3 . iy ; v
/ﬂ%i’q*rantlal?)’brg/bgg n213

http:

http://thegrantlab.org/bggn213

| MPA Responses |

[Kevin’s StackExchange Link]

Thanks Kevin!

https://docs.google.com/forms/d/e/1FAIpQLScI0dcWiXq3X3HEaKfAtZ0-F2PYE2s85JacERMAKJyJqDqCkg/viewanalytics
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa

Find-a-Gene Project Assignment

» A total of 20% of the course grade will be assigned based on the
“find-a-gene project assignment”

* The objective with this assignment is for you to demonstrate your
grasp of database searching, sequence analysis, structure analysis
and the R environment that we have covered to date in class.

* You may wish to consult the scoring rubric (in the linked project
description) and the example report for format and content
guidance.

= Your responses to questions Q1-Q4 are due at the beginning of
class Friday May 18th (05/18/18).

= The complete assignment, including responses to all guestions,
is due at the beginning of class Wed June 1st (06/01/18).

https://bioboot.github.io/bggn213_S18/class-material/Find_A_Gene_Project.pdf
https://bioboot.github.io/bggn213_S18/class-material/Find_A_Gene_Project_Example.pdf

Questions:

[Q1] Tell me the name of a protein you are interested in. Include the species and the accession
number. This can be a human protein or a protein from any other species as long as it's function
is known.

If you do not have a favorite protein, select human RBP4 or KIF11. Do not use beta globin as
this is in the worked example report that | provide you with online.

[Q2] Perform a BLAST search against a DNA database, such as a database consisting of
genomic DNA or ESTs. The BLAST server can be at NCBI or elsewhere. Include details of the
BLAST method used, database searched and any limits applied (e.g. Organism).

Also include the output of that BLAST search in your document. If appropriate, change the font
to Courier size 10 so thatthe results are displayed neatly. You can also screen capture a
BLAST output (e.g. alt print screen on a PC or on a MAC press 3-shift-4. The pointer becomes
a bulls eye. Select the area you wish to capture and release. The image is saved as a file called
Screen Shot [].png inyour Desktop directory). It is not necessary to print out all of the
blast results if there are many pages.

On the BLAST results, clearly indicate a match that represents a protein sequence,
encoded from some DNA sequence, that is homologous to your query protein. | need to
be able to inspect the pairwise alignment you have selected, including the E value and
score. It should be labeled a "genomic clone" or "mRNA sequence", etc. - but include no
functional annotation.

In general, [Q2] is the most difficult for students because it requires you to have a “feel”
for how to interpret BLAST results. You need to distinguish between a perfect match to

your query (i.e. a sequence that is not “novel”), a near match (something that might be

“novel”, depending on the results of [Q4]), and a non-homologous result.

If you are having trouble finding a novel gene try restricting your search to an organism
that is poorly annotated.

[Q3] Gather information about this “novel” protein. At a minimum, show me the protein
sequence of the “novel” protein as displayed in your BLAST results from [Q2] as FASTA
format (you can copy and paste the aligned sequence subject lines from your BLAST
result page if necessary) or translate your novel DNA sequence using a tool called
EMBOSS Transeq at the EBI. Don’t forget to translate all six reading frames; the ORF
(open reading frame) is likely to be the longest sequence without a stop codon. It may
not start with a methionine if you don’t have the complete coding region. Make sure the
sequence you provide includes a header/subject line and is in traditional FASTA format.

Here, tell me the name of the novel protein, and the species from which it derives. It is
very unlikely (but still definitely possible) that you will find a novel gene from an
organism such as S. cerevisiae, human or mouse, because those genomes have
already been thoroughly annotated. It is more likely that you will discover a new gene in
a genome that is currently being sequenced, such as bacteria or plants or protozoa.

[Q4] Prove that this gene, and its corresponding protein, are novel. For the purposes of
this project, “novel” is defined as follows. Take the protein sequence (your answer to
[Q3]), and use it as a query in a blastp search of the nr database at NCBI.

+ If there is a match with 100% amino acid identity to a protein in the database, from the
same species, then your protein is NOT novel (even if the match is to a protein with a
name such as “unknown”). Someone has already found and annotated this sequence,
and assigned it an accession number.

+ If the top match reported has less than 100% identity, then it is likely that your protein
is novel, and you have succeeded.

