

Recap From Last Time:

- Bioinformatics is computer aided biology.
 - Deals with the collection, archiving, organization, and interpretation of a wide range of biological data.
- There are a large number of bioinformatics databases (see <u>handout</u>!).
- The NCBI and EBI are major online bioinformatics service providers.
- Introduced via **hands-on session** the BLAST, Entrez, GENE, OMIM, UniProt, Muscle and PDB bioinformatics tools and databases.
 - Muddy point assessment (see <u>results</u>)
- Also covered: Course structure; Supporting course website, Ethics code, and Introductions...

Today's Menu

Classifying Databases	Primary, secondary and composite Bioinformatics databases
Using Databases	Vignette demonstrating how major Bioinformatics databases intersect
Major Biomolecular Formats	How nucleotide and protein sequence and structure data are represented
Alignment Foundations	Introducing the <i>why</i> and <i>how</i> of comparing sequences
Alignment Algorithms	Hands-on exploration of alignment algorithms and applications

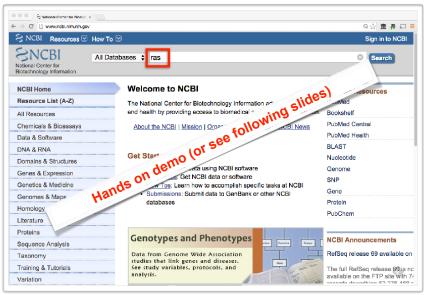
Primary, secondary & composite databases

Bioinformatics databases can be usefully classified into *primary*, *secondary* and *composite* according to their data source.

- Primary databases (or <u>archival databases</u>) consist of data derived experimentally.
 - GenBank: NCBI's primary nucleotide sequence database.
 - PDB: Protein X-ray crystal and NMR structures.
- Secondary databases (or <u>derived databases</u>) contain information derived from a primary database.
 - RefSeq: non redundant set of curated reference sequences primarily from GenBank
 - PFAM: protein sequence families primarily from UniProt and PDB
- Composite databases (or *metadatabases*) join a variety of different primary and secondary database sources.
 - · OMIM: catalog of human genes, genetic disorders and related literature
 - **GENE**: molecular data and literature related to genes with extensive links to other databases.

DATABASE VIGNETTE

You have just come out a seminar about gastric cancer and one of your co-workers asks:

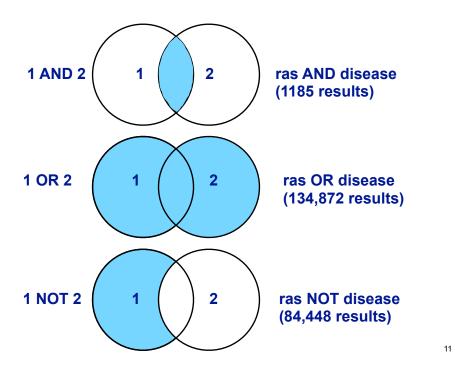

"What do you know about that 'Kras' gene the speaker kept taking about?"

You have some recollection about hearing of 'Ras' before. How would you find out more?

- Google?
- Library?
- Bioinformatics databases at NCBI and EBI!

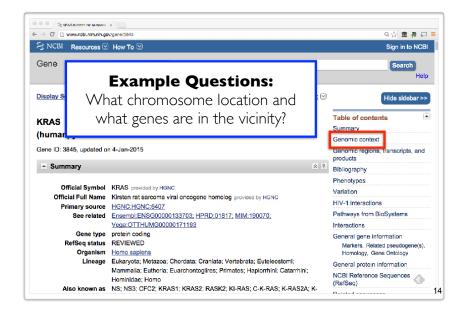
http://www.ncbi.nlm.nih.gov/

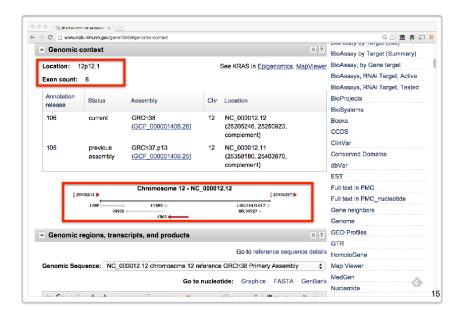
http://www.ncbi.nlm.nih.gov/

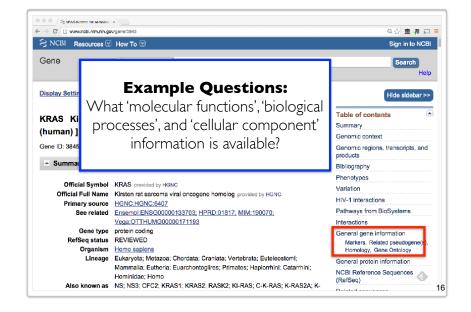

Example Vignette Questions:

- What chromosome location and what genes are in the vicinity of a given query gene? NCBI GENE
- What can you find out about molecular functions, biological processes, and prominent cellular locations? EBI GO
- What amino acid positions in the protein are responsible for ligand binding? EBI UniProt
- What variants of this gene are associated with gastric cancer and other human diseases? NCBI OMIN
- What is known about the protein family, its species distribution, number in humans and residue-wise conservation?
- Are high resolution protein structures available to examine the details of these mutations? How might we explain their potential molecular effects? RCSB PDB

	Resources 🗹				역 🏠 🏛 🗿 🖵
Search N	NCBI datal	bases			Help
ras				0	Search
About 2,9	178,774 sea	rch results for "ras"			
Literature	•		Genes		
Books MeSH	1,677 402	books and reports ontology used for PubMed indexing	EST	3,985	expressed sequence tag sequences
NLM Catalog	223	books, journals and more in the NLM Collections	Gene	87,165	collected information about gene loci
PubMed	54,672	scientific & medical abstracts/citations	GEO DataSets	3,732	functional genomics studies
PubMed Central	96,114	full-text journal articles	GEO Profiles	1,622,789	gene expression and molecular abundance profiles
Health			HomoloGene	696	homologous gene sets for selected organisms
ClinVar	759	human variations of clinical	PopSet	2,254	sequence sets from phylogenetic and population studies
dbGaP	120	significance genotype/phenotype interaction studies	UniGene	4,770	clusters of expressed transcripts
		studies	Proteins		

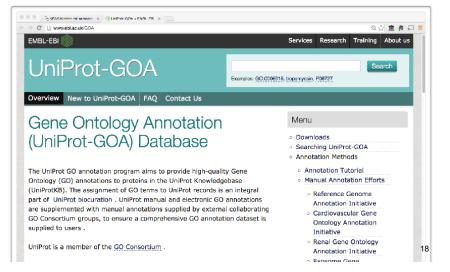

 C U www.ncbl.nlm 	.nih.gov/gene/?term-ras				옥상 🏛 🕫 🎞
S NCBI Resourc	es 🗹 How To 🗹				Sign in to NCBI
Gene	Gene	t ras			Search
		Save search	h Advanced		Help
Show additional	Display Settings	: 🕑 Tabular, 20 pe	er page, Sorted by Relevanc	e <u>Send to:</u> 🕑	Hide sidebar >> Filters: Manage Filters
<u>Clear all</u> Gene sources		i ras as a gene sy or <u>ras</u> as a symbol.			▼ Top Organisms [<u>Tree</u>] Homo sapiens (<i>1126</i>) Mus musculus (823)
Genomic Mitochondria Organelles Plasmids	Results: 1 to	20 of 85633		Next > Last >>	Rattus norvegicus (625) Oreochromis niloticus (533) Neolamprologus brichardi (507)
Plastids	Filters activat	ed: Current only. C	lear all to show 87165 items		All other taxa (82019) More
Categories Alternatively spliced	Name/Gene ID	Description	Location	Aliases	
	ID: 19412	resistance to audiogenic		asr	Find related data Database: Select
Annotated genes Non-coding Protein-coding		seizures [Mus musculus (bouse mouse)]			
Annotated genes Non-coding Protein-coding Pseudogene Sequence content CCDS Ensembl	□ <u>ras</u> ID: 43873		Chromosome X, NC_004354.4 (1074450210749097)	Dmel_CG1799, CG11485, CG1799.	Find items


S NCBI Resource	s 🖂 How To 🖂				Si	gn in to NCBI
Gene	Gene	¢ (ras) ANI	D "Homo sapiens"[porgn: .ii Advanced	:txid9606]	8	Search Help
Show additional Iters Clear all			er page, Sorted by Relevant		Filters: Manage Filter	le sidebar >> <u>'S</u>
Gene sources	-		Clear all to show 1499 items.		Find related data Database:	
Genomic	Name/Gene ID	Description	Location	Aliases	Select	\$]
Categories Alternatively spliced Annotated genes Non-coding Protein-coding Pseudogene Sequence	NRAS ID: 4893	neuroblastoma RAS viral (v- ras) oncogene homolog [<i>Homo</i> sapiens (human)]	Chromosome 1, NC_000001.11 (114704464114716894, complement)	RP5- 1000E10.2, ALPS4, CMNS, N-ras, NCMS1, NS6, NRAS	Find items Search details ras[All Fields] sapiens"[porgn] alive[property]	
CCDS Ensembl RefSeq Status dear	E <u>KRAS</u> ID: 3845	Kirsten rat sarcoma viral oncogene homolog (Homo sapiens (human)]	Chromosome 12, NC_000012.12 (2520524625250923, complement)	C-K-RAS, CFC2, K- RAS2A, K- RAS2B, K- RAS4A, K- RAS4B, KI- RAS1.	Search Recent activity	See more.



