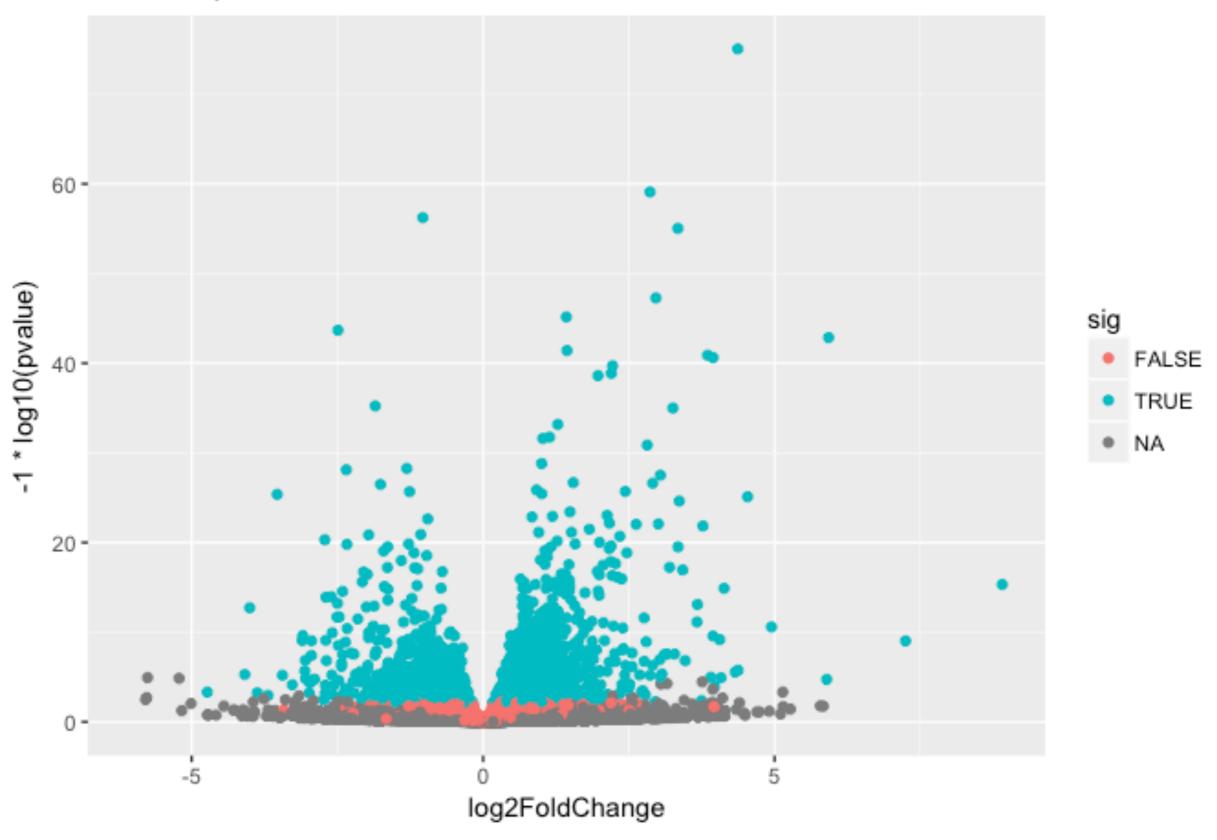


x	baseMean [‡]	log2FoldChange 🕏	IfcSE ‡	stat ‡	pvalue ‡	padj ‡	symbol ‡
ENSG00000152583	954.77093	4.3683590	0.23713648	18.421286	8.867079e-76	1.342919e-71	SPARCL1
ENSG00000179094	743.25269	2.8638885	0.17555825	16.313039	7.972621e-60	6.037267e-56	PER1
ENSG00000116584	2277.91345	-1.0347000	0.06505273	-15.905557	5.798513e-57	2.927283e-53	ARHGEF2
ENSG00000189221	2383.75371	3.3415441	0.21241508	15.731200	9.244206e-56	3.500088e-52	MAOA
ENSG00000120129	3440.70375	2.9652108	0.20370277	14.556557	5.306416e-48	1.607313e-44	DUSP1
ENSG00000148175	13493.92037	1.4271683	0.10036663	14.219550	6.929711e-46	1.749175e-42	STOM
ENSG00000178695	2685.40974	-2.4890689	0.17806407	-13.978501	2.108817e-44	4.562576e-41	KCTD12
ENSG00000109906	439.54152	5.9275950	0.42819442	13.843233	1.397758e-43	2.646131e-40	ZBTB16
ENSG00000134686	2933.64246	1.4394898	0.10582729	13.602255	3.882769e-42	6.533838e-39	PHC2
ENSG00000101347	14134.99177	3.8504143	0.28490701	13.514635	1.281894e-41	1.941428e-38	SAMHD1
ENSG00000096060	2630.23049	3.9450524	0.29291821	13.468102	2.409807e-41	3.317866e-38	FKBP5
ENSG00000166741	7542.25287	2.2195906	0.16673544	13.312050	1.970000e-40	2.486304e-37	NNMT
ENSG00000125148	3695.87946	2.1985636	0.16700546	13.164621	1.402400e-39	1.633797e-36	MT2A
ENSG00000162614	5646.18314	1.9711402	0.15020631	13.122885	2.434854e-39	2.633990e-36	NEXN
ENSG00000106976	989.04683	-1.8501713	0.14778657	-12.519211	5.861471e-36	5.918132e-33	DNM1
ENSG00000187193	199.07694	3.2551424	0.26090711	12.476250	1.006146e-35	9.523804e-33	MT1X
ENSG00000256235	1123.47954	1.2801193	0.10547438	12.136779	6.742862e-34	6.007096e-31	SMIM3
ENSG00000177666	2639.57020	1.1399947	0.09606884	11.866436	1.768422e-32	1.487930e-29	PNPLA2
ENSG00000164125	7257.00808	1.0248523	0.08657600	11.837603	2.494830e-32	1.988642e-29	FAM198B
ENSG00000198624	2020.04495	2.8141014	0.24063429	11.694515	1.359615e-31	1.029569e-28	CCDC69
ENSG00000123562	5008.55294	1.0045453	0.08901501	11.285123	1.554241e-29	1.120904e-26	MORF4L2
ENSG00000144369	1283.77980	-1.3090041	0.11714863	-11.173875	5.473974e-29	3.768333e-26	FAM171B
ENSG00000196517	241.91536	-2.3456877	0.21047366	-11.144804	7.591120e-29	4.998588e-26	SLC6A9
ENSG00000135821	19973.40000	3.0413943	0.27601796	11.018828	3.100706e-28	1.956675e-25	GLUL

Volcano plot

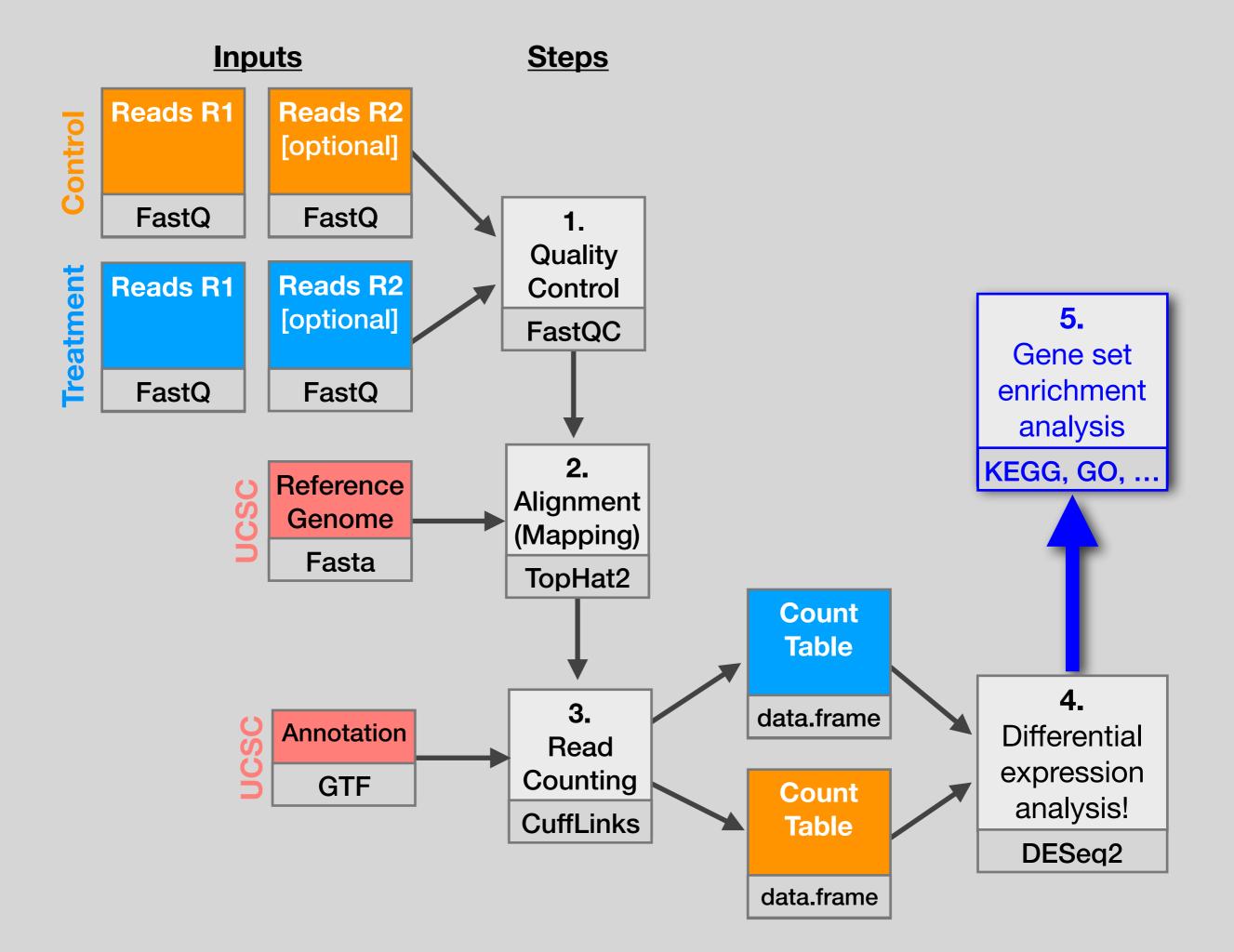


My high-throughput experiment generated a long list of genes/proteins...