« If there is a match with 100% identity, but to a different species than the one you
started with, then you have likely succeeded in finding a novel gene.

+ If there are no database matches to the original query from [Q1], this indicates that
you have partially succeeded: yes, you may have found a new gene, but no, it is not
actually homologous to the original query. You should probably start over.

[Q5] Generate a multiple sequence alignment with your novel protein, your original
query protein, and a group of other members of this family from different species. A
typical number of proteins to use in a multiple sequence alignment for this assignment
purpose is a minimum of 5 and a maximum of 20 - although the exact number is up to
you. Include the multiple sequence alignment in your report. Use Courier font with a size
appropriate to fit page width.

Side-note: Indicate your sequence in the alignment by choosing an appropriate name
for each sequence in the input unaligned sequence file (i.e. edit the sequence file so
that the species, or short common, names (rather than accession numbers) display in
the output alignment and in the subsequent answers below). The goal in this step is to
create an interesting an alignment for building a phylogenetic tree that illustrates
species divergence.

What is Git?

(1) An unpleasant or contemptible
person. Often incompetent,
annoying, senile, elderly or
childish in character.

(2) A modern distributed version
control system with an emphasis
on speed and data integrity.

Q git

(1) An unpleasant or contemptible
. Often incompetent,

PE
aln

chi

(2) A modern distributed version

control system with an emphasis

'SOr
NOVI

|dIS

What is Git?

Ng, seni

N IN cha

e, elderly or

racter.

On

speed and data integrity.

Q git

Version Control

Version control systems (VCS) record changes
to a file or set of files over time so that you can
recall specific versions later.

Free/open-source CVS (1986, 1990 in C) - CVSNT (1998) - QVCS Enterprise (1998) « Subversion (2000)

Software Change Manager (1970s) - Panvalet (1970s) - Endevor (1980s) + Dimensions CM
Client-server (1980s) + DSEE (1984) - Synergy (1990) - ClearCase (1992) - CMVC (1994) « Visual SourceSafe
Proprietary (1994) - Perforce (1995) - StarTeam (1995) - Integrity (2001) + Surround SCM (2002) -

AccuRev SCM (2002) - SourceAnywhere (2003) -« Vault (2003) - Team Foundation Server (2005)
Team Concert (2008)

Free/open-source GNU arch (2001) « Darcs (2002) - DCVS (2002) - ArX (2003) - Monotone (2003) « SVK (2003) -
Distributed Codeville (2005) - Bazaar (2005) - Git (2005) - Mercurial (2005) « Fossil (2007) + Veracity (2010)

Proprietary TeamWare (1990s?) - Code Co-op (1997) - BitKeeper (1998) -+ Plastic SCM (2006)

There are many VCS available, see:
https://en.wikipedia.org/wiki/Revision control

https://en.wikipedia.org/wiki/Revision_control

Client-Server vs Distributed VCS

Client-server approach Distributed approach

Distributed version control systems (
multiple people to work on a given p
requiring them to share a commo

DCVS) allows
roject without

N network.

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“The Subversion server’s down”

THEV! GETBAKY

TO WORK:

|'

- lmﬂSVNsdown'7

0 i

http://tinyurl.com/distributed-advantages

OH. CARRY ON.

http://tinyurl.com/distributed-advantages

Git is now the most popular free VCS!

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“The Subversion server’s down” Git offers:
o Speed
—ats st _____,___/__
[HEY! GFTBI/\CK . Backups
. 10 WORK: .
P I e Off-line access
A l /VNsdown'7 * Sma”.fQOt*p”ﬂt
= e ¢ Simplicity

e Social coding

OH. CARRY ON.

http://tinyurl.com/distributed-advantages

http://tinyurl.com/distributed-advantages

Where did Git come from?

Written Initially by Linus Torvalds to
support Linux kernel and OS
development.

Meant to be distributed, fast and
more natural.

Capable of handling large projects.

Now the most popular free VCS!

Why use Git?

Q. Would you wrikte your Lab boole tn
pencil, then erase and overwrite it
every daj wikth new conbenk?

Q. Would you, wrike your Lab boole in
pencil, then erase and overwrite it
every d&j wikth new conkenk?

Version control is the lab notebook of the digital
world: it's what professionals use to keep track of
what they've done and to collaborate with others.