+ → C Li www.ncbi.nim	as 🖂 How To 🖂				의 🏠 🏛 🧖 🗔 Sign in to NCBi
Gene	Gene	t (ras) ANI Save sean	D "Homo sapiens"[porgn ch Advanced	:txid9606]	Search Help
Show additional lers Clear all Gene sources	Results: 1 to	20 of 1126 🤜	er page, Sorted by Relevan First < Prev Page 1 of 5 Clear all to show 1499 items.	57 Next > Last >>	Filters: Manage Filters Find related data Database:
Genomic	Name/Gene ID	Description	Location	Aliases	Select \$
Categories Alternatively spliced Annotated genes Non-coding Protein-coding Pseudogene Sequence	NRAS ID: 4893	neuroblastoma RAS viral (v- ras) oncogene homolog [<i>Homo</i> <i>saplens</i> (human)]	Chromosome 1, NC_000001.11 (114704464114716894, complement)	RP5- 1000E10.2, ALPS4, CMNS, N-ras, NCMS1, NS6, NRAS	Find Heme Search details ras[All Fields] AND "Homo septens" (porgn] AND alive[property]
content CCDS Ensembl RefSeq Status dear Current only	KRAS ID: 3845	Kirsten rat sarcoma viral oncogene homolog [Homo sapiens	Chromosome 12, NC_000012.12 (2520524625250923, complement)	C-K-RAS, CFC2, K- RAS2A, K- RAS2B, K- RAS4A, K- RAS4A, K- RAS4B, KI-	Search See more.

→ C b www.ncbi.nlm.nih.go	a Bauer coulo		의 ☆ 🏛 🕫 🏧
🗟 NCBI 🛛 Resources 🗹	How To 🖂		Sign in to NCE
Gene	Gene 🛟		Search
	Advanced		Hel
Display Settings: 🕑 Full	Report	Send to: 🕑	Hide sidebar >=
	sarcoma viral oncogene homolog [<i>Homo</i>	sapiens	Table of contents
(human)]			Genomic context
Gene ID: 3845, updated o	1 4-Jan-2015		Genomic regions, transcripts, and products
 Summary 		☆ ?	A
		× 1	Bibliography
		× (1)	Bibliography Phenotypes
	KRAS provided by HGNC	× (1	Phenotypes
Official Symbol Official Full Name	Kirsten rat sarcoma viral oncogene homolog provided by HGNC	×Ir	Phenotypes Variation
Official Symbol Official Full Name Primary source	Kirsten rat sarcoma viral oncogene homolog provided by HGNC HGNC:HGNC:6407	× 1	Phenotypes Variation HIV-1 Interactions
Official Symbol Official Full Name Primary source	Kirsten rat sarcoma viral oncogene homolog provided by HGNC HGNC:HGNC:6407 Ensembl:ENSG00000133703; HPRD:01817; MIM:190070;	× 1.7	Phenotypes Variation HIV-1 Interactions Pathways from BioSystems
Official Symbol Official Full Name Primary source See related	Kirsten rat sarooma viral oncogene homolog provided by HGNC HGNC-HGNC:6407 Ensembl:ENse00020133703; HPRD:01817; MIM:190070; Voga:OTTHUMG00000171193	× (<u>r</u>	Phenotypes Variation HIV-1 Interactions
Official Symbol Official Full Name Primary source See related Gene type	Kirsten rat sarcoma viral oncogene homolog provided by HGNC <u>HGNC:HGNC:6407</u> Ensembl:ENSG00000133703; <u>HPRD:01817;</u> <u>MIM:190070;</u> <u>Veaa:0TTHUMG00000171193</u> protein coding	×	Phenotypes Variation HIV-1 Interactions Pathways from BioSystems Interactions General gene information
Official Symbol Official Full Name Primary source See related Gene type RefSeq status	Kirsten rat sarcoma viral oncogene homolog provided by HGNC HGNC:HGNC:5407 Ensembi:ENSG00000133703; HPRD:01817; MIM:190070; Vega:OTTHUM600000171193 protein coding REVIEWED	×	Phenotypes Variation HIV-1 Interactions Pathways from BioSystems Interactions General gene information Markers, Related pseudogene(s),
Official Symbol Official Full Name Primary source Bee related Gene type RefSeq status Organism	Kirsten rat sarooma viral oncogene homolog provided by HGNC HGNC-HGNC:6407 Ensembl:ENse00000133703; HPRD:01817; MIM:190070; Voga:OTTHUMG00000171193 protein coding REVIEWED Homo saplens		Phenotypes Variation HIV-1 Interactions Pathways from BioSystems Interactions General gene Information Markers, Related pseudogene(s), Homology, Gene Ontology
Official Symbol Official Full Name Primary source See related Gene type RefSeq status	Kirsten rat sarooma viral oncogene homolog provided by HGNC HGNC.HGNC:6407 Ensembi:ENSG00000133703; HPRD:01817; MIM:190070; Vega:OTTHUMG00000171193 protein coding REVIEWED Homo saplens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleos	tomi;	Phenotypes Variation HIV-1 Interactions Pathways from BioSystems Interactions General gene information Markers, Related pseudogene(s),
Official Symbol Official Full Name Primary source Bee related Gene type RefSeq status Organism	Kirsten rat sarooma viral oncogene homolog provided by HGNC HGNC-HGNC:6407 Ensembl:ENse00000133703; HPRD:01817; MIM:190070; Voga:OTTHUMG00000171193 protein coding REVIEWED Homo saplens	tomi;	Phenotypes Variation HIV-1 Interactions Pathways from BioSystems Interactions General gene Information Markers, Related pseudogene(s), Homology, Gene Ontology


● ● / ≥ KFA5 Kister of antonia is \	,			ର୍ଦ୍ଧ 🏛 🗿 🌄
Gene Ontology Provided by GOA				1
Function		Evidence Code	Pubs	
GDP binding		IEA		
GMP binding		IEA		
GTP binding		IEA		
LRR domain binding		IEA		
protein binding		IPI	PubMed	
protein complex binding		IDA	PubMed	
	Items 1 - 25 of 33 <	Prev Page 1 of	2 Next >	
Process		Evidence Code	Pubs	
Ec-epsilon receptor signaling pathway		TAS		
GTP catabolic process		IEA		
MAPK cascade		TAS		
Ras protein signal transduction		TAS		
actin cytoskeleton organization		IEA		
activation of MAPKK activity		TAS		
axon guidance		TAS		V 🔿
blood coagulation		TAS		

Why do we need Ontologies?

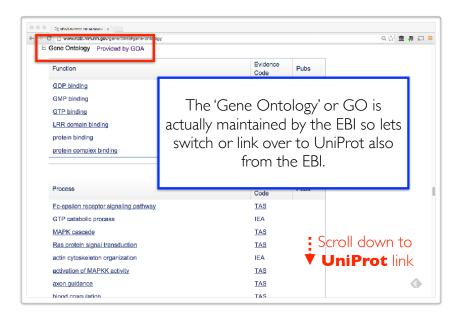
- Annotation is essential for capturing the understanding and knowledge associated with a sequence or other molecular entity
- Annotation is traditionally recorded as "free text", which is easy to read by humans, but has a number of disadvantages, including:
 - Difficult for computers to parse
 - Quality varies from database to database
 - Terminology used varies from annotator to annotator
- Ontologies are annotations using standard vocabularies that try to address these issues
- GO is integrated with UniProt and many other databases including a number at NCBI

GO: Gene Ontology

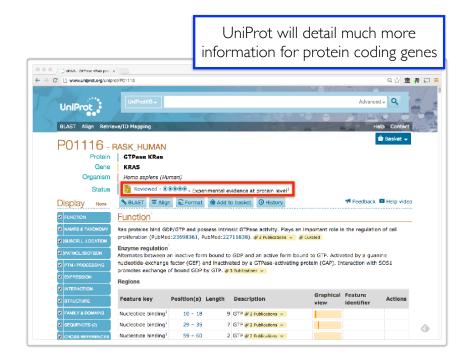
GO provides a controlled vocabulary of terms for describing gene product characteristics and gene product annotation data

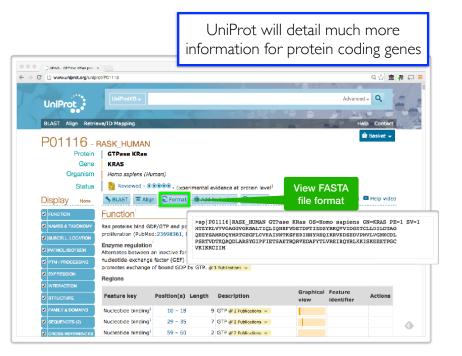
GO Ontologies

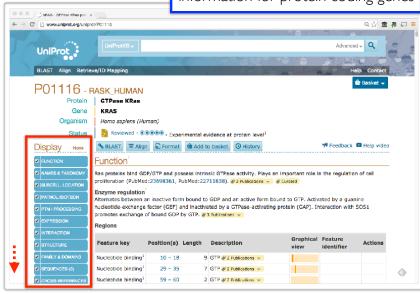
- There are three ontologies in GO:
 - Biological Process

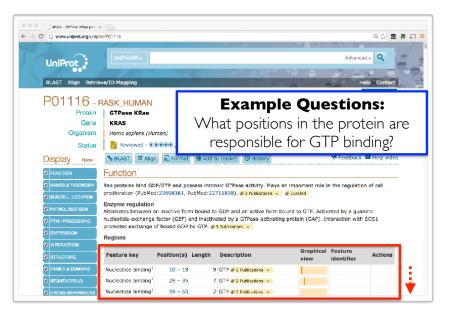

A commonly recognized series of events e.g. cell division, mitosis,

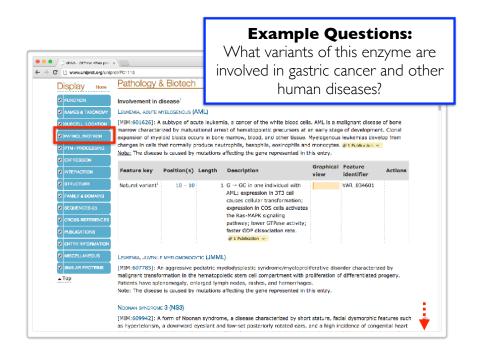
- Molecular <u>Function</u>
 An elemental activity, task or job
 e.g. kinase activity, insulin binding
- Cellular <u>Component</u>
 Where a gene product is located
 e.g. mitochondrion, mitochondrial
 membrane