What do I do now?

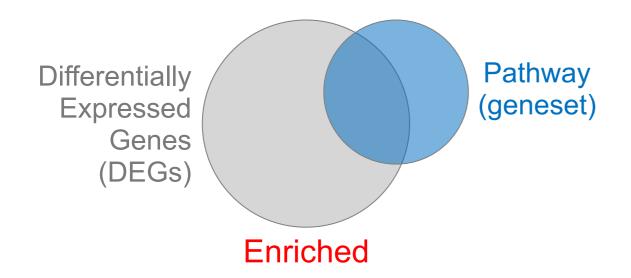
Pathway analysis! (a.k.a. geneset enrichment)

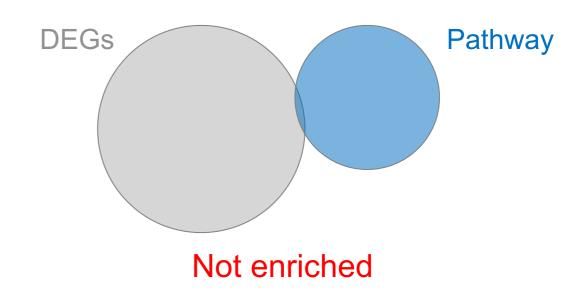
Use bioinformatics methods to help extract biological meaning from such lists...



Pathway analysis (a.k.a. geneset enrichment)

Principle





- Variations of the math: overlap, ranking, networks... > Not critical, different algorithms show similar performances
- DEGs come from your experiment
 ➤ Critical, needs to be as clean as possible
- Pathway genes ("geneset") come from annotations > Important, but typically not a competitive advantage

Pathway analysis (a.k.a. geneset enrichment)

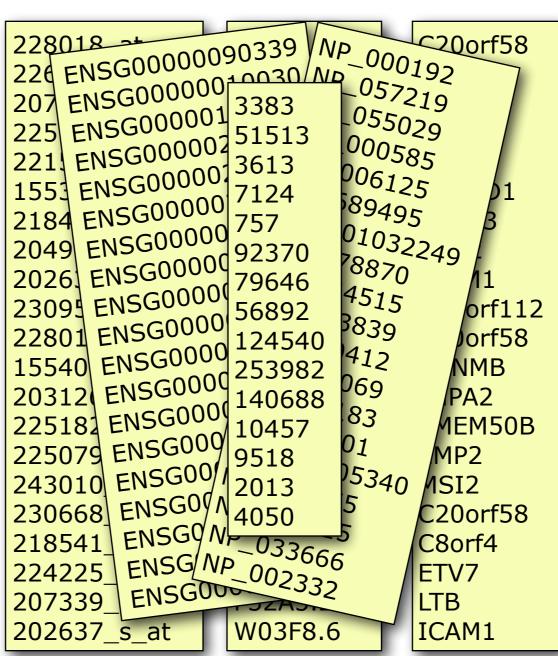
Limitations

- Geneset annotation bias: can only discover what is already known
- Post-transcriptional regulation is neglected
- Tissue-specific variations of pathways are not annotated
 - e.g. NF-κB regulates metabolism, not inflammation, in adipocytes
- Size bias: stats are influenced by the size of the pathway
- · Non-model organisms: no high-quality genesets available
- Many pathways/receptors converge to few regulators
 - e.g. Tens of innate immune receptors activate four TFs: NF-kB, AP-1, IRF3/7, NFAT

Starting point for pathway analysis:

Your gene list

- You have a list of genes/proteins of interest
- You have quantitative data for each gene/protein
 - Fold change
 - p-value
 - Spectral counts
 - Presence/absence



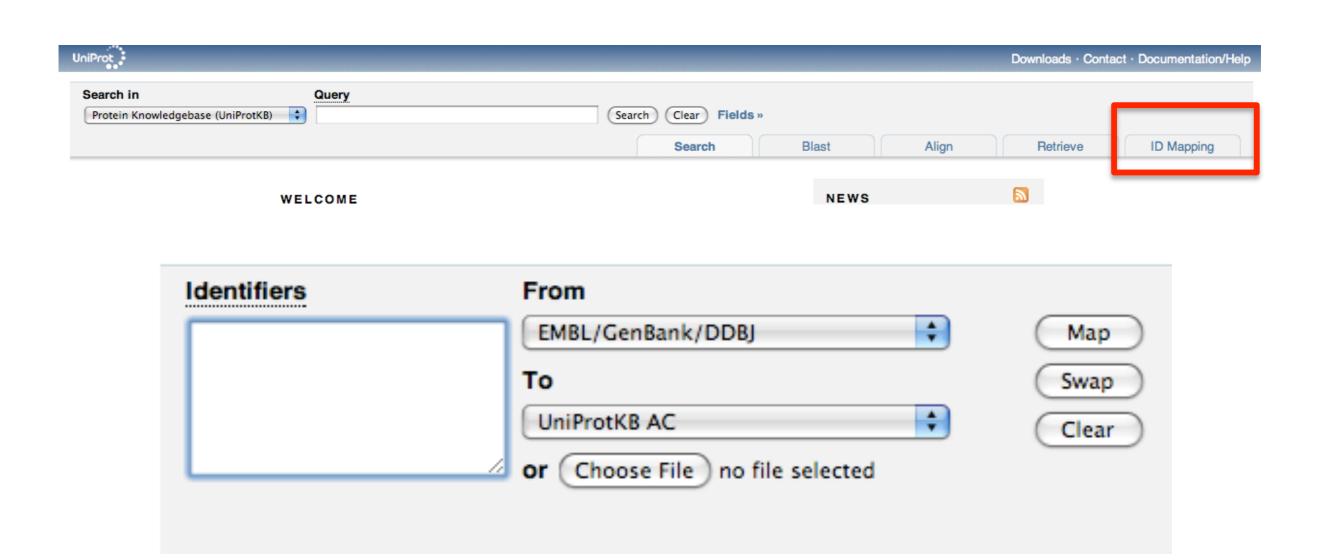
Translating between identifiers

- Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- Sometimes you have to translate one set of ids into another
 - A program might only accept certain types of ids
 - You might have a list of genes with one type of id and info for genes with another type of id

Translating between identifiers

- · Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- Sometimes you have to translate one set of ids into another
 - A program might only accept certain types of ids
 - · You might have a list of genes with one type of id and info for genes with another type of id
- Various web sites translate ids -> best for small lists
 - UniProt < <u>www.uniprot.org</u>>; IDConverter < <u>idconverter.bioinfo.cnio.es</u> >

