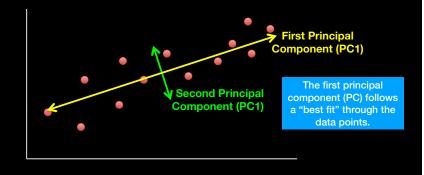


Recap of Lecture 8

- Introduction to machine learning
 - Unsupervised, supervised and reinforcement learning
- Clustering
 - K-means clustering
 - Hierarchical clustering
- Dimensionality reduction, visualization and 'structure' analysis
 - Principal Component Analysis (PCA)

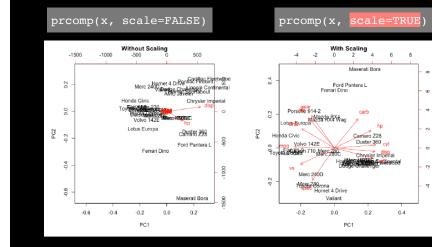
[Muddy Point Feedback Link]


Recap: PCA objectives

- To reduce dimensionality
- To visualize multidimensional data
- To choose the most useful variables (features)
- To identify groupings of objects (e.g. genes/samples)
- To identify outliers

PCA: Principal Component Analysis

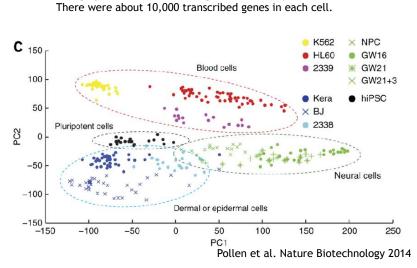
PCA projects the features onto the principal components.


The motivation is to reduce the features dimensionality while only losing a small amount of information.

Practical PCA issue: Scaling

> data(mtcars)													
<pre>> head(mtcars)</pre>													
	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb		
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4		
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4		
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1		
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1		
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	Θ	Θ	3	2		
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	Θ	3	1		
# Means and standa	ard de	viat	ions	vary	/ a lo	ot							
> round(colMeans(means(means))	ntcars), 2	2)										
mpg cyl di	isp	hp	o dr	at	wt	t qse	ec	vs		am	gear	carb	
20.09 6.19 230	72 14	6.69	эз.	60	3.22	2 17.8	85 0	.44	(9.41	3.69	2.81	
<pre>> round(apply(mtca</pre>	ars, 2	, so	1), 2)										
mpg cyl d	isp	hp	dr	at	wt	t qse	ес	vs		am	gear	carb	
6.03 1.79 123	.94 6	8.56	6 0.	53	0.98	3 1.7	79 0	.50	(9.50	0.74	1.62	

Practical PCA issue: Scaling

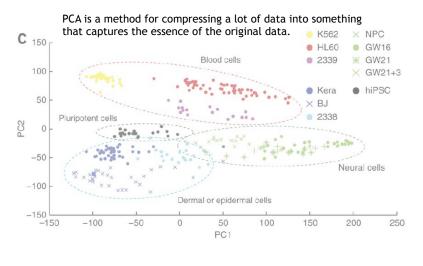


Your turn!

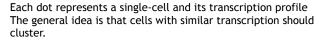
Unsupervised Learning Mini-Project

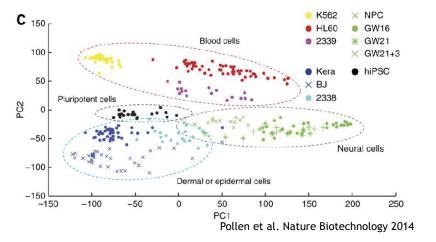
Input: read, View/head, PCA: prcomp, Cluster: kmeans, hclust Compare: plot, table, etc.

