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NEXT UP:

» Overview of structural bioinformatics

+ Major motivations, goals and challenges

» Fundamentals of protein structure
+ Composition, form, forces and dynamics

» Representing and interpreting protein
structure
* Modeling energy as a function of structure

» Example application areas
+ drug discovery & Predicting functional dynamics

THE TRADITIONAL EMPIRICAL PATH TO
DRUG DISCOVERY

Compound library
(commercial, in-house,
synthetic, natural)\

High throughput screening

HTS)

Hit confirmation

Lead compounds

(e.g., UM K) N

Lead optimization
(Medicinal chemistry)
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Animal and clinical€=——potent drug candidates
evaluation (NM Ky)

COMPUTER-AIDED LIGAND DESIGN

Aims to reduce number of compounds synthesized and assayed

Lower costs

Reduce chemical waste

Scoring

Visual
analysis

Facilitate faster progress

in vitro
assays




Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based

Two main approaches:
(1). Receptor/Target-Based
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SCENARIO I:
RECEPTOR-BASED DRUG DISCOVERY

Structure of Targeted Protein Known: Structure-Based Drug Discovery

HIV Protease/KNI-272 complex

PROTEIN-LIGAND DOCKING

Structure-Based Ligand Design

Docking software
Search for structure of lowest energy Potential function
Energy as function of structure
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STRUCTURE-BASED VIRTUAL SCREENING

Compound 3D structure of target
database (crystallography, NMR,

bioinformatics
modeling)

Virtual screening
(e.g., computational
docking)

/ Candidate ligands

Ligand optimization

Med chem, Experimental assay
crystallography, modeling l,

Ligands —»  Drug
candidates

COMPOUND LIBRARIES

Commercial
(in-house pharma)

Government (NIH) Academia

FRAGMENTAL STRUCTURE-BASED
SCREENING

“Fragment” library 3D structure of target

Fragment docking
Compound design

Experimental assay and ligand optimization
Med chem, crystallography, modeling
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http://www.beilstein-institut.de/bozen2002/proceedings/Jhoti/jhoti.html

Multiple non active-site pockets identified

Small organic probe fragment affinities map multiple potential
binding sites across the structural ensemble.
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Ensemble docking & candidate inhibitor testing

Top hits from ensemble docking against distal pockets were tested for
inhibitory effects on basal ERK activity in glioblastoma cell lines.

Ensemble computational docking Compound effect on U251 cell line
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o PLoS One (2011, 2012)

COMMON SIMPLIFICATIONS USED IN
PHYSICS-BASED DOCKING

Quantum effects approximated classically
Protein often held rigid
Configurational entropy neglected

Influence of water treated crudely

Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based

Hand-on time!

https://bioboot.github.io/bggn213 S18/lectures/#12

You can use the classroom computers or your own
laptops. If you are using your laptops then you will need
to install VMD and MGLTools




Bio3D view()

If you want the 3D viewer in your R
markdown you can install the
development version of Bio3D

e For MAC:

¢ For Windows:

[ See: Appendix | in Lab Sheet ]
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Proteins and Ligand are Flexible

Protein
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HTTP://129.177.232.111:3848/PCA-APP/

HTTP://BIO3D.UCSD.EDU/PCA-APP/

Two main approaches:

(1). Receptor/Target-Based
(2). Ligand/Drug-Based




Scenario 2
Structure of Targeted Protein Unknown:
Ligand-Based Drug Discovery

e.g. MAP Kinase Inhibitors ~
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Why Look for Another Ligand if You Already Have Some?

Experimental screening generated some ligands, but they don’t
bind tightly enough

A company wants to work around another company’s chemical
patents

An high-affinity ligand is toxic, is not well-absorbed, difficult to
synthesize etc.

LIGAND-BASED VIRTUAL SCREENING

Compound Library Known Ligands

N

Molecular similarity
Machine-learning
Etc.

v

Candidate ligands

Optimization l
Med chem, crystallography, Assay

modeling \

Actives —3Potent drug candidates

CHEMICAL SIMILARITY
LIGAND-BASED DRUG-DISCOVERY

Compounds
(available/synthesizable)

Different

— Don’t bother

Test experimentally




CHEMICAL FINGERPRINTS
BINARY STRUCTURE KEYS
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CHEMICAL SIMILARITY FROM
FINGERPRINTS
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Pharmacophore Models
®dpuako (drug) + Popa (carry)

A 3-point pharmacophore

Bulky
hydrophobe

Molecular Descriptors
More abstract than chemical fingerprints

Physical descriptors
molecular weight

Charge — lL ’ﬂzﬁ\\/[, Je_e"w /\l
dipole moment ey e L
number of H-bond donors/acceptors @ N
number of rotatable bonds (\j « Rotatable bonds

hydrophobicity (log P and clogP)
Topological
branching index

measures of linearity vs interconnectedness

Etc. etc.




A High-Dimensional “Chemical Space”

Each compound is at a point in an n-dimensional space
Compounds with similar properties are near each other

Descriptor 3

Point representing a
© compound in descriptor
space

Apply multivariate statistics and machine learning for descriptor-
selection. (e.g. partial least squares, PCA, support vector machines,
random forest, deep learning etc.)

Set of approved drugs or medicinal chemistry compounds
and their targets can be used to derive rules for drug
discovery success (or failure):

What features make a successful drug target?

What features make a protein druggable by small
molecules?

What features of a compound contribute to good oral
bioavailability?