Translating between identifiers: UniProt < <u>www.uniprot.org</u> >

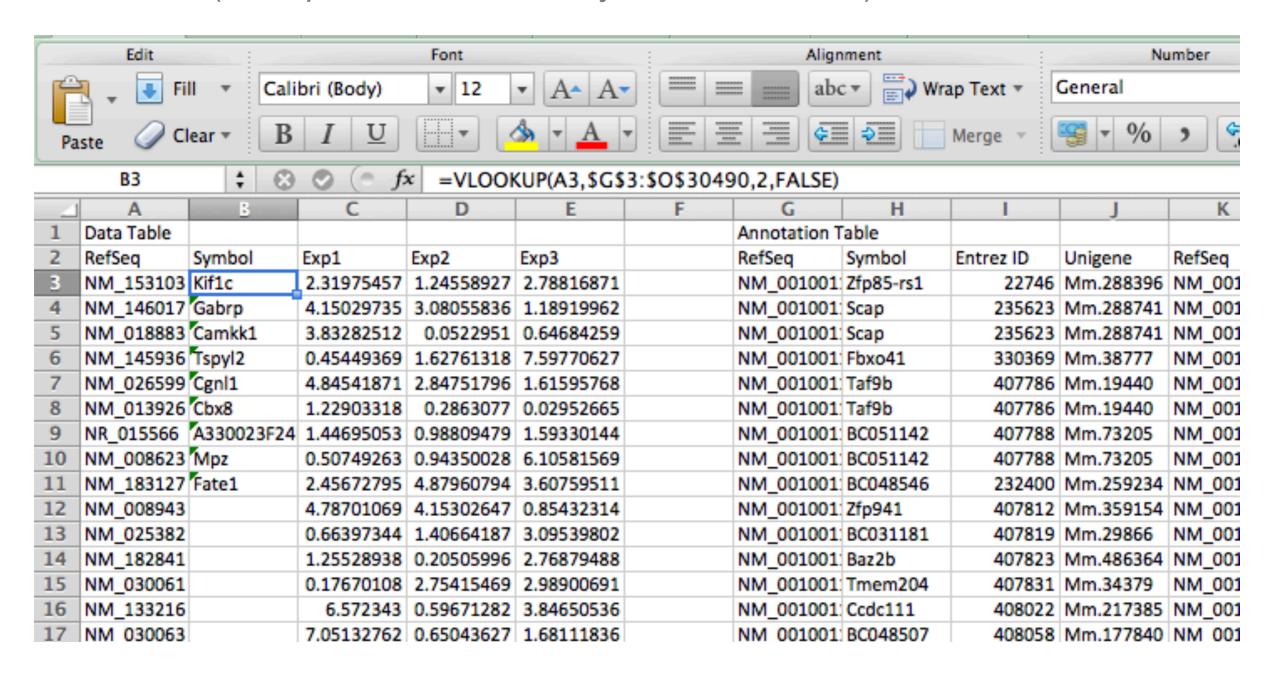


Translating between identifiers

- Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- Sometimes you have to translate one set of ids into another
 - A program might only accept certain types of ids
 - You might have a list of genes with one type of id and info for genes with another type of id
- Various web sites translate ids -> best for small lists
 - UniProt < <u>www.uniprot.org</u>>; IDConverter < <u>idconverter.bioinfo.cnio.es</u> >
- VLOOKUP in Excel good if you are an excel whizz I am not!
 - Download flat file from Entrez, Uniprot, etc; Open in Excel; Find columns that correspond to the 2 IDs you want to convert between; Sort by ID; Use vlookup to translate your list

Translating between identifiers: Excel VLOOKUP

VLOOKUP(lookup_value, table_array, col_index_num)



Translating between identifiers

- Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- Sometimes you have to translate one set of ids into another
 - A program might only accept certain types of ids
 - You might have a list of genes with one type of id and info for genes with another type of id
- Various web sites translate ids -> best for small lists
 - UniProt < <u>www.uniprot.org</u> >; IDConverter < <u>idconverter.bioinfo.cnio.es</u> >
- VLOOKUP in Excel -> good if you are an excel whizz I am not!
 - Download flat file from Entrez, Uniprot, etc; Open in Excel; Find columns that correspond to the two ids you want to convert between; Use vlookup to translate your list
- Use the merge() or mapIDs() functions in R fast, versatile & reproducible!
 - Also clusterProfiler::bitr() function and many others... [Link to clusterProfiler vignette]

bitr: Biological Id TranslatoR

clusterProfiler provides bitr and bitr_kegg for converting ID types. Both bitr and bitr_kegg support many species including model and many non-model organisms.

```
## SYMBOL ENTREZID

## 1 GPX3 2878

## 2 GLRX 2745

## 3 LBP 3929

## 4 CRYAB 1410

## 5 DEFB1 1672

## 6 HCLS1 3059
```

See package vignette:

https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html

What functional set databases do you want?

- Commonly used
 - Gene Ontology (GO)
 - KEGG Pathways (mostly metabolic)
 - GeneGO MetaBase

- Ingenuity Pathway Analysis (IPA) INGENUITY
- MSigDB (Molecular Signatures Database: gene sets based on chromosomal position, cis-regulatory motifs, GO terms, etc)
- Many others...
 - Enzyme Classification, PFAM, Reactome, Disease Ontology, Chemical Entities of Biological Interest, Network of Cancer Genes etc...
 - See: Open Biomedical Ontologies (<u>www.obofoundry.org</u>)

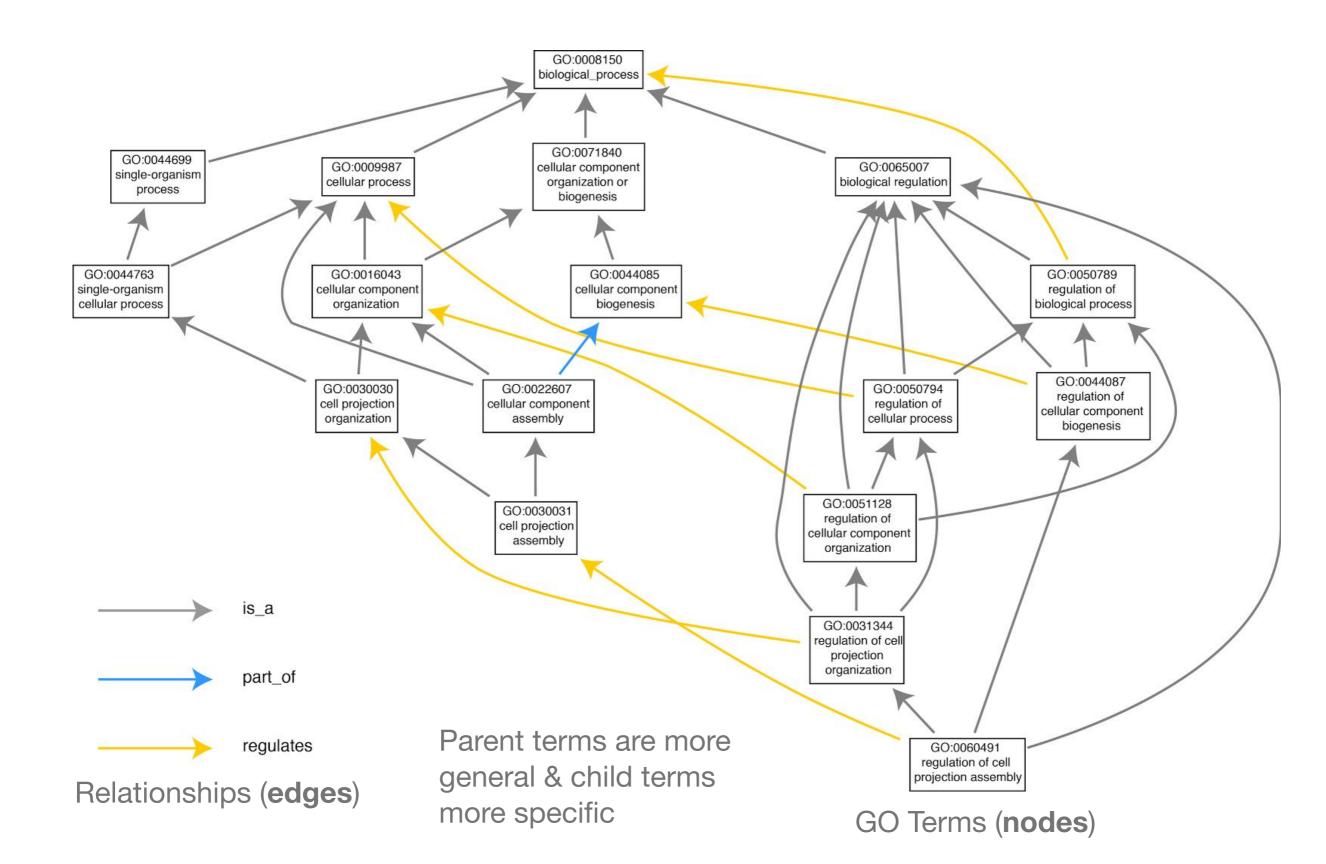
GO database < www.geneontology.org >

- What function does HSF1 perform?
 - response to heat; sequence-specific DNA binding; transcription; etc

 Ontology => a structured and controlled vocabulary that allows us to annotate gene products consistently, interpret the relationships among annotations, and can easily be handled by a computer

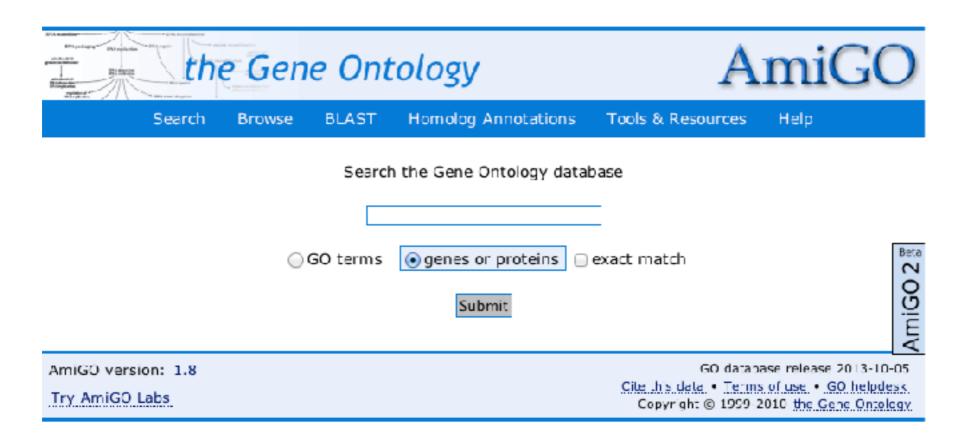
 GO database consists of 3 ontologies that describe gene products in terms of their associated biological processes, cellular components and molecular functions