Reference Slides

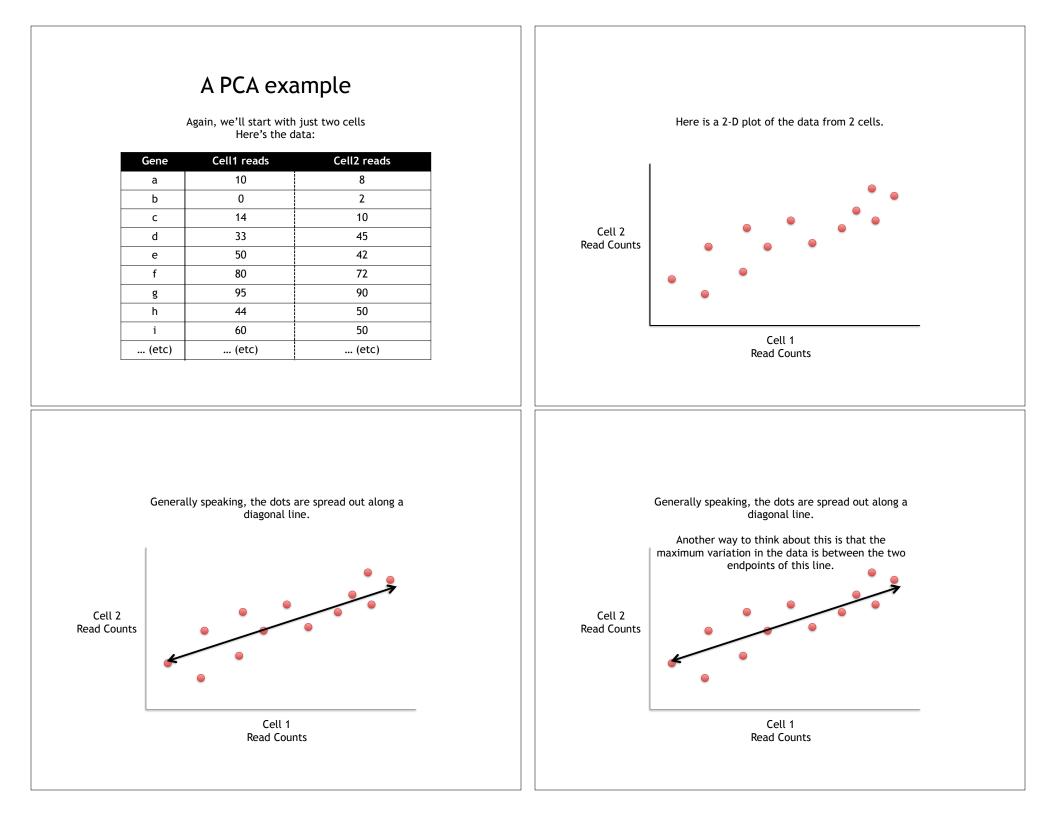


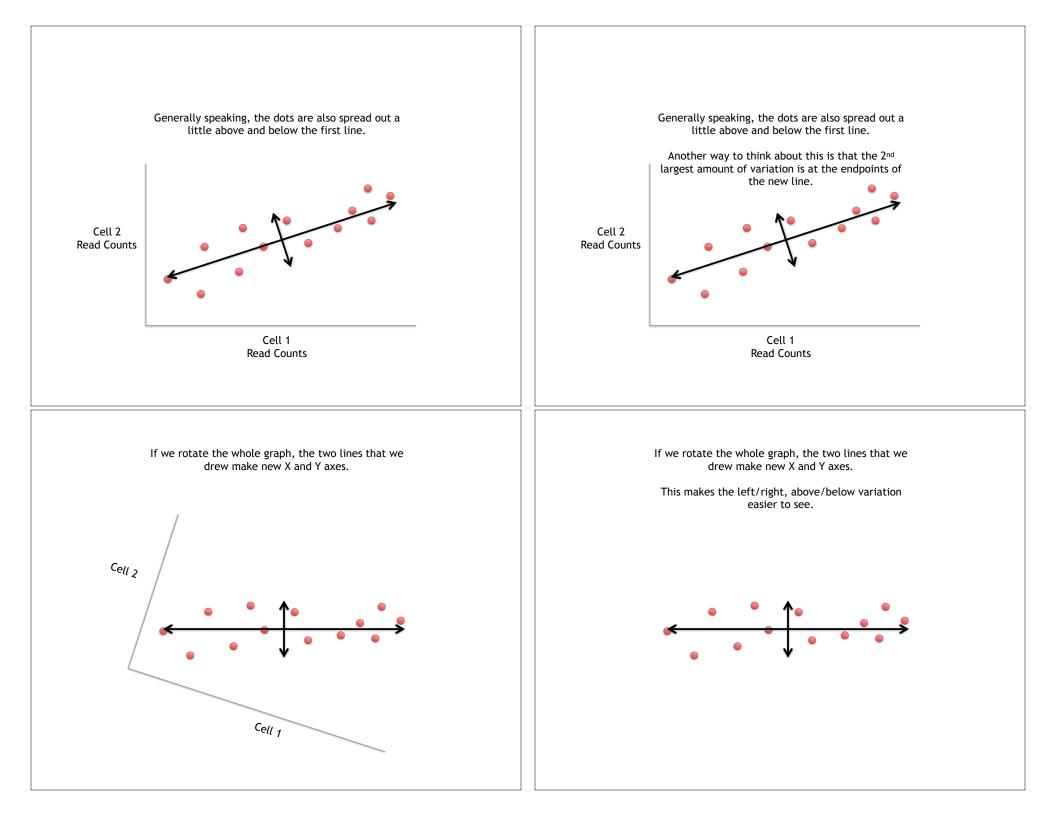
This PCA plot shows clusters of cell types.