Why use Git?

Provides ‘snapshots’ of your project during development
and provides a tull record of project history.

Allows you to easily reproduce and rollback to past
versions of analysis and compare differences. (N.B. Helps
fix software regression bugs!)

Keeps track of changes to code you use from others such
as fixed bugs & new features

Provides a mechanism for sharing, updating and
collaborating (like a social network)

Helps keep your work and software organized and available

Obtaining Git

. Note: You might already have git installed
To check open the “Terminal” tab in RStudio and type

which git

Obtaining Git

: Note: You might already have git installed :
: To check open the “Terminal” tab in RStudio and type: :

which git

: Windows
Follow the GitBash instructions here:

: https://bicboot.github.io/bimm143 S18/setug[

. Mac & Linux
: Download git directly from here:

: https://git-scm.com/downloads

Configuring Git

Configuring Git

(RStudio Terminal Tab)
(...or RStudio > Tools > Shell)

First tell Git who you are
> git config --global user.name “Barry Grant”
> git contig --global user.email "bjgrant@Qucsd.edu”

Using Git

Using Git

1. Initiate a Git repository,
2. EAit content (Le. change some files).
3. Store a ‘snapshot’ of the current file state.x

Using Git with
RStudio

Go to: RStudio > Tools > Global Options > Git/SVN

Optons

Y Enable versor control interface for RSwdio projects 1 Ma ke Sure l‘h /S /S tiCked/

Git executable:

2 Make sure this is correct!

Ccde =diting SN executable

Ceneral

-rx fusr/bin/svr Jrowse...

.".p;:»('alr]n c2
S ESA Koy:

Console Terminal X Markdown

Fan2 Layout

sate HSL Koy ..

7 Using Varsion Cont-of with KStucio

< | Terminal ¥~ another

Packages

N,

blitz:angzher> which git
/usr/local/bin/git
blitz:another>

SWeave

Spelling

C/SVN

Create a new
RStudio project

1 New option to create
a Git repository... 2 New Gittab. ..

AW

Create New Project Environment History Connections Git_ ™

Directery namc: : . Diﬂ: u Commit | a a ~ !
Li | Staged Status Path
| . \ Create project as subdirectory of: =gitignore

- B B test.Rproj

Eﬂ Crzdle ¢ gil r2posi.ury

L] Use packrat with this oroject

Check if new Git options appear in RStudio?

GitHub & Bitbucket

GitHub and Bitbucket are two popular hosting services for
Git repositories. These services allow you to share your
projects and collaborate with others using both ‘public’ and
‘private’ repositories™.

O
O

O

https://bitbucket.org ...

lesue #27¢ commentied on in Crartiabbiold

— https:/github.com -

.

https://github.com
https://bitbucket.org

ws|.com

Nikkel Hang Seng . Crude Oll Yan
1789373 049% 2140496 0.72% -0/32Yield 2.074% 3917 -0.36% 18.16 0.26%

THE WALL STREET JOURNAL. + suroeroweee

Home World US. 2clitics EZconomy Business Tech Markets Opinion Arts Lile Real Eslate Q

AU 9~ \Vorkers Get New ‘ *— -cll Larriers " g - Snapchat Namas !' r"

F ity B Tools For Airing Thei - k4 Faltle fiw Wi-7i : . ex-NMallel Fxer
&

< g r S5 Gripes ol = Alrwaves : il Vollero Its [Finance
YOU ARE READING A PREVIEW OF A PAID ARTICLE. iRk, 11 88 TO GET MORE GREAT CONTENT.

«~.mH N o Chiet
TECH

GitHub Raises $250 Million at $2 Billion
Valuation

Capital raise puts company's total funding at $350 million

-

Analytics

low does your organiration’s
talent measure up
ra its technology?

What is the big deal?

* At the simplest level GitHub and Bitbucket offer backup of
your projects history and a centralized mechanism for
sharing with others by putting your Git repo online.

e GitHub in particular is often referred to as the “nerds
FaceBook and LinkedIn combined”.

* At their core both services offer a new paradigm for open
collaborative project development, particularly for software.

* |n essence they allow anybody to contribute to any
public project and get acknowledgment.

First sign up for a GitHub account
https://github.com

GitHub

Build software
better, together.