GO is structured as a "directed graph"



GO Annotations

- GO is not a database of genes/proteins or sequences
- Gene products get annotated with GO terms by organism specific databases, such as Flybase, Wormbase, MGI, ZFIN, UniProt, etc
- Annotations are available through AmiGO < amigo.geneontology.org >



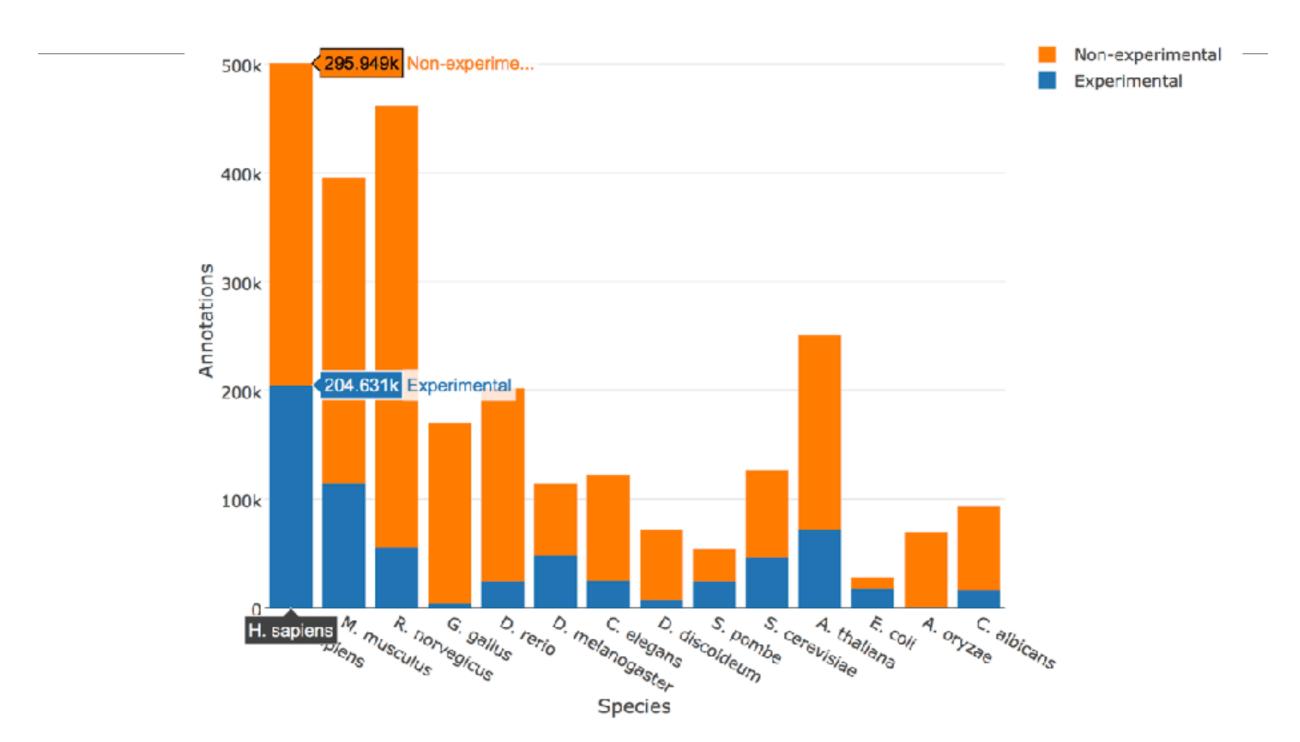
GO evidence codes

Evidence code	Evidence code description	Source of evidence	Manually checked	Current number of annotations*
IDA	Inferred from direct assay	Experimental	Yes	71,050
IEP	Inferred from expression pattern	Experimental	Yes	4,598
IGI	Inferred from genetic interaction	Experimental	Yes	8,311
IMP	Inferred from mutant phenotype	Experimental	Yes	61,549
IPI	Inferred from physical interaction	Experimental	Yes	17,043
ISS	Inferred from sequence or structural similarity	Computational	Yes	196,643
RCA	Inferred from reviewed computational analysis	Computational	Yes	103,792
IGC	Inferred from genomic context	Computational	Yes	4
IEA	Inferred from electronic annotation	Computational	No	15,687,382
IC	Inferred by curator	Indirectly derived from experimental or computational evidence made by a curator	Yes	5,167
TAS	Traceable author statement	Indirectly derived from experimental or computational evidence made by the author of the published article	Yes	44,564
NAS	Non-traceable author statement	No 'source of evidence' statement given	Yes	25,656
ND	No biological data available	No information available	Yes	132,192
NR	Not recorded	Unknown	Yes	1,185

^{*}October 2007 release

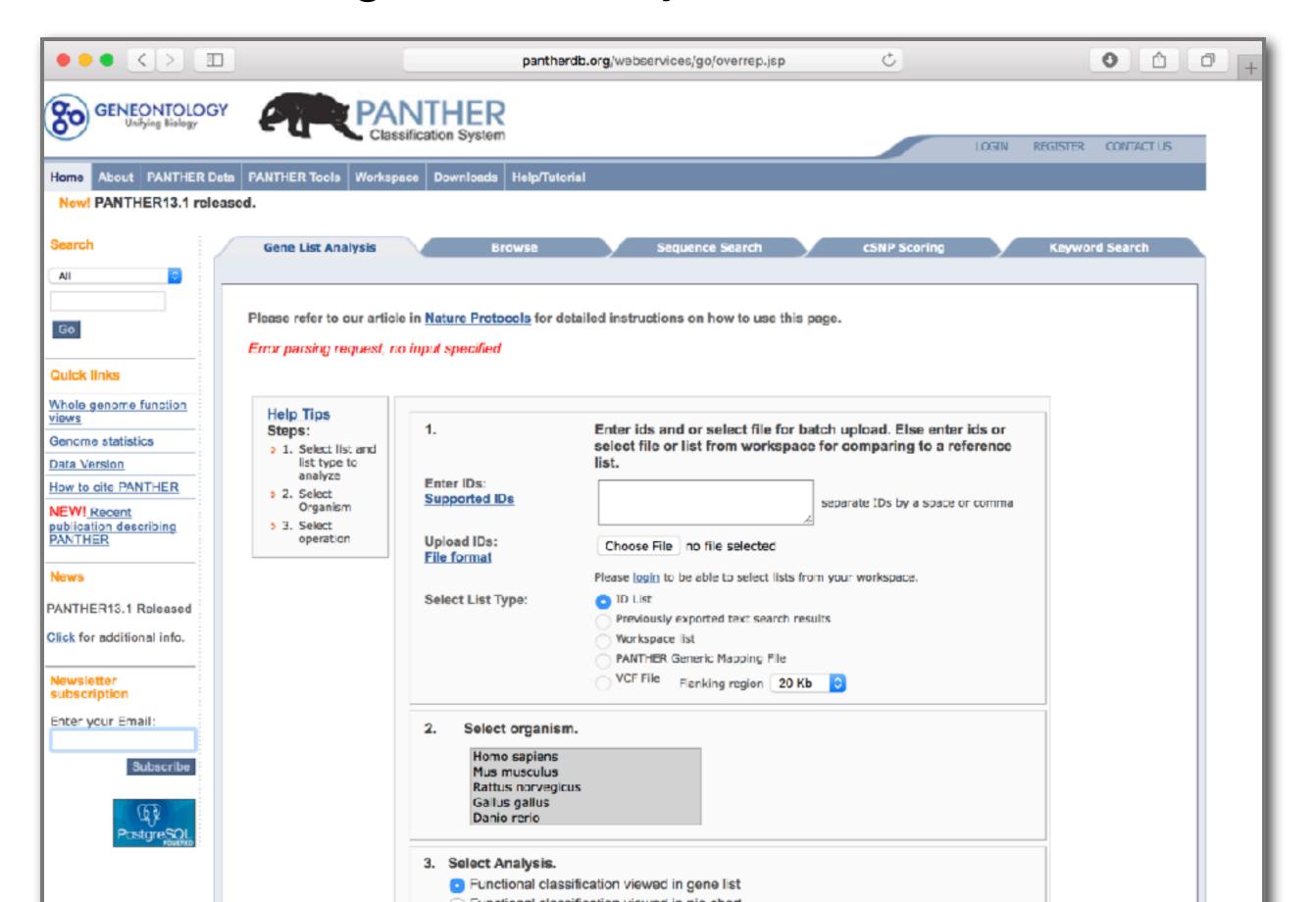
Use and misuse of the gene ontology annotations Seung Yon Rhee, Valerie Wood, Kara Dolinski & Sorin Draghici Nature Reviews Genetics 9, 509-515 (2008)