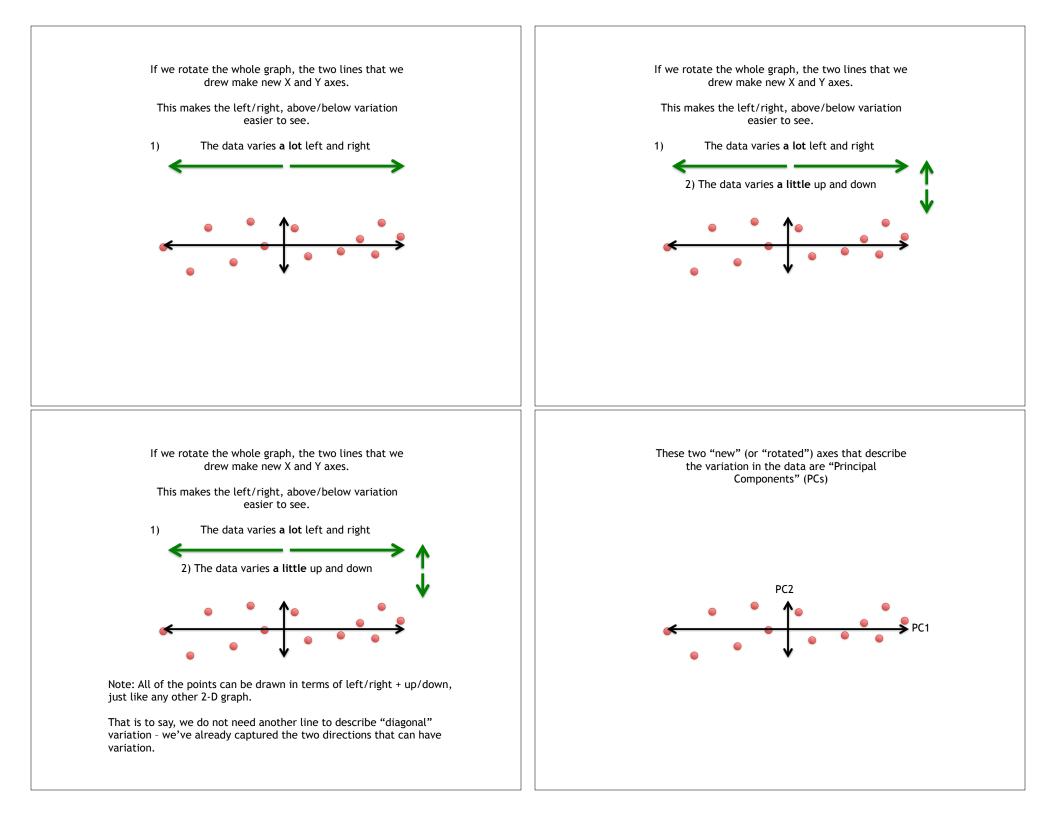

This graph was drawn from single-cell RNA-seq.