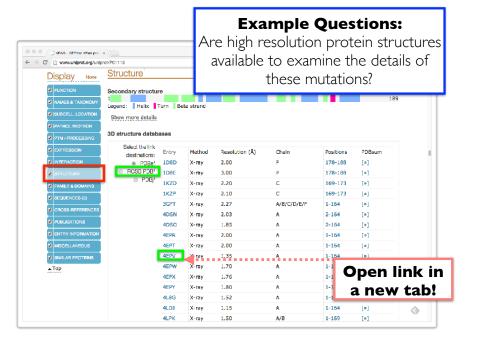


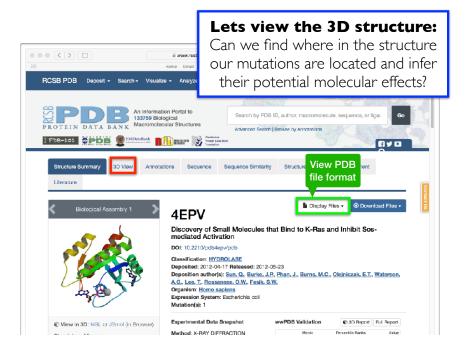


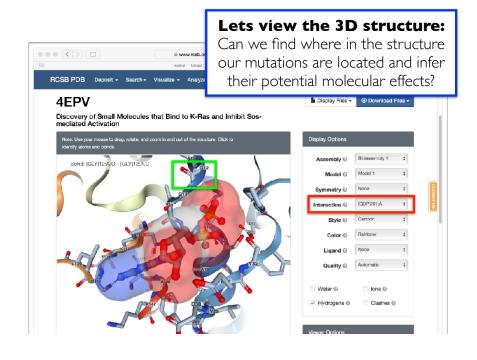


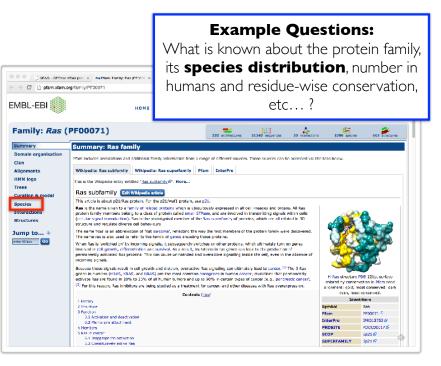

 ✓ / S KTAS Kintee of a resolution ✓ C L www.ncbl.nlm.nlm. 			rot will detail n ion for protein such as this o	coding gene
genomic XI	D1669.1 Item	s 1 - 25 of 43 < Prev P	CAA25828.1 age 1 of 2 Next >	
Protein Accession	Links			
Protein Accession	GenPept Link	UniProtKB Link		Scroll down t
P01116.1	GenPept	UniProtKB/Swiss-Pro	ot:P01116	Very bottom
 Additional links 			ŝ ? Š	UniProt li
Additional links You are here: NCBI > Genese	s & Expression > Gene			Write to the Help Desi
You are here: NCBI > Genes GETTING STARTED	RESOURCES	POPULAR	FEATURED	Write to the Help Desi
You are here: NCBI > Gener GETTING STARTED NCBI Education	RESOURCES Chemicals & Bloassays	PubMed	FEATURED Genetic Testing Registry	Write to the Help Desi NCBI INFORMATION About NCBI
You are here: NCBI > Gener GETTING STARTED NCBI Education NCBI Help Manual	RESOURCES Chemicals & Bioassays Data & Software	PubMed Bookshelf	FEATURED Genetic Testing Registry PubMed Health	Write to the Help Des NCBI INFORMATION About NCBI Research at NCBI
You are here: NCBI > Gener GETTING STARTED NCBI Education NCBI Help Manuel NCBI Hendbook	RESOURCES Chemicals & Bloassays	PubMed	FEATURED Genetic Testing Registry Publice Health CerrBank	Write to the Help Desi NCBI INFORMATION About NCBI
You are here: NCBI > Gener GETTING STARTED NCBI Education NCBI Help Manual	RESOURCES Chemicals & Bioassays Data & Software DNA & RNA	PubMed Bookshelf PubMed Central	FEATURED Genetic Testing Registry PubMed Health	Write to the Help Desi NCBI INFORMATION About NCBI Research at NCBI NCBI Newa
You are here: NCBI > Gener GETTING STARTED NCBI Education NCBI Help Manuel NCBI Hendbook	RESOURCES Chemicals & Bioassays Data & Software DNA & RNA Domains & Structures	PubMed Bookshelf PubMed Central PubMed Health	FEATURED Genetic Testing Registry PubMed Health GenBunk Reference Sequences	Write to the Help Desi NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI FTP Ske
You are here: NCBI > Gener GETTING STARTED NCBI Education NCBI Help Manuel NCBI Hendbook	RESOURCES Chemicals & Bloassays Data & Software DNA & RNA Domains & Structures Genes & Expression	PubMed Bockshelf PubMed Central PubMed Health BLAST	FEATURED Genetic Testing Registry PubMed Health GenBank Reference Sequences Gene Expression Omnibus	Write to the Help Des NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI of TP Sits NCBI of Resebook
You are here: NCBI > Gener GETTING STARTED NCBI Education NCBI Help Manuel NCBI Hendbook	RESOURCES Chemicals & Bloassays Data & Software DNA & RNA Domains & Structures Genes & Expression Genetics & Medicine	PubMed Bookshelf PubMed Central PubMed Health BLAST Nucleotide	FEATURED Genetic Testing Registry Publiked Health GenBank Reference Sequences Gene Expression Omnibus Map Viewer	Write to the Help Desi NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI FTP Site NCBI on Twitter
You are here: NCBI > Gener GETTING STARTED NCBI Education NCBI Help Manuel NCBI Hendbook	RESOURCES Chemicals & Bloassays Data & Software DNA & RNA Domains & Structures Genes & Expression Genetics & Medicine Genomes & Maps	PubMed Bookshelf PubMed Central PubMed Health BLAST Nucleotide Genome	FEATURED Genetic Testing Registry PubMed Health GenBunk Reference Sequences Gene Expression Omnibus Map Viewer Human Genome	Write to the Help Desi NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI FTP Site NCBI on Twitter
You are here: NCBI > Gener GETTING STARTED NCBI Education NCBI Help Manuel NCBI Hendbook	RESOURCES Chemicais & Dioassays Data & Schtware DNA & RNA Domains & Structures Genes & Expression Genetics & Medicine Genomes & Maps Homology Literature Proteins	PubMed Bookshelf PubMed Central PubMed Health BLAST Nucleotide Genome SNP	FEATURED Genetic Testing Registry Publied Health GenBank Reference Sequences Gene Expression Omrilbus May Viewar Human Cencrate Mause Genome Influenza Virus Prime-BLAST	Write to the Help Desi NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI FTP Site NCBI on Twitter
You are here: NCBI > Gener GETTING STARTED NCBI Education NCBI Help Manuel NCBI Hendbook	RESOURCES Chemicals & Bloassays Data & Software DNA & RNA Domains & Structures Genes & Expression Genetics & Medicine Genomes & Maps Homology Literature	PubMed Bookshelf PubMed Central PubMed Health BLAST Nucleotide Genome SNP Gene	FEATURED Genetic Testing Registry PubMed Health CeriBank Reference Sequences Cere Expression Omritous Map Viewer Humen Cerome Mouce Genome Influenza Virus	Write to the Help Desi NCBI INFORMATION About NCBI Research at NCBI NCBI News NCBI FTP Site NCBI on Twitter

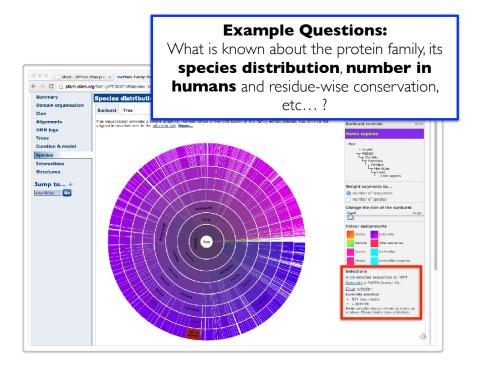


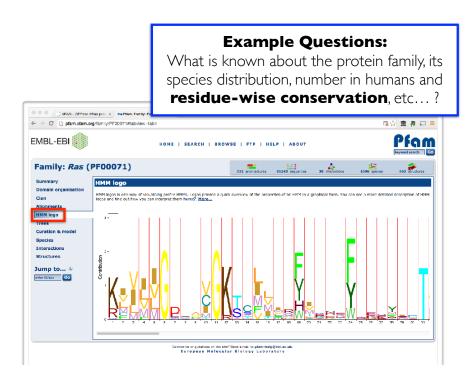


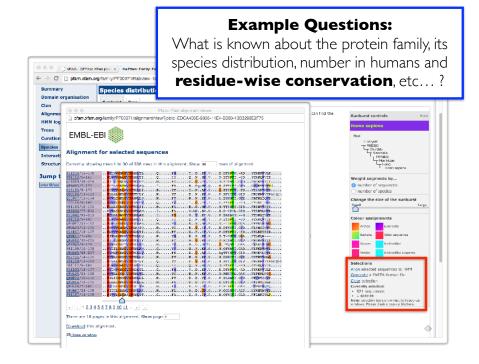

UniProt will detail much more information for protein coding genes



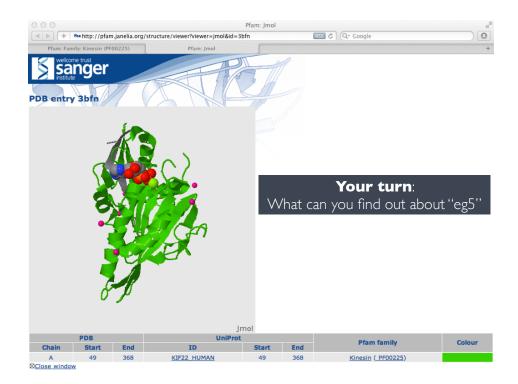








Back to UniProt: What is known about the protein family, · · · · / SKRAB - OTTASE KRAB prec - K its species distribution, number in humans ← → C^e Lⁱ www.uniprot.org/uniprot/P01116 OULIDDD and residue-wise conservation, etc...? Display None PhylomeDB¹ TreeFam¹ AMES & TAXON Family and domain databa Gene3D¹ 3.40.50.300, 1 hit InterPro¹ IPR027417, P-loop NTPase TPR005225, Small GTP-bd dom IPR001806. Small_GTPase. IPR020849. Small GTPase Ras [Graphical view] PANTHER¹ PTHR24070, PTHR24070, 1 h **PFAM** is one of the best Pfam¹ PF00071, Ras. 1 hlt. FAMILY & DOM [Graphical view] protein family databases PRINTS¹ PR00449. RASTRNSFRMNG. SMART¹ SM00173, RAS, 1 hit [Graphical view] SUPFAM¹ SSF52540, SSF52540, 1 hlt TIGREAMs¹ TIGR00231. small GTP. 1 hit. PROSITE¹ PS51421, RAS. 1 hit. [Graphical view] ▲Top Sequences (2) Sequence status¹: Complete. Sequence processing¹: The displayed sequence is further processed into a mature form This entry describes 2 isoforms i produced by alternative splicing. Ξ Align