Experimental annotations by species

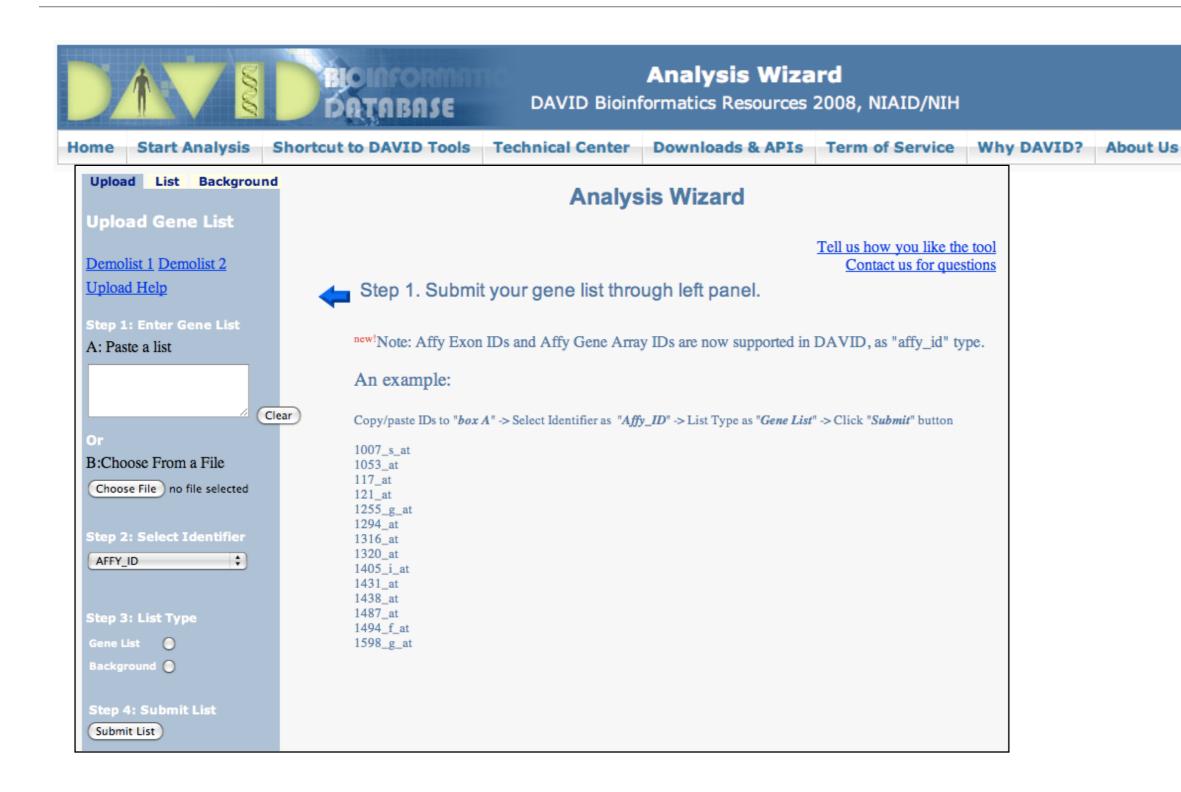


See AmiGO for details: http://amigo.geneontology.org/amigo/base_statistics

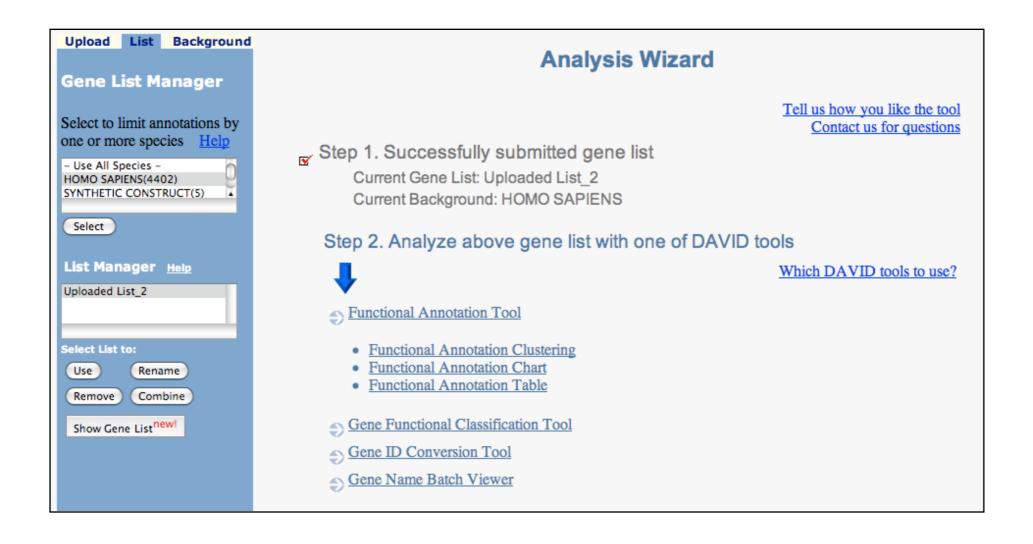
Can now do gene list analysis with GeneGO



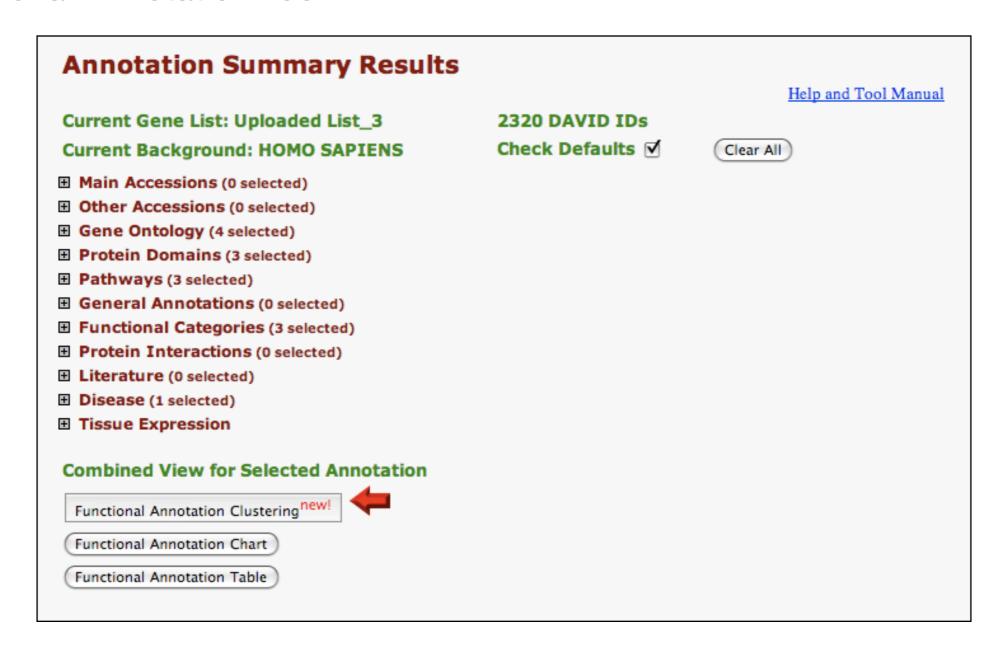
DAVID at NIAID < <u>david.abcc.ncifcrf.gov</u> >



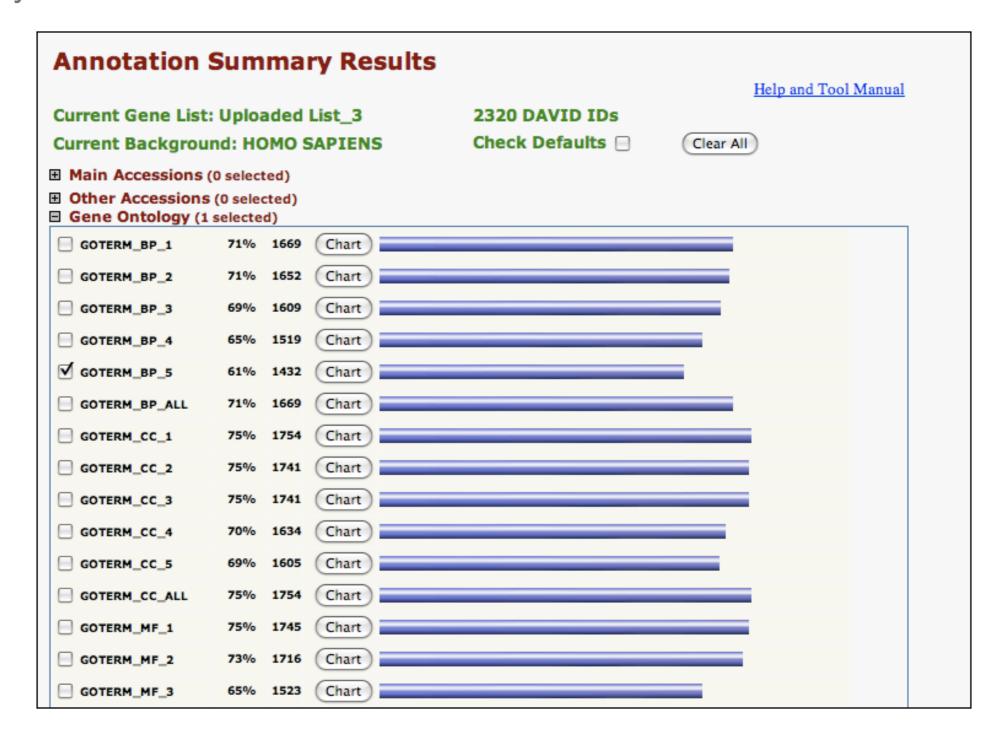
Notice that you can pick a Background (Universe)