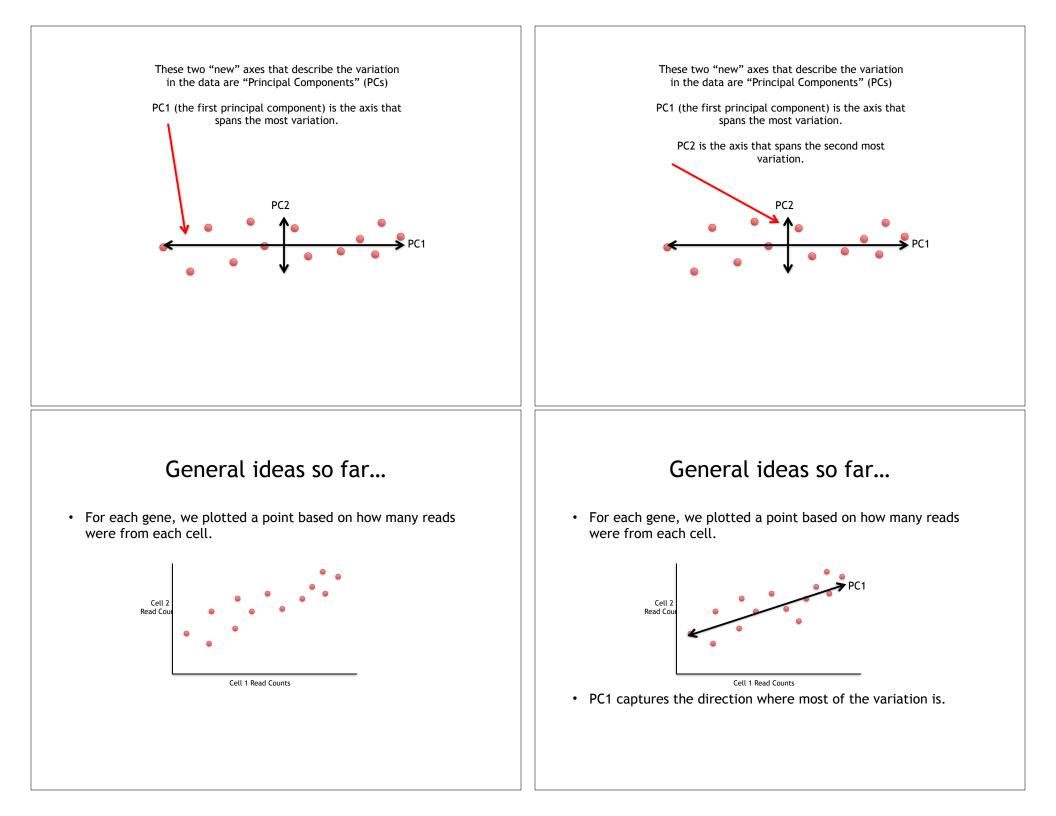

This PCA plot shows clusters of cell types.