Questions or comments: pfam@janelia.hhmi.org Howard Hughes Medical Institute

0.0					Family: Kir	nesin (PF00225)		
▶ + 6 http://p	fam.janelia.org/fan	nily/kinesin#	tabview=	tab9		RSS 🖒	Q. Google	9
IHMI anelia farn	n campus	номе	SEAR	сн	BROWS	E FTP HELP	ABOUT	Regword search Co
amily: <i>Kin</i>	e <i>sin</i> (PF	0022!	5)			126 architectures 4150 se	quences 6 interactions	248 species 114 structures
Summary	Structures							
Oomain Organisation Clans	systems from the	PDBe 🗗 grou	p, to allo	ow us to	map Pfam			រុះជ ^{្ជា} , PDB and Pfam coordinate sional protein structures. The
Alignments IMM logo	UniProt entry	UniProt residues	PDB ID	PDB chain ID	PDB residues	View		
rees uration & models	A8BKD1_GIALA	11 - 335	<u>2vvg</u>	A B	11 - 335 11 - 335	Jmol AstexViewer SPICE 대 Jmol AstexViewer SPICE 대		
pecies nteractions	CENPE HUMAN	12 - 329	<u>1t5c</u>	A B	12 - 329 12 - 329	Jmol AstexViewer SPICE 대 Jmol AstexViewer SPICE 대		
tructures			<u>1f9t</u>	Α	392 - 723	Jmol AstexViewer SPICE		
tructures			<u>1f9u</u>	Α	392 - 723	Jmol AstexViewer SPICE 대		
ump to a	KAR3 YEAST	392 - 723	<u>1f9v</u>	Α	392 - 723	Jmol AstexViewer SPICE		
ter ID/acc Go			<u>1f9w</u>	A B	392 - 723 392 - 723	Jmol AstexViewer SPICE 과 Jmol AstexViewer SPICE 과		
			<u>3kar</u>	A		Jmol AstexViewer SPICE		
		11 252	2-14	A	11 - 352	Jmol AstexViewer SPICE		
	KI13B HUMAN	11 - 352	<u>3gbj</u>	B	11 - 352 11 - 352	Jmol AstexViewer SPICE 라 Jmol AstexViewer SPICE 라		
				A	24 - 359	Jmol AstexViewer SPICE		
			<u>1ii6</u>	в	24 - 359	Jmol AstexViewer SPICE		
				A	24 - 359	Jmol AstexViewer SPICE		
			<u>1q0b</u>	в	24 - 359	Jmol AstexViewer SPICE		
			100	Α	24 - 359	Jmol AstexViewer SPICE		
			<u>1x88</u>	В	24 - 359	Jmol AstexViewer SPICE		
				Α	24 - 359	Jmol AstexViewer SPICE 과		

Today's Menu

Classifying Databases	Primary, secondary and composite Bioinformatics databases
Using Databases	Vignette demonstrating how major Bioinformatics databases intersect
Major Biomolecular Formats	How nucleotide and protein sequence and structure data are represented
Alignment Foundations	Introducing the <i>why</i> and <i>how</i> of comparing sequences
Alignment Algorithms	Hands-on exploration of alignment algorithms and applications

ALIGNMENT FOUNDATIONS

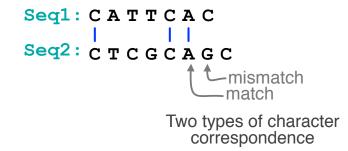
- Why...
 - Why compare biological sequences?
- What...
 - Alignment view of sequence changes during evolution (matches, mismatches and gaps)
- How...
 - Dot matrices
 - Dynamic programing
 - Global alignment
 - Local alignment
 - BLAST heuristic approach

ALIGNMENT FOUNDATIONS

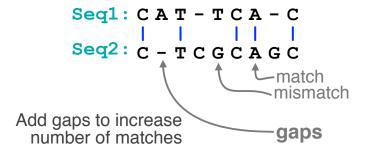
• Why...

Why compare biological sequences?

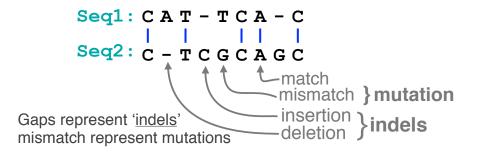
- What...
 - Alignment view of sequence changes during evolution (matches, mismatches and gaps)
- How...
 - Dot matrices
 - Dynamic programing
 - Global alignment
 - Local alignment
 - BLAST heuristic approach


Basic Idea: Display one sequence above another with spaces (termed **gaps**) inserted in both to reveal **similarity** of nucleotides or amino acids.

Seq1: CATTCAC


Seq2: CTCGCAGC

[Screencast Material]


Basic Idea: Display one sequence above another with spaces (termed **gaps**) inserted in both to reveal **similarity** of nucleotides or amino acids.

Basic Idea: Display one sequence above another with spaces (termed **gaps**) inserted in both to reveal **similarity** of nucleotides or amino acids.

Basic Idea: Display one sequence above another with spaces (termed gaps) inserted in both to reveal similarity of nucleotides or amino acids.

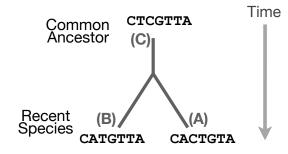
Practical applications include...

- Similarity searching of databases
 - Protein structure prediction, annotation, etc...
- Assembly of sequence reads into a longer construct such as a genomic sequence
- Mapping sequencing reads to a known genome
 - "Resequencing", looking for differences from reference genome - SNPs, indels (insertions or deletions)
 - Mapping transcription factor binding sites via ChIP-Seg (chromatin immuno-precipitation sequencing)
 - Pretty much all next-gen sequencing data analysis

Why compare biological sequences?

- To obtain **functional or mechanistic insight** about a sequence by inference from another potentially better characterized sequence
- To find whether two (or more) genes or proteins are evolutionarily related
- To find structurally or functionally similar regions within sequences (e.g. catalytic sites, binding sites for other molecules, etc.)
- Many practical bioinformatics applications...

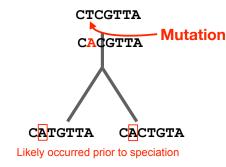
- Similarity searching of databases Protein structure prediction Assembly of sequere alignment is arguably the construct such ence alignment of bioinformatics! Mapping Sequence N.D. ranwise sequence any memora aryuavy most fundamental operation of bioinformatics! mg transcription factor binding sites via ChIP-Seq
 - chromatin immuno-precipitation sequencing)
 - Pretty much all next-gen sequencing data analysis


ALIGNMENT FOUNDATIONS

- Why...
 - · Why compare biological sequences?
- What...
 - Alignment view of sequence changes during evolution (matches, mismatches and gaps)
- How...
 - Dot matrices
 - Dynamic programing
 - Global alignment
 - Local alignment
 - BLAST heuristic approach

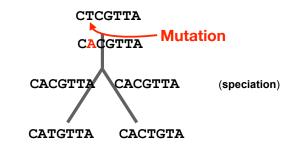
Sequence changes during evolution

There are three major types of sequence change that can occur during evolution.


- Mutations/Substitutions
- Deletions
- Insertions

Mutations, deletions and insertions

There are three major types of sequence change that can occur during evolution.


- Mutations/Substitutions $CTCGTTA \rightarrow CACGTTA$
- Deletions
- Insertions

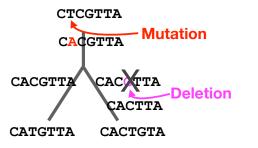
Mutations, deletions and insertions

There are three major types of sequence change that can occur during evolution.

- Mutations/Substitutions $CTCGTTA \rightarrow CACGTTA$
- Deletions
- Insertions

Mutations, deletions and insertions

There are three major types of sequence change that can occur during evolution.

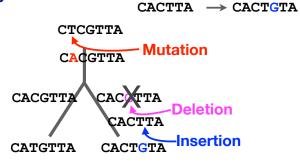

- Mutations/Substitutions

 $CTCGTTA \rightarrow CACGTTA$

– Deletions

 $CACGTTA \longrightarrow CACTTA$

- Insertions

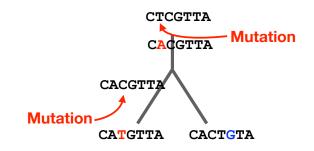


Mutations, deletions and insertions

There are three major types of sequence change that can occur during evolution.

- Mutations/Substitutions $CTCGTTA \rightarrow CACGTTA$
- Deletions
- Insertions

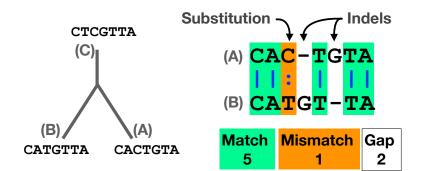
 $CACGTTA \rightarrow CACTTA$



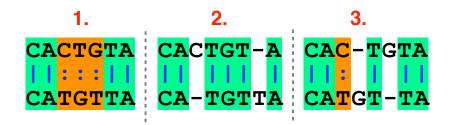
Mutations, deletions and insertions

There are three major types of sequence change that can occur during evolution.