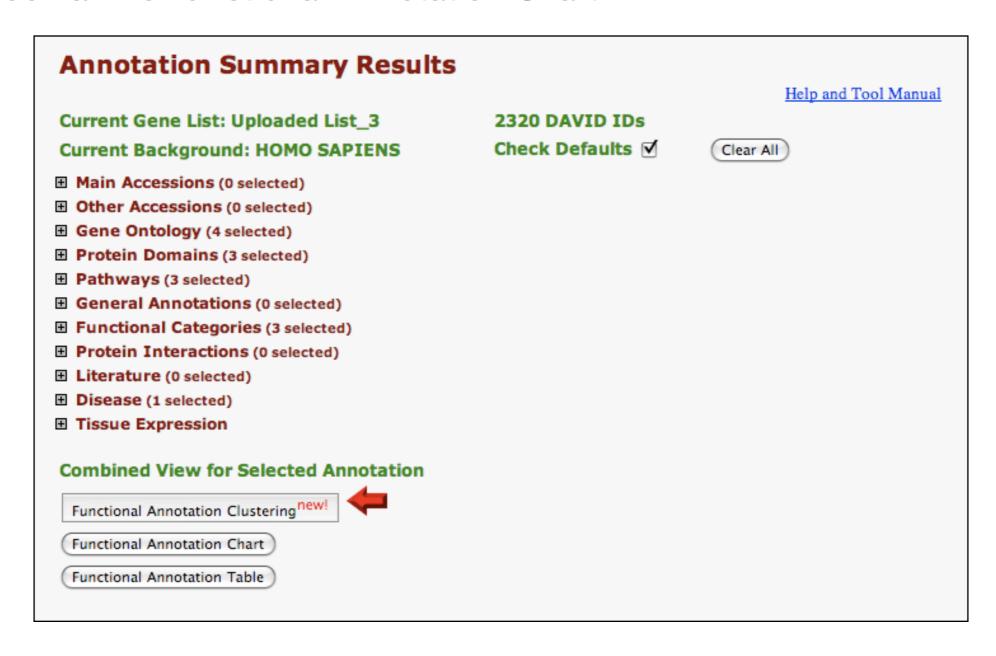
Functional Annotation Tool



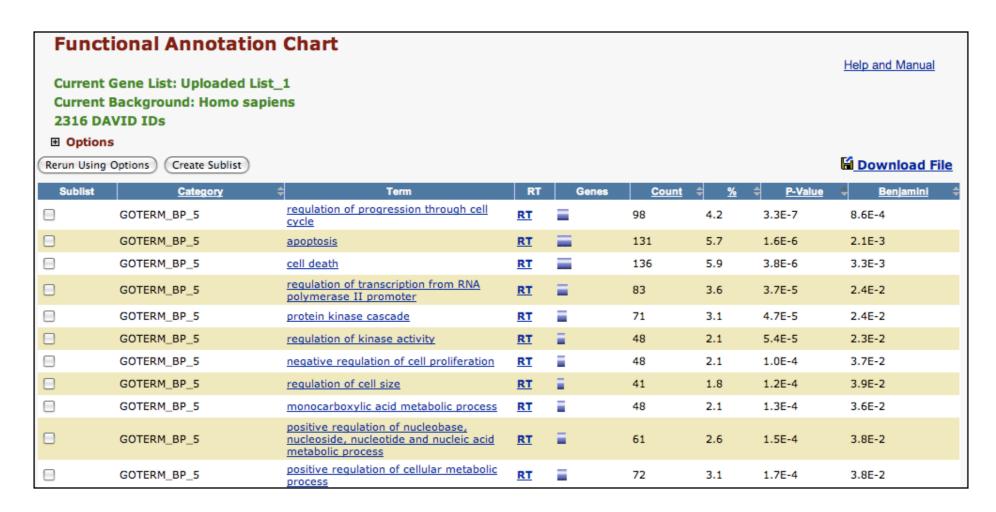
Specify functional sets



Let's look at the Functional Annotation Chart



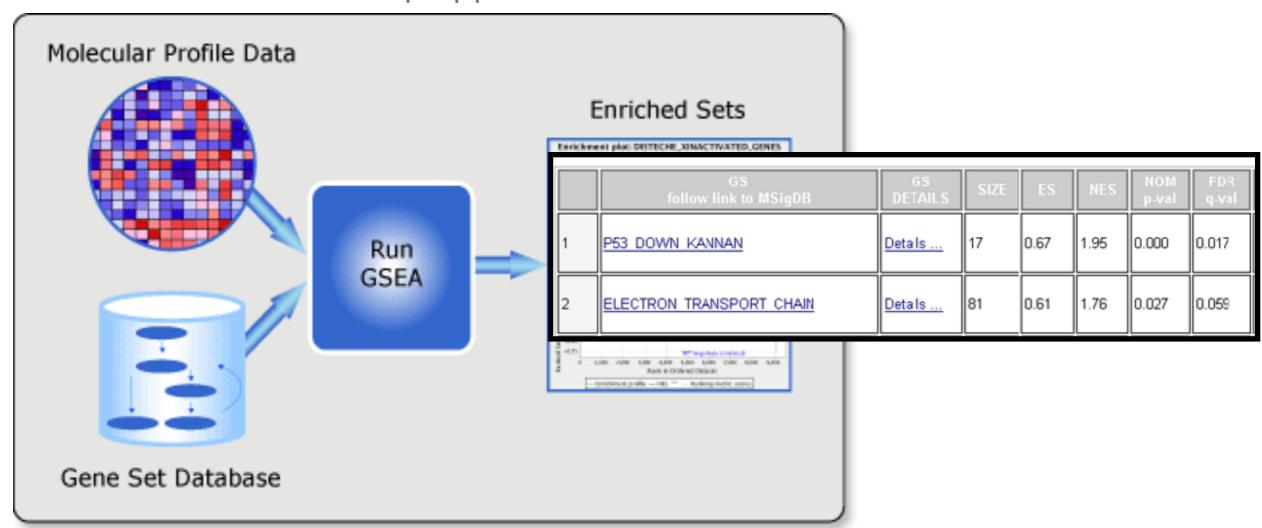
Functional Annotation Chart



Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
Da Wei Huang, Brad T Sherman & Richard A Lempicki
Nature Protocols 4, 44 - 57 (2009)

GSEA < www.broadinstitute.org/gsea >

Download GSEA desktop application



Excellent tutorial, user's guide and example datasets to work through

Overlapping functional sets

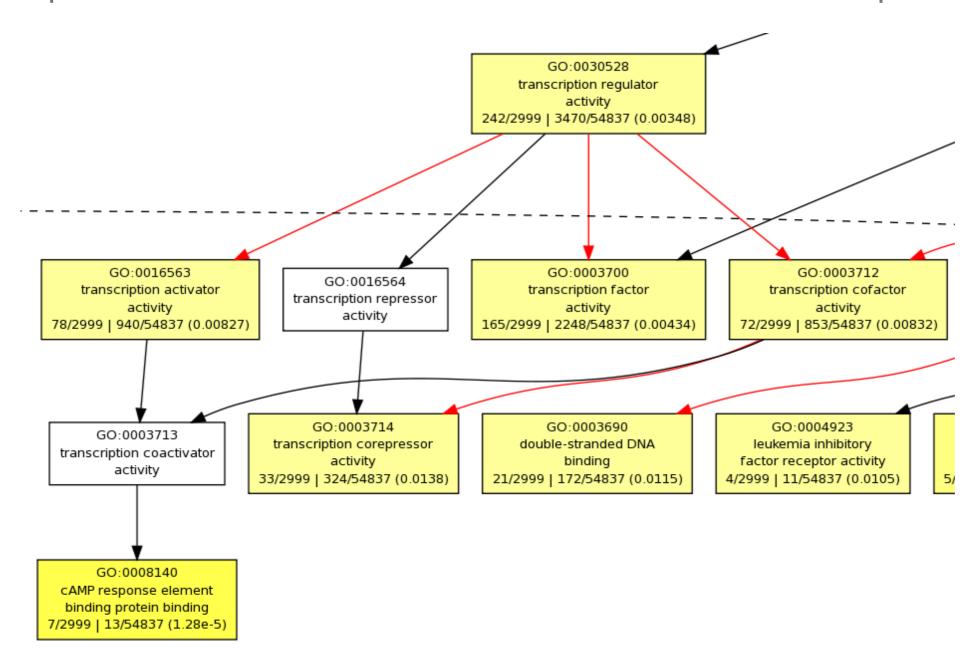
 Many functional sets overlap, in particular those from databases that are hierarchical in nature (e.g. GO)

- Hierarchy enables:
 - Annotation flexibility (e.g. allow different degrees of annotation completeness based on what is known)
 - Computational methods to "understand" function relationships (e.g. ATPase function is a subset of enzyme function)