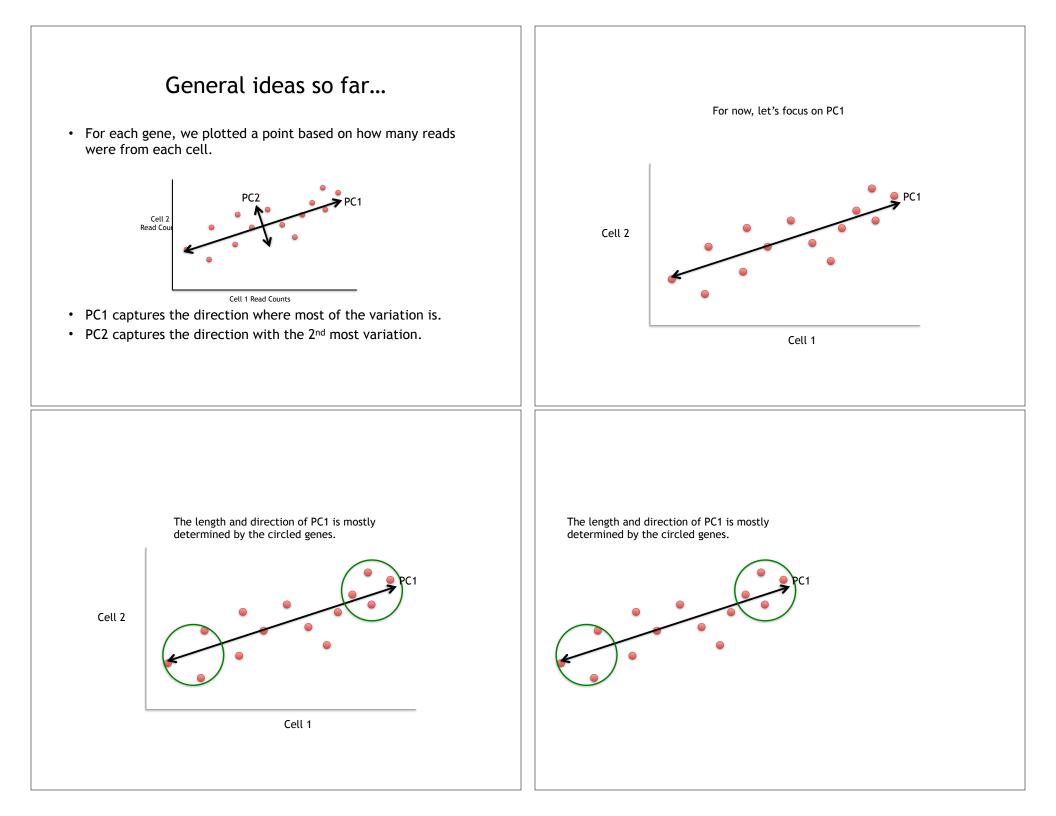
How does transcription from 10,000 genes get compressed to a single dot on a graph?