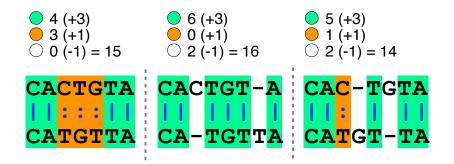
- Mutations/Substitutions $CTCGTTA \rightarrow CACGTTA$
 - $CACGTTA \longrightarrow CATGTTA$


DeletionsInsertions

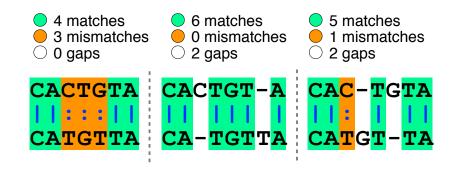
Alignment view


Alignments are great tools to visualize sequence similarity and evolutionary changes in homologous sequences.

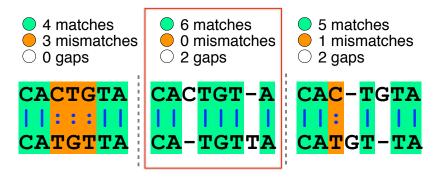
- Mismatches represent mutations/substitutions
- Gaps represent insertions and deletions (indels)


Alternative alignments

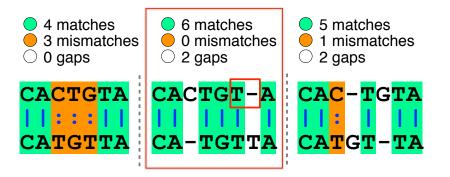
- Unfortunately, finding the correct alignment is difficult if we do not know the evolutionary history of the two sequences
 - Q. Which of these 3 possible alignments is best?


Scoring alignments

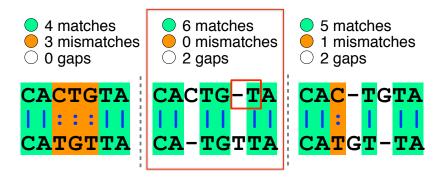
• We can assign a score for each match (+3), mismatch (+1) and indel (-1) to identify the **optimal alignment** for this scoring scheme


Alternative alignments

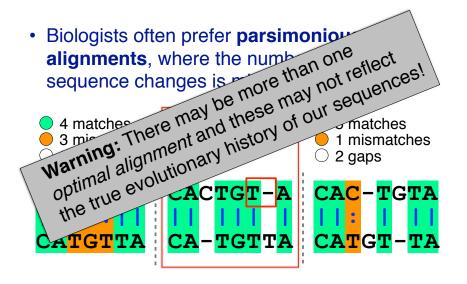
 One way to judge alignments is to compare their number of matches, insertions, deletions and mutations


Optimal alignments

 Biologists often prefer parsimonious alignments, where the number of postulated sequence changes is minimized.


Optimal alignments

• Biologists often prefer **parsimonious alignments**, where the number of postulated sequence changes is minimized.

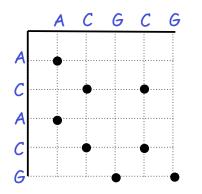


Optimal alignments

 Biologists often prefer parsimonious alignments, where the number of postulated sequence changes is minimized.

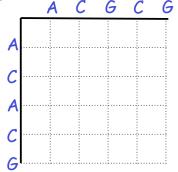
Optimal alignments

ALIGNMENT FOUNDATIONS

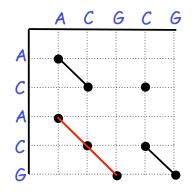

- Why...
 - · Why compare biological sequences?
- What...
 - Alignment view of sequence changes during evolution (matches, mismatches and gaps)
- How...
 - Dot matrices
 - Dynamic programing
 - Global alignment
 - Local alignment
 - BLAST heuristic approach

ALIGNMENT FOUNDATIONS

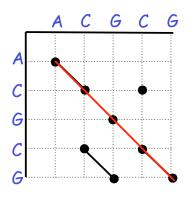
- Why...
 - Why compare biological sequences?
- What...
 - Alignment view of sequence changes during evolution (matches, mismatches and gaps)
- How...
 - Dot matrices
 - How do we compute the optimal alignment between two sequences?
 - BLAST REUNSIC APProach


Dot plots: simple graphical approach

Now simply put dots where the horizontal and vertical sequence values match

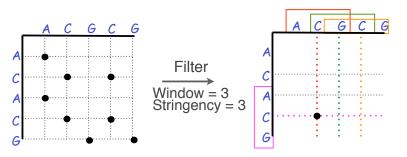

Dot plots: simple graphical approach

 Place one sequence on the vertical axis of a 2D grid (or matrix) and the other on the horizontal

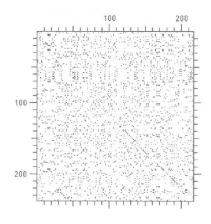

Dot plots: simple graphical approach

 Diagonal runs of dots indicate matched segments of sequence

Dot plots: simple graphical approach

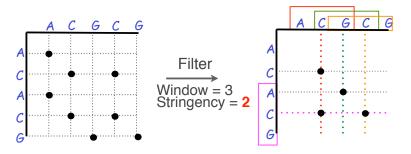

Q. What would the dot matrix of a two identical sequences look like?

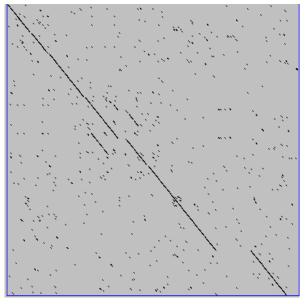
Dot plots: window size and match stringency


Solution: use a window and a threshold

- compare character by character within a window
- require certain fraction of matches within window in order to display it with a dot.
 - · You have to choose window size and stringency

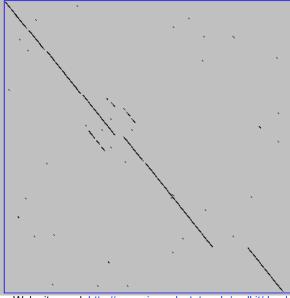
Dot plots: simple graphical approach


• Dot matrices for long sequences can be noisy


Dot plots: window size and match stringency

Solution: use a window and a threshold

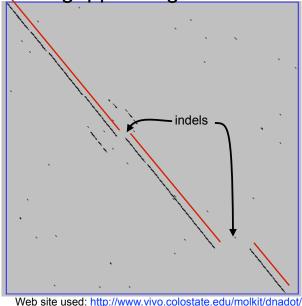
- compare character by character within a window
- require certain fraction of matches within window in order to display it with a dot.
 - You have to choose window size and stringency


Window size = 5 bases

A dot plot simply puts a dot where two sequences match. In this example, dots are placed in the plot if 5 bases in a row match perfectly. Requiring a 5 base perfect match is a heuristic - only look at regions that have a certain degree of identity.

Do you expect evolutionarily related sequences to have more word matches (matches in a row over a certain length) than random or unrelated sequences?

Window size = 7 bases

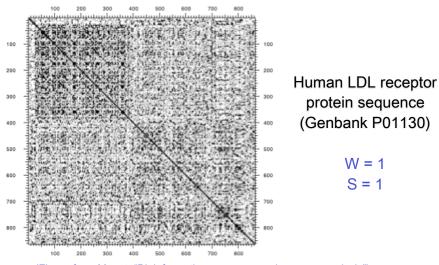

Web site used: http://www.vivo.colostate.edu/molkit/dnadot

This is a dot plot of the same sequence pair. Now 7 bases in a row must match for a dot to be place. Noise is reduced.

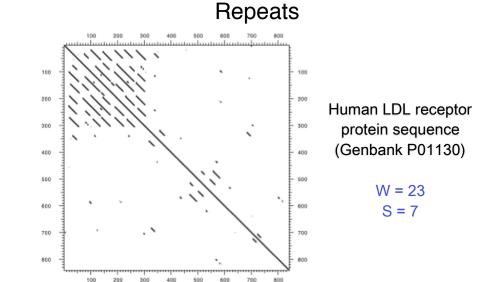
Using windows of a certain length is very similar to using words (kmers) of N characters in the heuristic alignment search tools

Bigger window (kmer) fewer matches to consider

Ungapped alignments


Only diagonals can be followed.

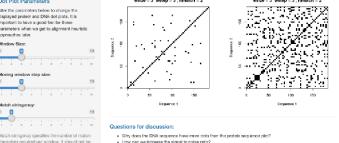
Downward or rightward paths represent insertion or deletions (gaps in one sequence or the other).


Uses for dot matrices

- Visually assessing the similarity of two protein or two nucleic acid sequences
- · Finding local repeat sequences within a larger sequence by comparing a sequence to itself
 - Repeats appear as a set of diagonal runs stacked vertically and/or horizontally

Repeats

(Figure from Mount, "Bioinformatics sequence and genome analysis")



Your Turn!

Exploration of dot plot parameters (hands-on worksheet Section 1) http://bio3d.ucsd.edu/dotplot/ https://bioboot.shinyapps.io/dotplot/

the set of the se

blood unschedu

How can we increase the signal to noise ratio?
 What does a 'Match stringency' larger than 'Window size' yield and why?

ALIGNMENT FOUNDATIONS

(Figure from Mount, "Bioinformatics sequence and genome analysis")

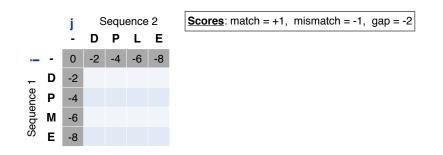
- Why...
 - · Why compare biological sequences?
- What...
 - Alignment view of sequence changes during evolution (matches, mismatches and gaps)
- How...
 - Dot matrices
 - Dynamic programing
 - Global alignment
 - Local alignment
 - BLAST heuristic approach

The Dynamic Programming Algorithm

- The dynamic programming algorithm can be thought of an extension to the dot plot approach
 - One sequence is placed down the side of a grid and another across the top
 - Instead of placing a dot in the grid, we compute a score for each position
 - Finding the optimal alignment corresponds to finding the path through the grid with the **best possible score**

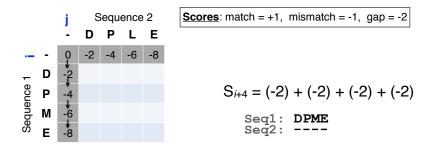
Needleman, S.B. & Wunsch, C.D. (1970) "A general method applicable to the search for similarities in the amino acid sequences of two proteins." J. Mol. Biol. 48:443-453.