Powerful collaboration, code review, and code management for
open source and private projects. Public projects are always free.

https://github.com

Pick the FREE plan!

Pull requests [ssues Gist

Welcome to GitHub

You'va laken your first step inlo a largser world, @biobootStudant.

Completed - Step 2.
L
OO [D Cheose your plan

Choose your personal plan
Each plan includes:

Plan Cost Privade repositorios

Unlimited col aboralors

Large S0/ rontt o
Unlimited puk! C regositor es

Moedium S22/rontk
Freo setup

Small S12%mrontt v HTTPS Prolactior
Email supnont
Miare S7/ menth
~ WIk's, |ssues, F‘ages & more
S0 month

SIWEItAC prcasTares G vIC2d

ncurant exchancs mies, Loca

Your GitHub homepage

Check your email for verification request

Pull requests Issues Gist

Pro tip: updating your pretile with your rame, location, and a profile picture halps other
Cit'lub users get to krow you

[Contributicns k- Raposilotes » Pudlic ectivity

Contributions

niobeotStudean:

Joned on Aug 28, 2015

This Is your contribution graph. When you make a commil to a regasitory, you'll geta = for thal
dey. Meke more contributions and you'll gel & darker green square. Over tme, your chart might
start look'ng somelthing like this.

\Ve have a quick guide thal will show you how ic creete your firsl reposiicry. You'll also make a
commil and eamn your first green square!

I-H Read the Hellc World guide

Skip the hello-world tutorial

Pull requasls lssues Qist

Your email wes verified

Learn Git and GitHub without any code!

bioboorSiudem ~ Your reposnories

You dor't nave aw repesiories ye!
Welcome 1o GilHub! What's next? Crestle your st ropos fary or learm ioee nkoal
Creatla a reposiory Git and GitHub
Tl as aboul youese
Srowse Intsresling rsoosncnes
Follow Sqgithub on Twitter

- ProTip! “eline cepha oped adheaslves g7e great

lezr deaorat sy pordable enmoeali:b on dovins;

/ PraTip! C4R vour 1ead by updaling the 13ars you lo low anad “apositaries you wetnh.

M Subscibe to your newe feed

https://guides.github.com/activities/hello-world/

Name your repo
bggn213

..)

O Search GrHub Pull requests Issues Marketplace Explore

Create a new repository

A rapository containg all tha filas for your project, including tha revision history

Qwner Repository name
biobcot~ & bimm143
Graat repcsitory namaeas are short anc mamoratle. Nead inspiraticn? Hew about cuddly-invention.

Desr,-ription [optiorsl)

Public

Aone can see tNis repository. Yeu chodse who can commit

Private

You chooea whe can sea and commit to this rapo

Add a
v Initlalize this repository with a README

README e will let you immediately clone tha repository to your computer. Skip this step if you re mporting an existing rapository.

» -

Acd .gilignare: Nare » Add o license: None » ')

Create

Copy the “Clone” HTT

O This repository Search

bicboot / bimm143
<3 Code lssues 0 Pull requests 0

No description, website, or topics provided.

Add 10pics
D1 commit
Brench: master New pull request

biohoot Initial commir

README.md

EEIREADME.md

bggn213

Pull requests

Projects 0

¥ 1 branch

nitial commit

lssues Marketplace Explore

G Unwatch ~

Settingcs

0 releases Ak 1 contributor

Create new file Upload files Find fild Clone or download ~

Clone with HTTPS @ Lise SSH
Use Git or checkout with SYN using the web URL.

https://gqithub. con/bioboot/bimm143,gif 52

Open in Desktop Download ZIP

RStudio > New Project > Version Control

New Project

Create Project

New Directory
Start a project in a brand new working directory

Existing Directory
Associate a project with an existing working directory

Version Control
Checkout a project from a version control repository

Cancel

RStudio > New Project > Version Control

New Project

Back Clone Git Repository

Repository URL: GitHub
https://github.com/bioboot/bggn213.git Paste

Az IR TR TR T TS AT IV SIS Bl b R ST IV A . ‘
Project directory name:

bggn213_github

Create project as subdirectory of.
~/Desktop/courses/bggn213_S18

v Open in new session Create Project Cancel

Y I DD G-I I STR) ST D)

Demo of editing, adding
committing and pushing

Check if new Git tab
Appears in RStudio?