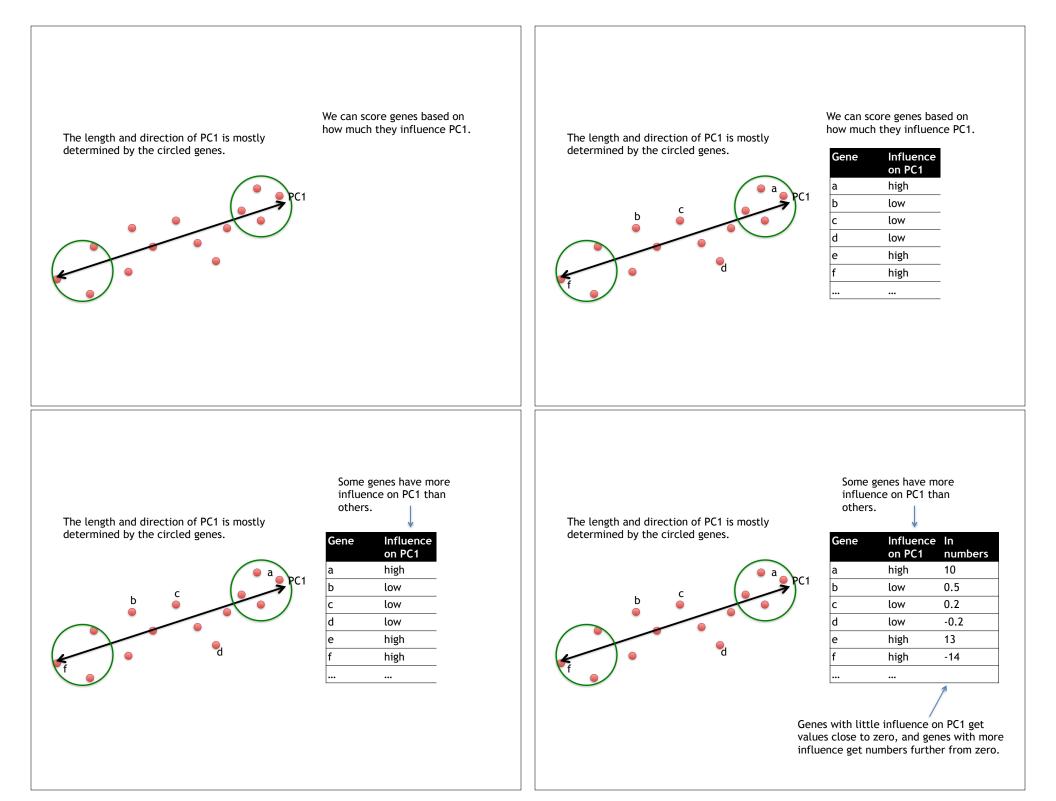

This PCA plot shows clusters of cell types.

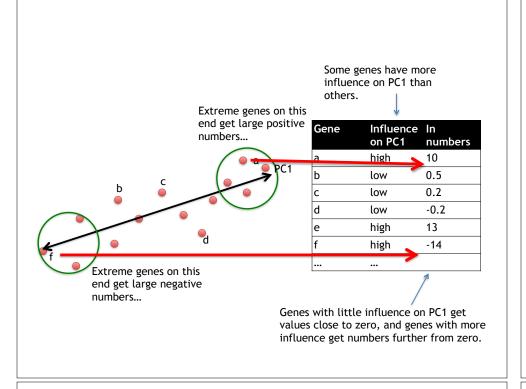


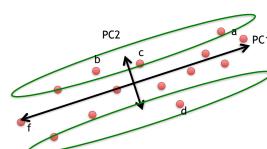



What does PCA aim to do?


- PCA takes a dataset with a lot of dimensions (i.e. lots of cells) and flattens it to 2 or 3 dimensions so we can look at it.
 - It tries to find a meaningful way to flatten the data by focusing on the things that are different between cells. (much, much more on this later)







Genes that influence PC2

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
c	high	8
d	high	-12
e	low	0.2
f	low	-0.1
	•••	

Our two PCs

	PC1		PC2					
Gene	Influence on PC1	In numbers	Gene	Influence on PC2	ln numbers			
a	high	10	a	medium	3			
b	low	0.5	b	high	10			
с	low	0.2	с	high	8			
d	low	-0.2	d	high	-12			
e	high	13	e	low	0.2			
f	high	-14	f	low	-0.1			
	•••							

Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

	PC1		PC2					
Gene	Influence on PC1	ln numbers	Gene	Influence on PC2	ln numbers			
a	high	10	a	medium	3			
b	low	0.5	b	high	10			
с	low	0.2	с	high	8			
d	low	-0.2	d	high	-12			
e	high	13	e	low	0.2			
f	high	-14	f	low	-0.1			

Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

The	The original read counts			PC1		PC2				
Gene a	Cell1 10	Cell2 8	Gene	Influence on PC1	ln numbers	Gene	Influence on PC2	ln numbers		
	-	-	a	high	10	a	medium	3		
b	0	2	b	low	0.5	b	high	10		
с	14	10	с	low	0.2	с	high	8		
d	33	45	d	low	-0.2	d	high	-12		
e	50	42	е	high	13	е	low	0.2		
f	80	72	f	high	-14	f	low	-0.1		
g	95	90	1							
h	44	50	. L							
i	60	50	1							
etc	etc	etc	1							

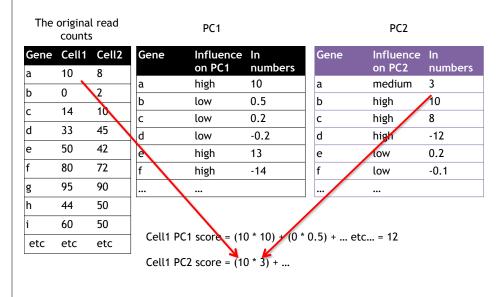
Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

