all atom pairs 

• Move atoms to next state 

• Repeat to generate 
trajectory

MOLECULAR DYNAMICS SIMULATION

https://www.youtube.com/watch?v=ui1ZysMFcKk


Divide time into discrete (~1fs) time steps (∆t)
(for integrating equations of motion, see below)
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Divide time into discrete (~1fs) time steps (∆t)
(for integrating equations of motion, see below)

At each time step calculate pair-wise atomic forces (F(t)) 
(by evaluating force-field gradient)

Nucleic motion described classically

Empirical force field
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Divide time into discrete (~1fs) time steps (∆t)
(for integrating equations of motion, see below)

At each time step calculate pair-wise atomic forces (F(t)) 
(by evaluating force-field gradient)

Nucleic motion described classically

Empirical force field

Use the forces to calculate velocities and move atoms to new positions
(by integrating numerically via the “leapfrog” scheme)

t



BASIC ANATOMY OF A MD SIMULATION
Divide time into discrete (~1fs) time steps (∆t)
(for integrating equations of motion, see below)

At each time step calculate pair-wise atomic forces (F(t)) 
(by evaluating force-field gradient)

Nucleic motion described classically

Empirical force field

Use the forces to calculate velocities and move atoms to new positions
(by integrating numerically via the “leapfrog” scheme)

REPEAT,  (iterate many, many times… 1ms = 1012 time steps) 

t



MD Prediction of Functional Motions 
“close”

“open”

Yao and Grant, Biophys J. (2013)



• MD is still time-consuming for large systems
• Elastic network model NMA (ENM-NMA) is an example 

of a lower resolution approach that finishes in seconds 
even for large systems.

Atomistic

C. G.

• 1 bead /  
1 amino acid

• Connected by 
springs

Coarse Grained

i

j
rij

COARSE GRAINING: NORMAL MODE ANALYSIS 
(NMA)



Ilan Samish et al. Bioinformatics 2015;31:146-150 



INFORMING SYSTEMS BIOLOGY?

Genomes

DNA & RNA sequence

DNA & RNA structure

Protein sequence

Protein families,  
motifs and domains

Protein structure

Protein interactions

Chemical entities

Pathways

Systems

Gene expression

Literature and ontologies



• A model is never perfect 
A model that is not quantitatively accurate in every respect does 
not preclude one from establishing results relevant to our 
understanding of biomolecules as long as the biophysics of the 
model are properly understood and explored. 

• Calibration of parameters is an ongoing imperfect process
Questions and hypotheses should always be designed such that 
they do not depend crucially on the precise numbers used for the 
various parameters. 

• A computational model is rarely universally right or wrong
A model may be accurate in some regards, inaccurate in others.  
These subtleties can only be uncovered by comparing to all 
available experimental data.

CAUTIONARY NOTES 