Environment History Connections GED

B Diff Commit © » -! Now experiment editing the
Staged Status Path README.md file in RStudio
@ B @ .gitgnore and adding, committing and
@ B E testRproj pushing changes to GitHub

via this tab

Demo of editing, adding
committing and pushing

Check if new Git tab
Appears in RStudio?

Environment

Staged Status

History Connections Git_
B Diff Commit

Path
.gitignore
test.Rproj

© -1

Now experiment editing the
README.md file in RStudio
and adding, committing and
pushing changes to GitHub
ERGIERE]

When you are ready copy your
different class directories/projects
to this new GitHub tracked folder

Side-note: How to edit online

Specifically lets add some Markdown content

‘ , I'T & rapos Tory Pull requasls lssues Qist

biobootStudent / demo1_glithub ©unwatch - 2 Slar

iimaster~ demol_github / AREADME

biobootStudent Tehal y 10 Updata README

1

9 _ines (- sloc) 2.23C kB Raw Elame Hislory

A My =lisl Gil repo 1s nuw online
n=s 15 a fi~st l-ne of taxt.
Ths 15 a 2rd 1dne aof ot

am gaing ta uts *"markcawa*t syntax ran raw on becanse it is _roall_
Z am a student 4n [bloboct czap (http:S/bicooot.pithub. 1c/wab-2315.1)

= oG 18 GilHu, Iro vaoy Scourity Conlact Helb Saus AP Taring Shkp Bkg Sbout Priving

summary

e Gitis a popular ‘distributed’ version control
system that is lightweight and free

e GitHub and BitBucket are popular hosting
services for git repositories that have changed the
way people contribute to open source projects

* |ntroduced basic git and GitHub usage within
RStudio and encouraged you to adopt these ‘best
poractices’ for your future projects.

| earning Resources

Set up Git. If you will be using Git mostly or entirely via
GitHub, look at these how-tos.
< https://help.github.com/categories/bootcamp/ >

Getting Git Right. Excellent Bitbucket git tutorials
< https://www.atlassian.com/qit/ >

Pro Git. A complete, book-length guide and reference to Git,
by Scott Chacon and Ben Straub.
< http://git-scm.com/book/en/v2 >

StackOverflow. Excellent programming and developer Q&A.
< http://stackoverflow.com/questions/tagged/qit >

https://help.github.com/categories/bootcamp/
https://www.atlassian.com/git/
http://git-scm.com/book/en/v2
http://stackoverflow.com/questions/tagged/git

_earning git can be paintul!

However In practice it is not nearly as crazy-making as
the alternatives:

 Documents as emall attachments
e Hair-raising ZIP archives containing file salad
 Am | working with the most recent data?”

* Archaelogical "digs” on old email threads and
uncertainty about how/if certain changes have been
made or issues solved

Finally Please remember that GitHub

and BitBucket are PUBLIC and that

you should cultivate your professional
and scholarly profile with intention!

| Muddy Point Assessment |

https://docs.google.com/forms/d/e/1FAIpQLSeNF6De9ASCthrrDXs4TFGjGSSHuNq3t8UXngv2Oj6VO_dZfQ/viewform

Reference Slides

Using Command Line Git

1. Initiate a Git repository,
2. EAit content (Le. change some files).
3. Store a ‘snapshot’ of the current file state.x

Initiate a Git repository

Initiate a Git repository

> cd ~/

Desktop

> mkdir git_class # Make a new directory
> cd git_class # Change to this directory
> git Init # Our first Git command!

> |s -a

what happened?

Side-Note: The .git/ directory

Git created a ‘hidden’ .git/ directory inside your
current working directory.

You can use the ‘Is =a’ command to list (/.e. see)
this directory and its contents.

This is where Git stores all its goodies - this is Git!

You should not need to edit the contents of the .git
directory for now but do feel free to poke around.

lmportant Git commands

> git status # report on content changes

> git add <filename> # stage/track a file
> git commit -m "message” # snapshot

lmportant Git commands
> git status # report on content changes >

> git add <filename> # stage/track a file
> git commit -m "message” # snapshot

You will use these three commands again and again in your Git workflow!

Git TRACKS your directory content

* To get a report of changes (since last commit) use;
> git status

* You tell Git which files to track with:
> git add <filename>

This adds files to a so called STAGING AREA
(akin to a “shopping cart” before purchasing).