The	The original read counts			PC1		PC2			
Gene a	Cell1 10	Cell2 8	Gene	Influence on PC1	In numbers	Gene	Influence on PC2	ln numbers	
		2	a	high	10	a	medium	3	
b	0	×	b	low	0.5	b	high	10	
с	14	10	c	low	0.2	с	high	8	
d	33	45	A	low	-0.2	d	high	-12	
e	50	42	e	high	13	e	low	0.2	
f	80	72	f	high	-14	f	low	-0.1	
g	95	90							
h	44	50							
i	60	50	-	Ŕ		<i>Y</i>			
etc	etc	etc	Cell1 P	PC1 score = (re	ead count * i	nfluence) +	for all gen	es	

Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

The	origina counts			PC1			PC2	
Gene a	Cell1 10	Cell2 8	Gene	Influence on PC1	In numbers	Gene	Influence on PC2	ln numbers
	· · ·	0	a	high	10	a	medium	3
b	0	×	b	low	0. <mark>5</mark>	b	high	10
с	14	10	с	low	0.2	с	high	8
d	33	45	d	low	-0.2	d	high	-12
е	50	42	e	high	13	e	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90						
h	44	50						
i	60	50		Ľ	V			
etc	etc	etc	Cell1 P	C1 score = (10	0 * 10) +			

Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.


The	origina counts			PC1			PC2	
Gene	Cell1		Gene	Influence on PC1	In numbers	Gene	Influence on PC2	ln numbers
a	10	8	2	high	10	2	medium	3
b	0 🔪	2	a			a		-
<i>c</i>	14	10	b	low	0.5	b	high	10
с	14	10	c	low	0.2	с	high	8
d	33	45	8	low	-0.2	d	high	-12
е	50	42	e	high	13	e	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90						
h	44	50						
i	60	50				4		
etc	etc	etc	Cell1 PC	C1 score = (10	0 * 10) + (0 *	0.5) +		
			1					

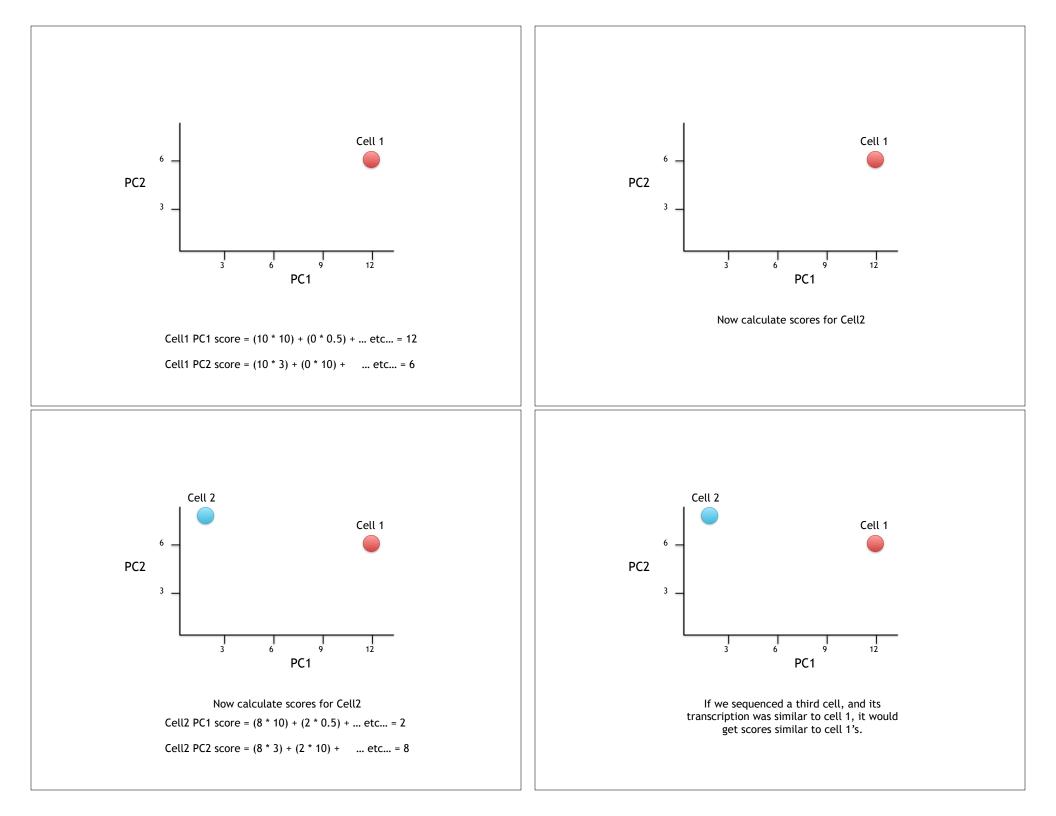
Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