What chemical groups may be associated with toxicity?

Optional:
Stop here for Today!

[ Muddy Point Assessment |

NMA models the protein as a network of elastic strings

Proteinase K




NEXT UP:

» Overview of structural bioinformatics
* Major motivations, goals and challenges

» Fundamentals of protein structure
+ Composition, form, forces and dynamics

» Representing and interpreting protein
structure
* Modeling energy as a function of structure

» Example application areas
* Drug discovery & predicting functional dynamics

PREDICTING FUNCTIONAL DYNAMICS

* Proteins are intrinsically flexible molecules with
internal motions that are often intimately coupled to
their biochemical function

— E.g. ligand and substrate binding, conformational
activation, allosteric regulation, etc.

* Thus knowledge of dynamics can provide a deeper
understanding of the mapping of structure to
function

— Molecular dynamics (MD) and normal mode analysis
(NMA) are two major methods for predicting and

characterizing molecular motions and their properties

MOLECULAR DYNAMICS SIMULATION

* Use force-field to find
Potential energy between
all atom pairs

* Move atoms to next state

* Repeat to generate
trajectory

McCammon, Gelin & Karplus, Nature (1977)
[ See: https://www.youtube.com/watch?v=ui1ZysMFcKk |

KEY CONCEPT: POTENTIAL FUNCTIONS
DESCRIBE A SYSTEMS ENERGY AS A FUNCTION
OF ITS STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based
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Energy

Structure/Conformation

KEY CONCEPT: POTENTIAL FUNCTIONS
DESCRIBE A SYSTEMS ENERGY AS A FUNCTION
OF ITS STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based

Energy

Structure/Conformation

PHYSICS-BASED POTENTIALS
ENERGY TERMS FROM PHYSICAL THEORY
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TOTAL POTENTIAL ENERGY

*The total potential energy
or entkalpﬂ fullgj defines the

system , u.
*The forces are the
aradients of the energy .
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bonded atom pairs.
Slide Credit: Michael Levitt




MOVING OVER THE ENERGY SURFACE PHYSICS-ORIENTED APPROACHES

T ° E:Y\RYO'\J Mlhl"\i}ﬁ’.i("\ JI’OFS Weaknesses

e into local minimum . Fully physic_al detail becomes computationally intractable

Approximations are unavoidable

o (Quantum effects approximated classically, water may be treated crudely)
o3 Parameterization still required

3
. M { )
& ® Molecular Dunamics uses

thermal ener o o mow Strengths

3 Interpretable, provides guides to design
Broadly applicable, in principle at least
Clear pathways to improving accuracy
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Moore’s law: hardware improving

Slide Credit: Michael Levitt

SIDE-NOTE: GPUS AND ANTON
SUPERCOMPUTER

§

Fastest reported
all-atom MD
simulation

:

:

Moore's law
trend
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SIDE-NOTE: GPUS AND ANTON
SUPERCOMPUTER
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KEY CONCEPT: POTENTIAL FUNCTIONS
DESCRIBE A SYSTEMS ENERGY AS A FUNCTION
OF ITS STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based

KNOWLEDGE-BASED DOCKING POTENTIALS

Ligand
carboxylate
y Aromatic
i stacking

ENERGY DETERMINES PROBABILITY
(STABILITY)

Basic idea: Use probability as a proxy for energy
\/\/\/ Boltzmann:
p(r) o e—E(r)/RT

Inverse Boltzmann:

E(r)=-RT[p(r)]

Probability Energy

%

x

Example: ligand carboxylate O to protein histidine N

Find all protein-ligand structures in the PDB with a ligand carboxylate O
1. For each structure, histogram the distances from O to every histidine N
2. Sum the histograms over all structures to obtain p(ro.y)
3. Compute E(ro.y) from p(ro.n)




KNOWLEDGE-BASED DOCKING
POTENTIALS

“PMF", Muegge & Martin, . Med. Chem. (1999) 42:79 |

A few types of atom pairs, out of several hundred total

Nitrogen*/Oxygen” Aromatic carbons Aliphatic carbons
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KNOWLEDGE-BASED POTENTIALS

Weaknesses
Accuracy limited by availability of data

Strengths
Relatively easy to implement
Computationally fast

Status
Useful, far from perfect
May be at point of diminishing returns
(not always clear how to make improvements)

MD Prediction of Functional Motions
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COARSE GRAINING: NORMAL MODE ANALYSIS
(NMA)

* MD is still time-consuming for large systems

* Elastic network model NMA (ENM-NMA) is an example
of a lower resolution approach that finishes in seconds
even for large systems.
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NMA models the protein as a network of elastic strings

Proteinase K

Hand-on time!

https://bioboot.github.io/bggn213 S18/lectures/#12

Focus on section 3 & 4 exploring PCA and NMA apps

ACHIEVEMENTS CHALLENGES
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INFORMING SYSTEMS BIOLOGY?

Literature and ontologies
M
% Protein sequence
3 >0
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DNA & RNA sequence

DNA & RNA structure

Protein families,
motifs and domains
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SUMMARY

Structural bioinformatics is computer aided structural biology

Described major motivations, goals and challenges of structural
bioinformatics

Reviewed the fundamentals of protein structure

Introduced both physics and knowledge based modeling
approaches for describing the structure, energetics and
dynamics of proteins computationally

Introduced both structure and ligand based bioinformatics
approaches for drug discovery and design