Algorithm of Needleman and Wunsch

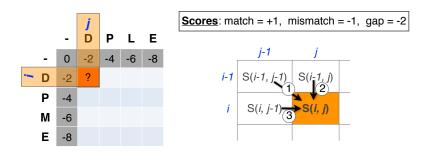

- The Needleman–Wunsch approach to global sequence alignment has three basic steps:
 - (1) setting up a 2D-grid (or alignment matrix),
 - (2) scoring the matrix, and
 - (3) identifying the optimal path through the matrix

		D	Ρ	L	Е			D	Ρ	L	Е					L	
	D						D	6	-1	-4	2		D	6	-1	-4	2
(1)	Ρ					(2)			7			(3)	Ρ	-1	7.	-3	-1
-	М						Μ	-3	-2	2	-2	-	Μ	-3	-2	2	-2
	Е						Е	-2	-1	-3	5		Е	-2	-1	-3	5

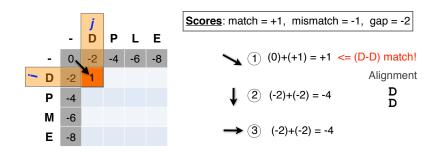
Needleman, S.B. & Wunsch, C.D. (1970) "A general method applicable to the search for similarities in the amino acid sequences of two proteins." J. Mol. Biol. 48:443-453.


Scoring the alignment matrix

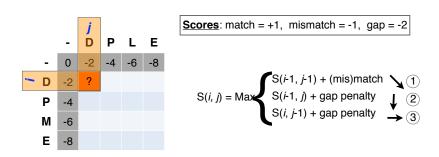
- Start by filling in the first row and column these are all indels (gaps).
 - Each step you take you will add the gap penalty to the score (S_{i,j}) accumulated in the previous cell


Scoring the alignment matrix

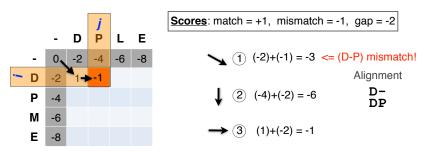
- Start by filling in the first row and column these are all indels (gaps).
 - Each step you take you will add the gap penalty to the score (S_{i,j}) accumulated in the previous cell


Scoring the alignment matrix

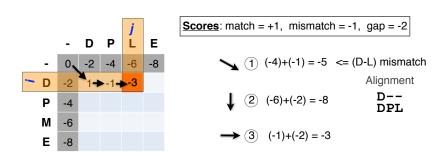
- Then go to the empty corner cell (upper left). It has filled in values in up, left and diagonal directions
 - Now can ask which of the three directions gives the highest score?
 - keep track of this score and direction


Scoring the alignment matrix

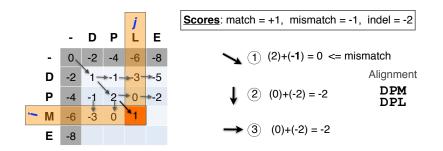
- Then go to the empty corner cell (upper left). It has filled in values in up, left and diagonal directions
 - Now can ask which direction gives the highest score
 - keep track of direction and score


Scoring the alignment matrix

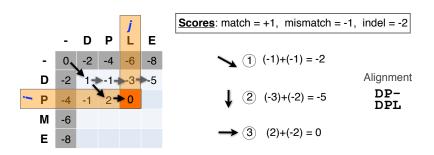
- Then go to the empty corner cell (upper left). It has filled in values in up, left and diagonal directions
 - Now can ask which of the three directions gives the highest score?
 - keep track of this score and direction


Scoring the alignment matrix

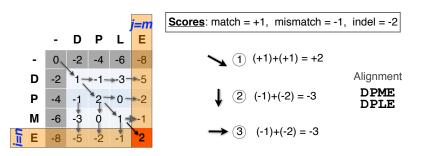
- At each step, the score in the current cell is determine by the scores in the neighboring cells
 - The maximal score and the direction that gave that score is stored (we will use these later to determine the optimal alignment)


Scoring the alignment matrix

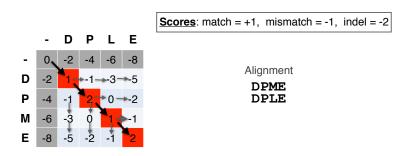
• We will continue to store the alignment score (S_{*i*,*j*}) for all possible alignments in the alignment matrix.


Scoring the alignment matrix

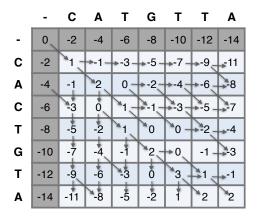
- At each step, the score in the current cell is determine by the scores in the neighboring cells
 - The maximal score and the direction that gave that score is stored


Scoring the alignment matrix

• For the highlighted cell, the corresponding score (S_{*i*,*j*}) refers to the score of the optimal alignment of the first *i* characters from sequence1, and the first *j* characters from sequence2.


Scoring the alignment matrix

- The score of the best alignment of the entire sequences corresponds to S_{n,m}
 - (where *n* and *m* are the length of the sequences)


Scoring the alignment matrix

- To find the best alignment, we retrace the arrows starting from the bottom right cell
 - N.B. The optimal alignment score and alignment are dependent on the chosen scoring system

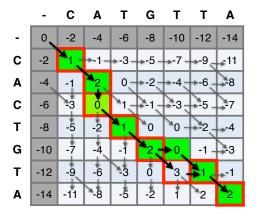
Questions:

• What is the optimal score for the alignment of these sequences and how do we find the optimal alignment?


Questions:

• What is the optimal score for the alignment of these sequences and how do we find the optimal alignment?

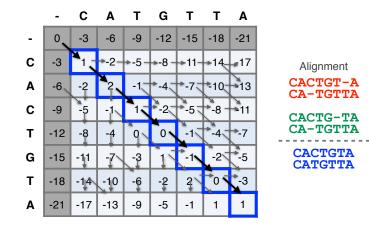
	-	С	Α	Т	G	Т	Т	Α
-	0	-2	-4	-6	-8	-10	-12	-14
С	-2	1 -	-1 -	⊳- 3–	→ -5 –	→- 7 –	→ -9	- 11
Α	-4	-1	2	0 -	→- 2-	→ -4 –	→ -6 -	-8
С	-6	-3	Ŏ	1-	-1-	-3-	-5 -	-7
т	-8	-5	-2	1	0	0 -	-2 -	⊸ -4
G	-10	-7	-4	-1	2 -	→ 0	-1 -	-3
т	-12	-9	-6	-3	Ŏ	3 -	→ 1 -	⊸ -1
Α	-14	-11	-8	-5	-2	ľ	2	2


Questions:

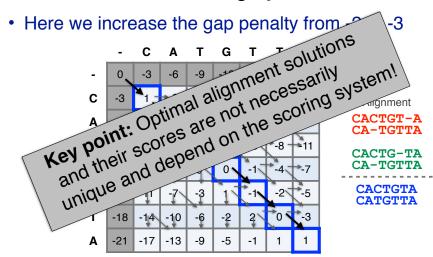
• To find the best alignment we retrace the arrows starting from the bottom right cell

More than one alignment possible

• Sometimes more than one alignment can result in the same optimal score

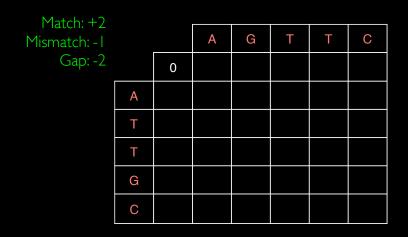


Alignment CACTGT-A CA-TGTTA CACTG-TA


CA-TGTTA

The alignment and score are dependent on the scoring system

• Here we increase the gap penalty from -2 to -3



The alignment and score are dependent on the scoring system

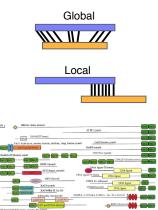
Your Turn!

Hands-on worksheet Sections 2 & 3

NW DYNAMIC PROGRAMMING

Match: +2 Mismatch: -1 Gap: -2

		A	G			C
	0	-2	-4	-6	-8	-10
Α	-2	+2 -	• 0 -	→ -2 -	→ -4 -	→ -6
т	-4	0	+1	+2 -	→ 0 -	→ -2
т	-6	-2	-1	+3	+4 -	→ +2
G	-8	-4	0	+1	+2	+3
С	-10	-6	-2	-1	0	+4

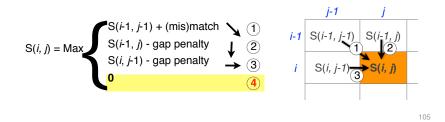

-

ALIGNMENT FOUNDATIONS

- Why...
 - · Why compare biological sequences?
- What...
 - Alignment view of sequence changes during evolution (matches, mismatches and gaps)
- How...
 - Dot matrices
 - Dynamic programing
 Global alignment
 - Local alignment
 - BLAST heuristic approach

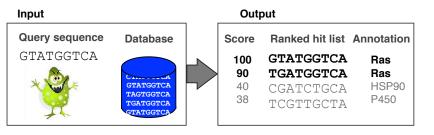
Global vs local alignments

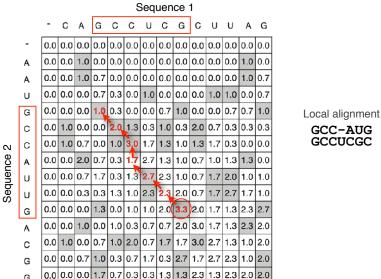
- Needleman-Wunsch is a **global** alignment algorithm
 - Resulting alignment spans the complete sequences end to end
 - This is appropriate for closely related sequences that are similar in length
- For many practical applications we require **local alignments**
 - Local alignments highlight subregions (*e.g.* protein domains) in the two sequences that align well


Local alignment: Definition

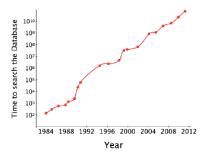
 Smith & Waterman proposed simply that a local alignment of two sequences allow arbitrary-length segments of each sequence to be aligned, with no penalty for the unaligned portions of the sequences.
 Otherwise, the score for a local alignment is calculated the same way as that for a global alignment

Smith, T.F. & Waterman, M.S. (1981) "Identification of common molecular subsequences." J. Mol. Biol. 147:195-197.