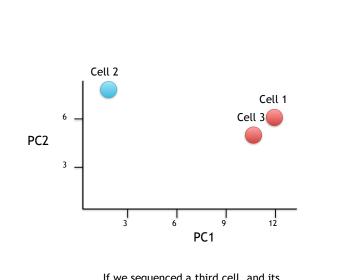
The	origina counts			PC1			PC2	
	Cell1 10	Cell2 8	Gene	Influence on PC1	ln numbers	Gene	Influence on PC2	ln numbers
a	-		a	high	10	a	medium	3
b	0	2	b	low	0.5	b	high	10
с	14	10	c	low	0.2	с	high	8
d	33	45	d	low	-0.2	d	high	-12
e	50	42	e	high	13	е	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90						
h	44	50						
i	60	50						
etc	etc	etc	Cell1 P	C1 score = (10	0 * 10) + (0 *	0.5) + etc	= 12	

Using the two Principal Components to plot cells

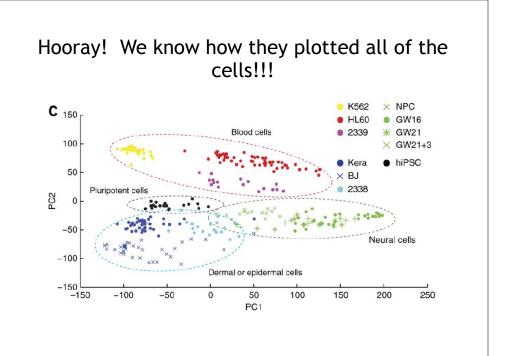
Combining the read counts for all genes in a cell to get a single value.

Using the two Principal Components to plot cells


Combining the read counts for all genes in a cell to get a single value.


The	origina counts			PC1			PC2	
Gene a	Cell1 10	Cell2 8	Gene	Influence on PC1	ln numbers	Gene	Influence on PC2	ln numbers
	-		a	high	10	a	medium	3
b	0	2	b	low	0.5	b	high	10
с	14	10	c	low	0.2	с	high 🖌	8
d	33	45	d	low	-0.2	d	high	-12
e	50	42	e	high	13	е	low	0.2
f	80	72	f	high	-14	f	løw	-0.1
g	95	90				/		
h	44	50						
i	60	50						
etc	etc	etc	Cell1 PC	1 score = (10	0*10) + (0 *	0.5) + etc.	= 12	
L			Cell1 PC	2 score = (10	0 * 3) + (0 * 1	0) +		

Using the two Principal Components to plot cells


Combining the read counts for all genes in a cell to get a single value.

The	origina counts			PC1		PC2				
	Cell1 10	Cell2 8	Gene	Influence on PC1	ln numbers	Gene	Influence on PC2	In numbers		
a	-	-	a	high	10	a	medium	3		
b	0	2	b	low	0.5	b	high	10		
с	14	10	с	low	0.2	с	high	8		
d	33	45	d	low	-0.2	d	high	-12		
e	50	42	e	high	13	е	low	0.2		
f	80	72	f	high	-14	f	low	-0.1		
g	95	90	1							
h	44	50	· ·							
i	60	50	-							
etc	etc	etc	Cell1 PC	C1 score = (10	0 * 10) + (0 *	* 0.5) + etc.	= 12			
			Cell1 PC	2 score = (10	0 * 3) + (0 * 1	10) + etc	= 6			

If we sequenced a third cell, and its transcription was similar to cell 1, it would get scores similar to cell 1's.

Back to lab Section 3 to 6...

Unsupervised Learning Mini-Project

Input: read, View/head, PCA: prcomp, Cluster: kmeans, hclust Compare: plot, table, etc.

[Muddy Point Assessment]