Unfortunately, this also makes functional profiling trickier

GOEast < omicslab.genetics.ac.cn/GOEAST >

Graphical view of enriched GO terms and their relationships

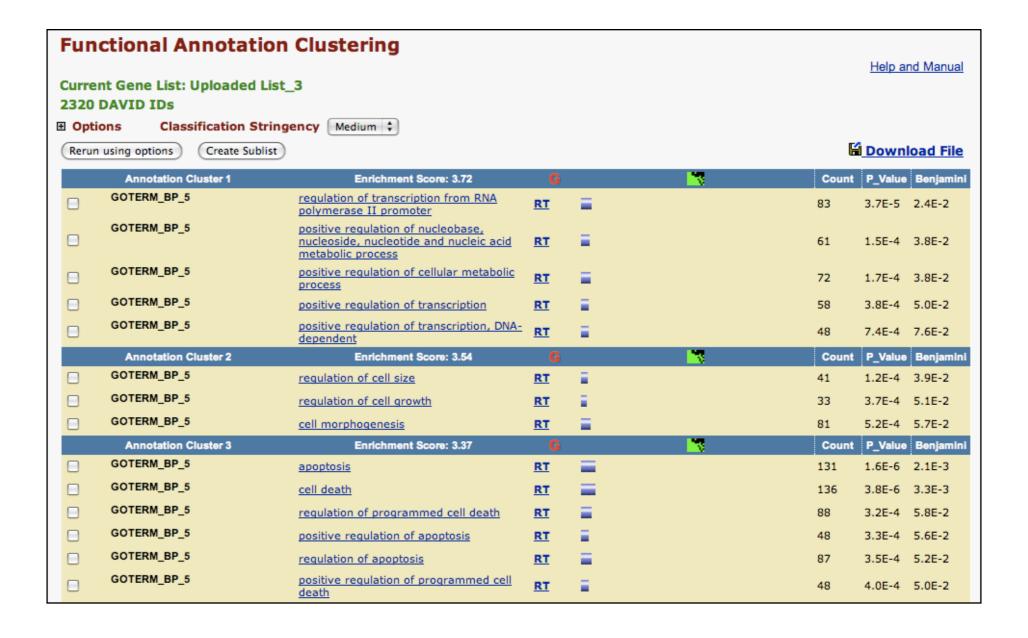


GO SLIMs

- Cut-down versions of the GO ontologies containing a subset of the terms in the whole GO
- GO FAT (DAVID):
 - filters out very broad GO terms based on a measured specificity of each term

DAVID Functional Annotation Clustering

Based on shared genes between functional sets



Want more?

- GeneGO < portal.genego.com >
 - MD/PhD curated annotations, great for certain domains (eg, Cystic Fibrosis)
 - Nice network analysis tools
 - Email us for access
- Oncomine < <u>www.oncomine.org</u> >
 - Extensive cancer related expression datasets
 - Nice concept analysis tools
 - Research edition is free for academics, Premium edition \$\$\$
- Lots and lots other R/Bioconductor packages in this area!!!

Hands-on time!

https://bioboot.github.io/bggn213_S18/lectures/#15

Also: R Quiz Online

Data structure: counts + metadata

<u>countData</u>

gene	ctrl_1	ctrl_2	exp_1	exp_1
geneA	10	11	56	45
geneB	0	0	128	54
geneC	42	41	59	41
geneD	103	122	1	23
geneE	10	23	14	56
geneF	0	1	2	0

<u>colData</u>

id	treatment	sex	
ctrl_1	control	male	
ctrl_2	control	female	
exp_1	treatment	male	
exp_2	treatment	female	

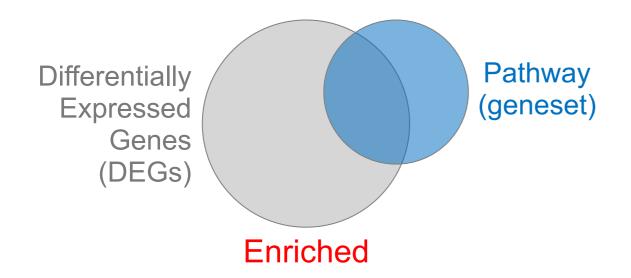
Sample names:

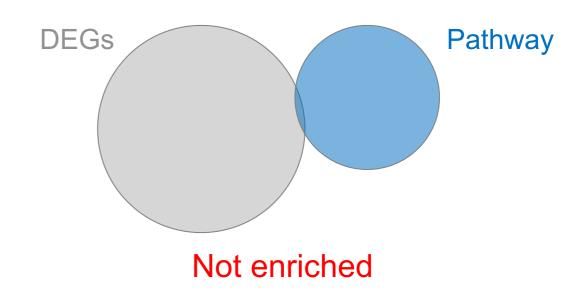
countData is the count matrix (number of reads coming from each gene for each sample) **colData** describes metadata about the *columns* of countData

First column of colData must match column names of countData (-1st)

Pathway analysis (a.k.a. geneset enrichment)

Principle



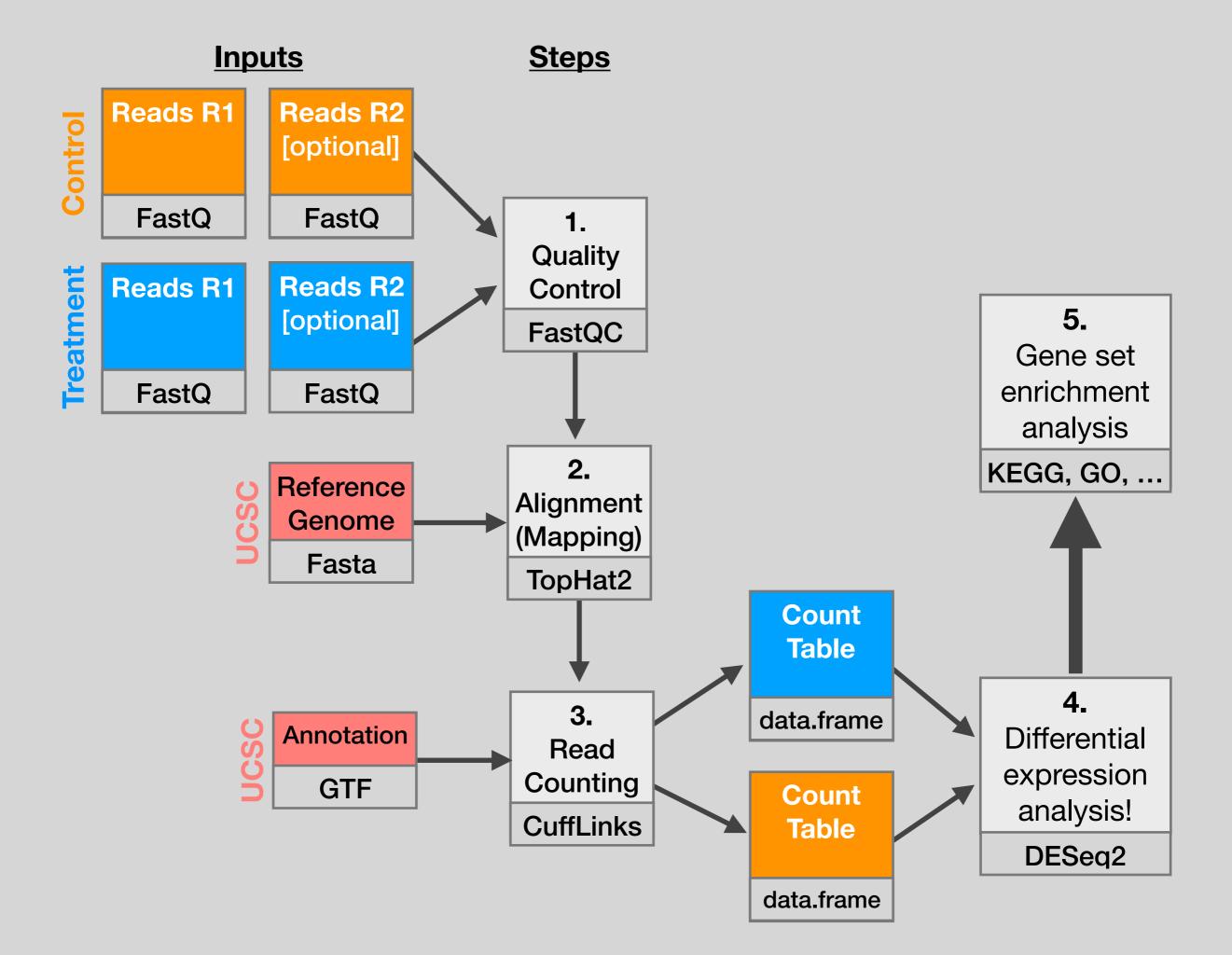


- Variations of the math: overlap, ranking, networks... > Not critical, different algorithms show similar performances
- DEGs come from your experiment
 ➤ Critical, needs to be as clean as possible
- Pathway genes ("geneset") come from annotations > Important, but typically not a competitive advantage

Pathway analysis (a.k.a. geneset enrichment)

Limitations

- Geneset annotation bias: can only discover what is already known
- Post-transcriptional regulation is neglected
- Tissue-specific variations of pathways are not annotated
 - e.g. NF-κB regulates metabolism, not inflammation, in adipocytes
- Size bias: stats are influenced by the size of the pathway
- · Non-model organisms: no high-quality genesets available
- Many pathways/receptors converge to few regulators
 - e.g. Tens of innate immune receptors activate four TFs: NF-kB, AP-1, IRF3/7, NFAT