The Smith-Waterman algorithm

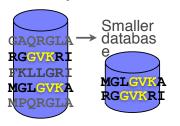

- Three main modifications to Needleman-Wunsch:
 - Allow a node to start at 0
 - The score for a particular cell cannot be negative
 - if all other score options produce a negative value, then a zero must be inserted in the cell
 - Record the highest- scoring node, and trace back from there

Local alignments can be used for database searching


- Goal: Given a guery sequence (Q) and a sequence database (D), find a list of sequences from D that are most similar to Q
 - Input: Q, D and scoring scheme
 - Output: Ranked list of hits

The database search problem

- Due to the rapid growth of sequence databases, search algorithms have to be both efficient and sensitive
 - Time to search with SW is proportional to $m \ge n$ (m is length of query. n is length of database), too slow for large databases!



To reduce search time heuristic algorithms, such as BLAST. first remove database sequences without a strong local similarity to the query sequence in a quick initial scan.

The database search problem

- Due to the rapid growth of sequence databases, search algorithms have to be both efficient and sensitive
 - Time to search with SW is proportional to $m \ge n$ (m is length of query, n is length of database), too slow for large databases!

Querv RGGVKRIKLMR

To reduce search time heuristic algorithms, such as BLAST, first remove database sequences without a strong local similarity to the query sequence in a quick initial scan.

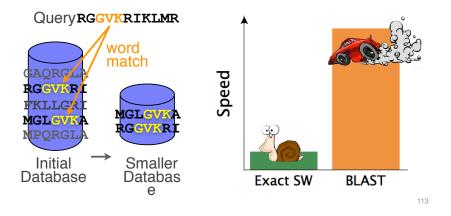
ALIGNMENT FOUNDATIONS

- Why...
 - Why compare biological sequences?
- What...
 - Alignment view of sequence changes during evolution (matches, mismatches and gaps)
- How...
 - Dot matrices
 - Dynamic programing
 - Global alignment
 - Local alignment

BLAST heuristic approach

Rapid, heuristic versions of Smith–Waterman[·] BLAST

- BLAST (Basic Local Alignment Search Tool) is a simplified form of Smith-Waterman (SW) alignment that is popular because it is fast and easily accessible
 - BLAST is a heuristic approximation to SW It examines only part of the search space
 - BLAST saves time by restricting the search by scanning database sequences for likely matches before performing more rigorous alignments
 - Sacrifices some sensitivity in exchange for speed
 - In contrast to SW, BLAST is not guaranteed to find optimal alignments


Rapid, heuristic versions of Smith–Waterman: BLAST

- "The central idea of the BLAST algorithm is to confine attention to servience nairs that contain an initial word nair match"
 - - matches before performing
- "The central idea of the BLAST algorithm is to confine atter to sequence pairs that contain an initial word pair match" ast to SW, BLAST is not guaranteed to find optimal anonments

109

nat

 BLAST uses this pre-screening heuristic approximation resulting in an an approach that is about 50 times faster than the Smith-Waterman

How BLAST works

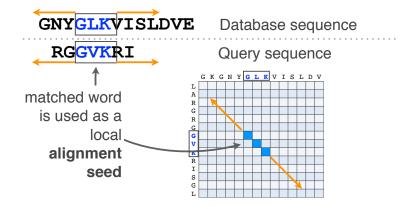
- Four basic phases
 - Phase 1: compile a list of query word pairs (w=3)

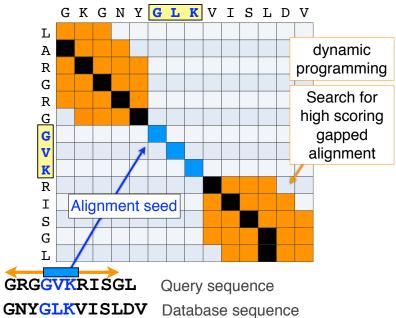
Blast

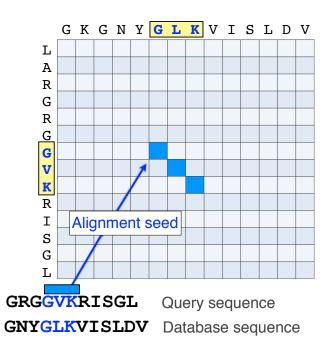
 Phase 2: expand word pairs to include those similar to query (defined as those above a similarity threshold to original word, i.e. match scores in substitution matrix)

RG	GVKRI Query sequence
RG	G RAG RIG RLG
	GGV GAV GTV GCV
extend list of	GVK GAK GIK GGK
words similar	VKR VRR VHR VER
to query	KRI KKI KHI KDI

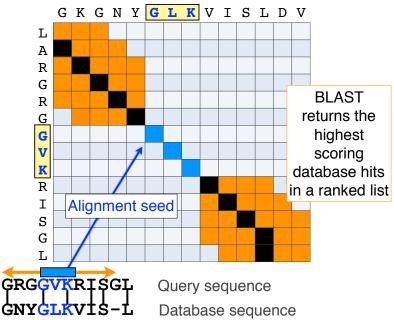
Blast


 Phase 3: a database is scanned to find sequence entries that match the compiled word list


GNY <mark>GLK</mark> VI	SLDVE	Database sequence
		Query sequence RIG RLG
search for perfect		AV GTV GCV GLK GIK GGK
matches in the	VKR	VRR VHR VER
database	KR	RI KKI KHI KDI
sequence		


114

Blast


 Phase 4: the initial database hits are extended in both directions using dynamic programing

118

117

BLAST output

• BLAST returns the highest scoring database hits in a ranked list along with details about the target sequence and alignment statistics

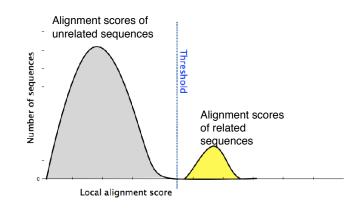
Description	Max score	Query cover	E value	Max ident	Accession
kinesin-1 heavy chain [Homo sapiens]	677	100%	0	100%	NP_004512.1
Kif5b protein [Mus musculus]	676	100%	0	98%	AAA20133.1
Kinesin-14 heavy chain [Danio rerio]	595	88%	0	78%	XP_00320703
hypothetical protein EGK_18589	48.2	40%	0.03	32%	ELK35081.1
mKIAA4102 protein [Mus musculus]	42.7	38%	3.02	24%	EHH28205.1

Statistical significance of results

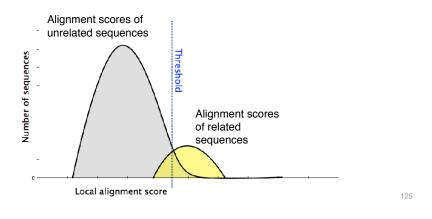
An important feature of BLAST is the computation of statistical significance for each hit. This is described by the **E value** (expect value)

Description	Max score	Query cover	E value	Max ident	Accession
kinesin-1 heavy chain [Homo sapiens]	677	100%	0	100%	NP_004512.1
Kif5b protein [Mus musculus]	676	100%	0	98%	AAA20133.1
Kinesin-14 heavy chain [Danio rerio]	595	88%	0	78%	XP_00320703
hypothetical protein EGK_18589	48.2	40%	0.03	32%	ELK35081.1
mKIAA4102 protein [Mus musculus]	42.7	38%	3.02	24%	EHH28205.1

122

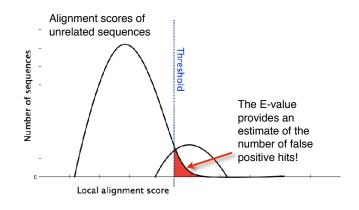

124

12


BLAST scores and E-values

- The **E value** is the **expected** number of hits that are as good or better than the observed local alignment score (with this score or better) if the query and database are **random** with respect to each other
 - i.e. the number of alignments expected to occur by chance with equivalent or better scores
- Typically, only hits with E value **below** a significance threshold are reported
 - This is equivalent to selecting alignments with score above a certain score threshold

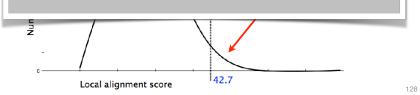
 Ideally, a threshold separates all query related sequences (yellow) from all unrelated sequences (gray)


- Unfortunately, often both score distributions overlap
 - The E value describes the expected number of hits with a score above the threshold if the query and database are unrelated

Description	Max score	Query cover	E value	Max ident	Accession
kinesin-1 heavy chain [Homo sapiens]	677	100%	0	100%	NP_004512.1
Kif5b protein [Mus musculus]	676	100%	0	98%	AAA20133.1
Kinesin-14 heavy chain [Danio rerio]	595	88%	0	78%	XP_00320703
hypothetical protein EGK_18589	42.7	40%	0.03	32%	ELK35081.1
Alignment scores of unrelated sequences		expe	re of 42.7 cted to oc 00 times	cur by	chance

127

- · Unfortunately, often both score distributions overlap
 - The E value describes the expected number of hits with a score above the threshold if the query and database are unrelated



Description	Max score	Total score	Query cover	E value	Max ident	Accession
kinesin-1 heavy chain [Homo	677	677	100%	0	100%	NP_004512.1
Kif5b protein [Mus musculus]	676	676	100%	0	98%	AAA20133.1

In general *E* values < 0.005 are usually significant.

To find out more about *E* values see: "*The Statistics of Sequence Similarity Scores*" available in the help section of the NCBI BLAST site:

126

Your Turn!

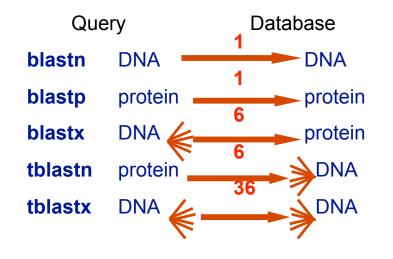

Hands-on worksheet Sections 4 & 5

- Please do answer the last lab review question (Q19).
- We encourage discussion and exploration!