* You tell Git when to take an historical SNAPSHOT of
your staged files (/.e. record their current state) with:

> git commit -m ‘Your message about changes’

Example Git workflow

—va creates a README text tile
(this starts as untracked)

| Adds file to STAGING AREA*
(tracked and ready to take a snapshot)

Commit changes”
(records snapshot of staged files!)

Example Git workflow

Eva creates a README text file

Adds file to STAGING AREA*

Commit changes”®

~

Eva modifies README and adds a ToDo text file
@ Adds both to STAGING AREA*®
Commit changes”

1. Eva creates a README file

> # cd ~/Desktop/qgit_class
> # git init

> echo "This is a first line of text." > README
> git status # Report on changes

On branchimaster
#
Initial commit
#

Untracked files:
(use "git add <file>..." to include in what will be committed)

#
#
#
README
#
#

nothing added to commit but untracked files present (use "git add" to track)

2. Adds to ‘staging area’

> gitadd README # Add README file to staging area
> git status # Report on changes

On branch master
#

Initial commit

#i
#iChanges to be committed:
(use "git rm --cached <file>..." to unstage)
#

new file: README

#

3. Commit changes

> git commit -m “Create a README file” # Take snapshot
[master (root-commit) 8676840] Create a README file

1 file changed, 1 insertion(+)
create mode 100644 README

> git status # Report on changes

On branch master
nothing to commit, working directory clean

4. Eva modifies README file
and adds a ToDo file

> echo "This is a 2nd line of text." >> README
> echo "Learn git basics" >> ToDo

> git status # Report on changes
On branch master
#

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified:

#

#

#

#

Untracked files:
(use 'git add <file>..." to include in what will be committed)
#

#

#

#

no changes added to commit (use "git add" and/or "git commit -a")

5. Adds both files to ‘staging area’

> git add README ToDo # Add both files to ‘staging area’
> git status # Report on changes
On branch master

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: README
new file: ToDo

H H H

6. Commits changes

> git commit -m "Add ToDo and modify README"

[master 7b679fa]l Add ToDo and modity README
2 files changed, 2 insertions(+)
create mode 100644 ToDo

> git status

On branch master
nothing to commit, working directory clean

Example Git workflow

1. Eva creates a README text file

2] Adds file to STAGING AREA®

3. Commit changes*

Eva modifies README and adds a ToDo text file

4.
N
. @ Adds both to STAGING AREA*
o. Commit changes*

...But, how do we see the history of our project changes”

git log: Timeline history of
snapshots (/.e. commits)

> git log

commit 7b679fa747e8640918fcaad7e4c3f9c70c87b170
Author: Barry Grant <bjgrant@umich.edu>

Date: Thu Jul 30 11:43:40 2015 -0400

#

Add ToDo and finished README

#

commit 867684016107 70ae32e2fd4face0/7d1d5¢c68619¢
Author: Barry Grant <bjgrant@umich.edu>

Date: Thu Jul 30 11:26:40 2015 -0400

#

Create a README file

#

git log: Timeline history of
snapshots (/.e. commits)

> git log

commit 7b679fa747e8640918fcaad7e4c3f9c70c87b170
Author: Barry Grant <bjgrant@umich.edu>

Date: Thu Jul 30 11:43:40 2015 -0400

#

Add ToDo and finished README

#

commit 86768401610770ae32e2fd4face07d10d5¢68619C .
Author: Barry Grant <bjgrant@umich.edu>

Date: Thu Jul 30 11:26:40 2015 -0400

#

Create a README file
Past

Side-Note: Git history is akin
to a grapn

Nodes are commits labeled by their
unique ‘commit ID’.

(This is a CHECKSUM of the commits
author, time, commit msg, commit content
and previous commit ID).

HEAD is a reference (or ‘pointer’) to the
currently checked out commit (typically the
most recent commit).

Time

Projects can have complicated
graphs due to branching

Master Feature

7:7_ - 39x2 @

| 5000. ..

3606

‘ Branches allow you to work independently

1g9K...

of other lines of development we will talk
more about these later!

You explicitly and iteratively te
track (“git add”) and snapsho

Key Points:

Git keeps an historical log “(git log”) of t

content c
G

It Is good practice to regularly ¢
of your working directory, stagl

nanges (and your comments on t

nanges) at each past commit.