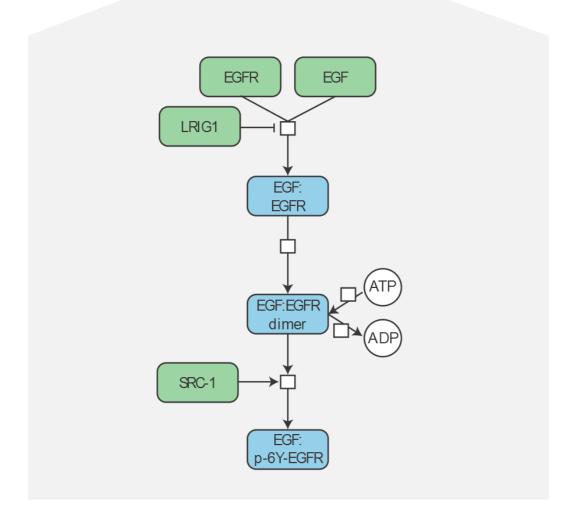
Pathways vs Networks

EGFR-centered Pathway

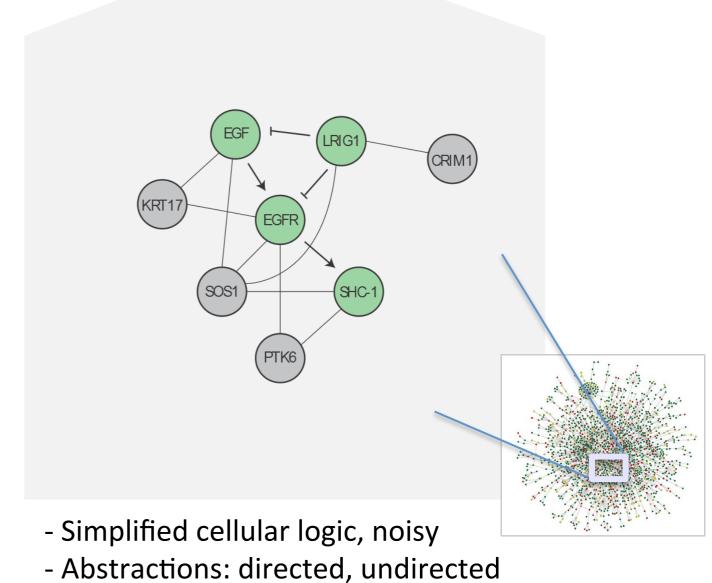
EGFR-centered Network

- Large-scale, genome-wide

- Constructed from *omics* data integration



- Detailed, high-confidence consensus
- Biochemical reactions
- Small-scale, fewer genes
- Concentrated from decades of literature



Goal

1 Enrichment of fixed gene sets

Identification of pre-built pathways or networks that are enriched in a set of mutated or differentially expressed genes

De novo sub-network construction and clustering

Construction of specific sub-networks from the set of mutated or differentially expressed genes to identify an extended list of putative cancer genes

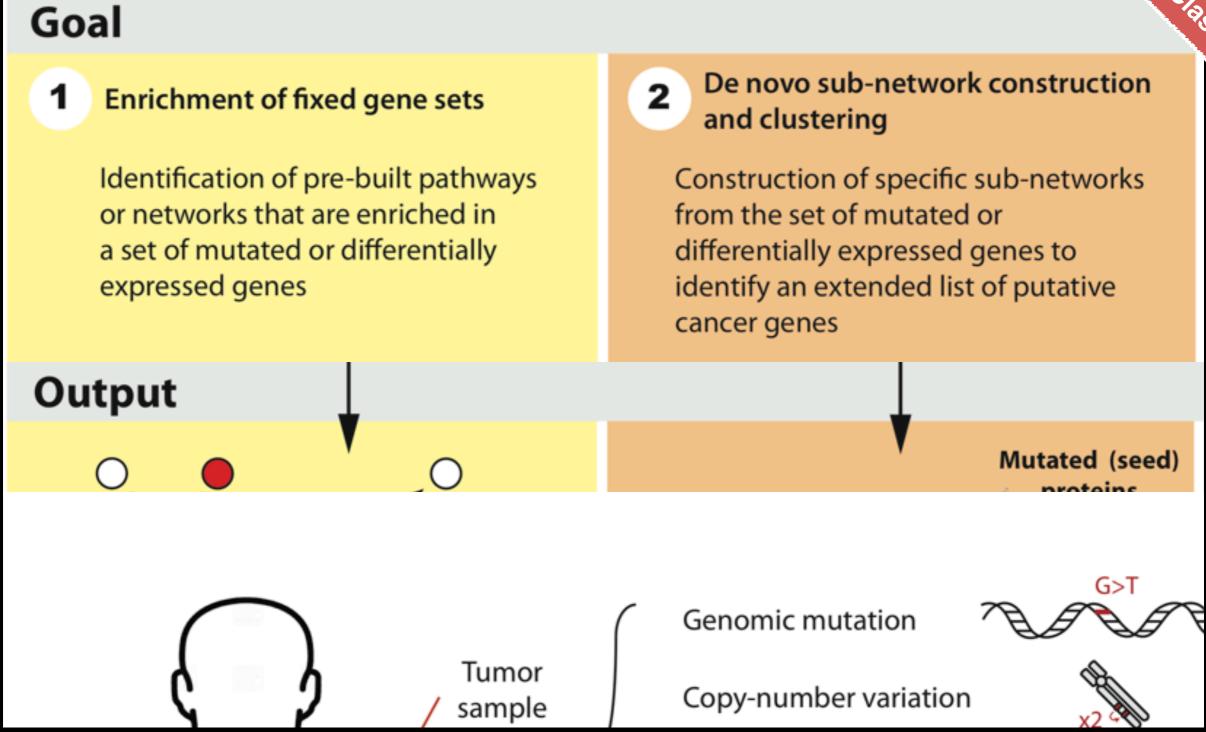
Output

Mutated (seed)

Tumor / sample

Genomic mutation

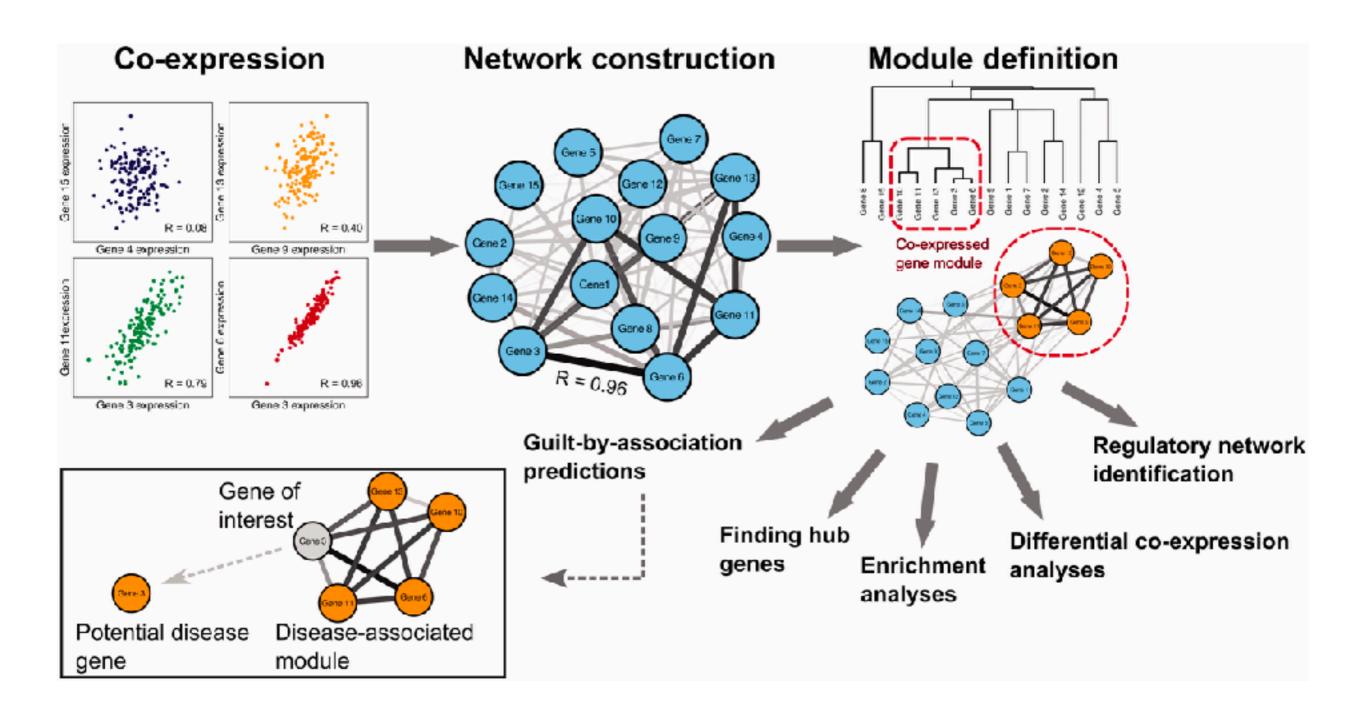
Copy-number variation



What biological process is altered in this cancer?

Are NEW pathways altered in this cancer? Are there clinically relevant tumor subtypes?

Network analysis approaches



R Quiz time!

https://bioboot.github.io/bggn213_S18/lectures/#15

Also: R Quiz Online