

NEXT UP:

- Overview of structural bioinformatics
 - Major motivations, goals and challenges
- Fundamentals of protein structure
 - Composition, form, forces and dynamics
- Representing and interpreting protein structure
 - Modeling energy as a function of structure

Example application areas

drug discovery & Predicting functional dynamics

THE TRADITIONAL EMPIRICAL PATH TO DRUG DISCOVERY

COMPUTER-AIDED LIGAND DESIGN

Aims to reduce number of compounds synthesized and assayed

Lower costs

Reduce chemical waste

Facilitate faster progress

Two main approaches:

- (1). Receptor/Target-Based
- (2). Ligand/Drug-Based

Two main approaches:

- (1). Receptor/Target-Based
- (2). Ligand/Drug-Based

SCENARIO I: RECEPTOR-BASED DRUG DISCOVERY

Structure of Targeted Protein Known: Structure-Based Drug Discovery

HIV Protease/KNI-272 complex

PROTEIN-LIGAND DOCKING

Structure-Based Ligand Design

Potential function Energy as function of structure

O ← → O
Screened Coulombic

Ensemble docking & candidate inhibitor testing

Top hits from ensemble docking against distal pockets were tested for inhibitory effects on basal ERK activity in glioblastoma cell lines.

COMMON SIMPLIFICATIONS USED IN PHYSICS-BASED DOCKING

Quantum effects approximated classically

Protein often held rigid

Configurational entropy neglected

Influence of water treated crudely

Two main approaches:

- (1). Receptor/Target-Based
- (2). Ligand/Drug-Based

Hand-on time!

Do IT YOURSEIT

https://bioboot.github.io/bggn213_S18/lectures/#12

You can use the classroom computers or your own laptops. If you are using your laptops then you will need to install VMD and MGLTools

Bio3D view()

 If you want the 3D viewer in your R markdown you can install the development version of Bio3D

• For MAC:

> download.file("https://tinyurl.com/bio3d-mac", "bio3d.tar.gz") > install.packages("bio3d.tar.gz", repos = NULL)

• For Windows:

> install.packages("https://bioboot.github.io/bggn213_S18/classmaterial/bio3d_2.3-4.9000.zip", repos = NULL)

[See: Appendix I in Lab Sheet]

HTTP://129.177.232.111:3848/PCA-APP/

HTTP://BIO3D.UCSD.EDU/PCA-APP/

Two main approaches:

- (1). Receptor/Target-Based
- (2). Ligand/Drug-Based

Test experimentally

A High-Dimensional "Chemical Space"

Each compound is at a point in an n-dimensional space Compounds with similar properties are near each other

Apply **multivariate statistics** and **machine learning** for descriptorselection. (e.g. partial least squares, PCA, support vector machines, random forest, deep learning etc.)

Optional: Stop here for Today!

[Muddy Point Assessment]

Rules for drug discovery success

- Set of approved drugs or medicinal chemistry compounds and their targets can be used to derive rules for drug discovery success (or failure):
 - What features make a successful drug target?
 - What features make a protein druggable by small molecules?
 - What features of a compound contribute to good oral bioavailability?
 - · What chemical groups may be associated with toxicity?

NMA models the protein as a network of elastic strings

NEXT UP:

- Overview of structural bioinformatics
 - Major motivations, goals and challenges
- Fundamentals of protein structure
 - Composition, form, forces and dynamics
- Representing and interpreting protein structure
 - Modeling energy as a function of structure

• Example application areas

• Drug discovery & predicting functional dynamics

PREDICTING FUNCTIONAL DYNAMICS

- Proteins are <u>intrinsically flexible</u> molecules with internal motions that are often intimately coupled to their biochemical function
 - E.g. ligand and substrate binding, conformational activation, allosteric regulation, etc.
- Thus knowledge of dynamics can provide a deeper understanding of the <u>mapping of structure to</u> <u>function</u>
 - Molecular dynamics (MD) and normal mode analysis (NMA) are two major methods for predicting and characterizing molecular motions and their properties

MOLECULAR DYNAMICS SIMULATION

McCammon, Gelin & Karplus, Nature (1977) [See: <u>https://www.youtube.com/watch?v=ui1ZysMFcKk</u>] **KEY CONCEPT:** POTENTIAL FUNCTIONS DESCRIBE A SYSTEMS **ENERGY** AS A FUNCTION OF ITS **STRUCTURE**

Two main approaches:

(1). Physics-Based

(2). Knowledge-Based

PHYSICS-ORIENTED APPROACHES

Weaknesses

Fully physical detail becomes computationally intractable Approximations are unavoidable (Quantum effects approximated classically, water may be treated crudely) Parameterization still required

Strengths

Interpretable, provides guides to design Broadly applicable, in principle at least Clear pathways to improving accuracy

Status

Useful, widely adopted but far from perfect Multiple groups working on fewer, better approxs Force fields, quantum entropy, water effects Moore's law: hardware improving

SIDE-NOTE: GPUS AND ANTON SUPERCOMPUTER

Hand-on time!

Do it yourself!

https://bioboot.github.io/bggn213_S18/lectures/#12

Focus on section 3 & 4 exploring PCA and NMA apps

SUMMARY

- Structural bioinformatics is computer aided structural biology
- Described major motivations, goals and challenges of structural bioinformatics
- Reviewed the fundamentals of protein structure
- Introduced both physics and knowledge based modeling approaches for describing the structure, energetics and dynamics of proteins computationally
- Introduced both structure and ligand based bioinformatics approaches for drug discovery and design