(“git status”)

| git what files to
(“git commit”).

e

eSE

neck the status
Ng arena repo

Break

Summary of key Git commands:

> git status # Get a status report of changes since last commit

> git add <filename> # Tell Git which files to track/stage

> git commit -m ‘Your message’ # Take a content snapshot!

> git log # Review your commit history

> git diff <commit.ID> <commit.ID> # Inspect content differences

> git checkout <commit.ID> # Navigate through the commit history

Your 'Staging Local
Directory Area’” Repository

status -

git diff: Show changes
between commits

> git diff 8676 7b67

diff --git a/README b/README
Index 73bc85a..07bd82¢c 100644
--- a/README

+++ b/README

Q@@ -1 +12 @@

This is a first line of text.
+This is a 2nd line of text.
diff --git a/ToDo b/ToDo

new file mode 100644

index 0000000..14fbd56
--- /dev/null

+++ b/ToDo

#Q@@ -0,0 +1 @@

+Learn git basics

git diff: Show changes
between commits

> git diff 7b67 8676

diff --git a/README b/README

index 67bd82c¢..73bc85a 100644
--- a/README

+++ b/README

Q@@ -1,2 +1 @@

This is a first line of text.

#

diff --git a/ToDo b/ToDo

deleted file mode 100644
index 14fbd56..0000000
--- a/ToDo

+++ /dev/null

Q@@ 1 +0,0 @@

#

git diff: Show changes
between commits

> git diff 8676 ## Difference to current HEAD position!

diff --git a/README b/README

index 73bc85a..67bd82c 100644
--- a/README

+++ b/README m 7687 ...
#@Q@-1+1,2 @@

This is a first line of text.
+This is a 2nd line of text.

diff --git a/ToDo b/ToDo
new file mode 100644

index 0000000..14fbd56
--- /dev/null

+++ b/ToDo

#Q@@ -0,0 +1 @@

+Learn git basics

HEAD advances automatically with
each new commit

m 7‘7- e To move HEAD (back or forward)

| on the Git graph (and retrieve the

associated snapshot content) we
can use the command:

> git checkout <commit.ID>

3696 ..

git checkout: Moves HEAD

> more README
This is a first line of text.
This is a 2nd line of text.

> git log --oneline
7b679fa Add ToDo and finished README
8676840 Create a README file

HEAD (. 708

3696. ..

git checkout: Moves HEAD
(e.g. back in time)

> more README
This is a first line of text.
This is a 2nd line of text.

> git log --oneline 7‘7_ N

7be79fa Add ToDo and finished README
86706840 Create a README file

> git checkout 86768
You are in 'detached HEAD' state...<cut>...
HEAD is now at 8676840... Create a README file

> more README
This is a first line of text.

> git log --oneline
8676840 Create a README file

git checkout: Moves HEAD
(e.g. back to the future!)

> git checkout master
Previous HEAD position was 8676840... Create a README file

Switched to branch 'master
'HEAD (" T4

> git log --oneline
7b679fa Add ToDo and finished README
8676840 Create a README file

> more README
This is a first line of text.
This is a 2nd line of text.

3696. ..

Side-Note: There are two™ main ways to
use git checkout

* Checking out a commit makes the entire working
directory match that commit. This can be used to
view an old state of your project.

> git checkout <commit.ID>

* Checking out a specific file lets you see an old
version of that particular file, leaving the rest of
your working directory untouched.

> git checkout <commit.ID> <filename>

You can discard revisions
with git revert

* The git revert command undoes a committed
snapshot.

* But, instead of removing the commit from the
project history, it figures out how to undo the
changes introduced by the commit and appends
a new commit with the resulting content.

> git revert <commit.ID>

* This prevents Git from losing history!

Removing untracked files
with git clean

* The git clean command removes untracked files from
your working directory.

e Like an ordinary rm command, git clean is not

undoable, so make sure you really want to delete the
untracked files betore you run it.

> git clean -n # dry run display of files to be ‘cleaned’

> git clean -t # remove untracked files

GUIs

Tower (Mac only)
GitHub_Desktop (Mac, Windows)
SourceTree (Mac, Windows)
SmartGit (Linux)
RStudio

https://git-scm.com/downloads/quis

https://git-scm.com/downloads/guis