Practical database searching with BLAST

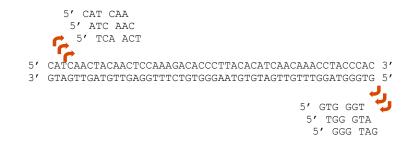
- There are four basic components to a traditional BLAST search
 - (1) Choose the sequence (query)
 - (2) Select the BLAST program
 - (3) Choose the database to search
 - (4) Choose optional parameters
- Then click "BLAST"

Practical database searching with BLAST



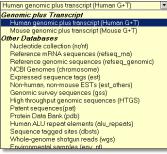
Step 1: Choose your sequence

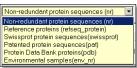
• Sequence can be input in FASTA format or as accession number



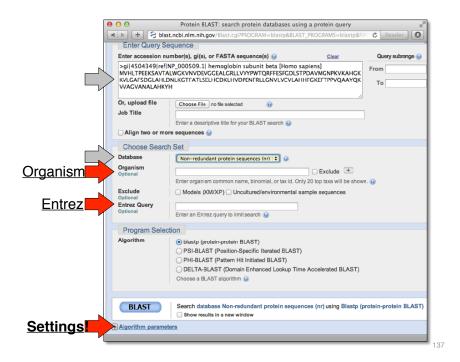
Step 2: Choose the BLAST program

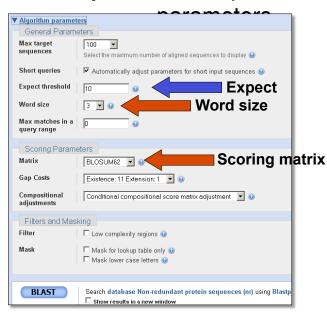
Protein BLAST: search protein databases using a protein query ▲ ► + S blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGRAMS=blastp&l 0 CR Enter Query Sequence Enter accession number(s), gi(s), or FASTA sequence(s) 😡 Query subrange 😡 Clear >gi|4504349|ref|NP_000509.1| hemoglobin subunit beta [Homo sapiens] MYHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTORFFESFGDLSTPDAVMGNPKVKAHGK Fron KVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQK То WAGVANALAHKYH Or, upload file Choose File no file selected 0 Job Title Enter a descriptive title for your BLAST search @ Alian two or more sequences 😡 Choose Search Set Database Non-redundant protein sequences (nr) 🗘 😡 Organism Exclude + Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown. 🛞 Exclude Models (XM/XP) Uncultured/environmental sample sequences Entrez Query Enter an Entrez query to limit search Program Selection Algorithm blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST) O PHI-BLAST (Pattern Hit Initiated BLAST) O DELTA-3LAST (Domain Enhanced Lookup Time Accelerated BLAST) Choose a BLAST algorithm 😡 Search database Non-redundant protein sequences (nr) using Blastp (protein-protein BLAST) BLAST Show results in a new window + Algorithm parameters


DNA potentially encodes six proteins


134

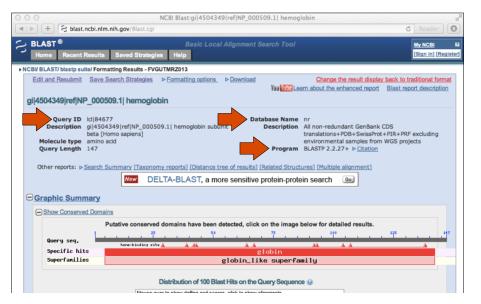
Step 3: Choose the database


nr = non-redundant (most general database) dbest = database of expressed sequence tags dbsts = database of sequence tag sites gss = genomic survey sequences


nucleotide databases

protein databases

Step 4a: Select optional search



Step 4: Optional parameters

- You can...
 - choose the organism to search
 - change the substitution matrix
 - change the expect (E) value
 - change the word size
 - change the output format

Results page

138

Further down the results page...

00		NCBI B	last:gi 4504	349 ref N	NP_000509.1	hemoglob	in				
<u>▶</u> + ₹	🗄 blast.ncbi.nlm.ni	h.gov/Blast.c	gi						C Reade		
		Distribu	tion of 100 Bl	ast Hits o	n the Query S	Sequence 🧕)				
	Mou	se-over to show	v defline and sco	res, click to	show alignment	ts					
		Color key for alignment scores									
		<40	40-50		50-80	80-200	>	=200			
	Query	1	1	1	1	1	1	1			
	1	20	40	60	80	100	120	140			

Further down the results page...

0 (NCBI Blast:gi 4504349 ref NP_000509.1	hemo	globin				H
4	+ S blast.ncbi.nlm.nih.gov/Blast.cgi					(Reader
Sec	uences producing significant alignments:						
	ect: <u>All None</u> Selected:0						
ÂÌ	Alignments 📳 Download 🖂 GenPept Graphics Distance tree of results Multiple a	lignme	<u>ent</u>		\checkmark		0
	Description	Max score	Total score	Query cover	E value	Max ident	Accession
	hemoglobin beta [synthetic construct]	301	301	100%	9e-103	100%	AAX37051.1
	hemoglobin beta [synthetic construct]	301	301	100%	1e-102	100%	AAX29557.1
	hemoglobin subunit beta [Homo sapiens] >ref[XP_508242.1] PREDICTED: hemoglobin s	301	301	100%	1e-102	100%	NP_000509.1
	RecName: Full=Hemoglobin subunit beta; AltName: Full=Beta-globin; AltName: Full=Hem	300	300	100%	4e-102	99%	P02024.2
	beta globin chain variant [Homo sapiens]	299	299	100%	5e-102	99%	AAN84548.1
	beta globin [Homo sapiens] >gb AAZ39781.1 beta globin [Homo sapiens] >gb AAZ39782	299	299	100%	5e-102	99%	AAZ39780.1
	beta-globin [Homo sapiens]	299	299	100%	5e-102	99%	ACU56984.1
	hemoglobin beta chain [Homo sapiens]	299	299	100%	6e-102	99%	AAD19696.1
	Chain B, Structure Of Haemoglobin In The Deoxy Quaternary State With Ligand Bound Ai	298	298	99%	9e-102	100%	1COH_B
	hemoglobin beta subunit variant [Homo sapiens] >gb AAA88054.1 beta-globin [Homo sa	298	298	100%	1e-101	99%	AAF00489.1
	Chain B, Human Hemoglobin D Los Angeles: Crystal Structure >pdb/2YRS/D Chain D, H	298	298	99%	2e-101	99%	2YRS_B
	Chain B, High-Resolution X-Ray Study Of Deoxy Recombinant Human Hemoglobins Syn	297	297	99%	3e-101	99%	1DXU_B
	Chain B, Analysis Of The Crystal Structure, Molecular Modeling And Infrared Spectroscop	297	297	99%	3e-101	99%	1HDB_B

Further down the results page...

000			NCBI Blast	t:gi 4504349 ref	NP_000509.1 her	noglobin	LE
∢ ►	+ 8	blast.ncbi.nlm.	nih.gov/Blast.cgi				C Reader
Down	nload 🗸	GenPept Grap	hics			▼ Nex	kt 🛦 Previous 🏠 Descriptions
Sequen	ce ID: [ubunit beta [He f NP_000509.1] e title(s)	omo sapiens] Length: 147 Numb	er of Matches: 1			
Range	1: 1 to : its(770 1 61 61 121	47 Graphic Graph Expect Metho 1e-102 Comp WHILTPEEKSAVTJ WHILTPEEKSAVTJ WKAHGKKVLGAFSI VKAHGKKVLGAFSI VKAHGKKVLGAFSI KEFTPPVQAAYQKX	od xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	GRLLVVYPWTQRFFI GRLLVVYPWTQRFFI GRLLVVYPWTQRFFI SELHCDKLHVDPENI SELHCDKLHVDPENI	V Next Match J Positives 100%) 147/147(10 SSFGDLSTPAVMGNPK SSFGDLSTPAVMGNPK SSFGDLSTPAVMGNPK FRLLGNVLVCVLAHHFG FRLLGNVLVCVLAHHFG	Previous Match Gaps 0%) 0/147(0%) 60 60 120 120	Related Information Gene - associated gene detail UniGene - clustered expresse sequence tags Map Viewer - aligned genomic context <u>Structure</u> - 3D structure displays <u>PubChem Bio</u> <u>Assay</u> - bioactivity screening
RecNa Sequent Range	ame: F ce ID: <u>s</u> 1: 1 to :	47 GenPept Grap Expect Metho	n subunit beta; Al <u>GORGO</u> Length: hics	147 Number of Ma Identities	tches: 1	E Full=Hemoglobin b	tt A Previous A Descriptions beta chain Related Information

Different output formats are available

▶ 🕂 😫 bla	st.ncbi.nlm.nih.gov/B	last.cgi C Reader	
BLAST [®] Home Recer	nt Results Saved	Basic Local Alignment Search Tool My NCBI Strategies Heip	Regist
NCBI/ BLAST/ blastp	suite/ Formatting Resu it Save Search Stra		y bad
		Formatting options	eform
	Show	Alignment as HTML + Old View Reset form to defau	lts
	Alignment View	Query-anchored with letters for identities	
	Display	Graphical Overview Sequence Retrieval NCBI-gi	
	Masking	Character: Lower Case	
	Limit results	Descriptions: 50 \$ Graphical overview: 50 \$ Alignments: 50 \$	
		Organism Type common name, binomial, taxid, or group name. Only 20 top taxa will be shown.	
		Enter organism name or idcompletions will be suggested Exclude +	
		Entrez query:	
		Expect Min: Expect Max:	
		Percent Identity Min: Percent Identity Max:	
	Format for	PSI-BLAST with inclusion threshold:	

E.g. Query anchored alignments

▲ ▶] [+ S blast.ncb	i.nlm	.nih.gov/Blast.cgi		C Reader	
	Query	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60		
	AAX37051	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60		
	<u>AAX29557</u>	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60		
	<u>NP_000509</u>	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60		
	P02024	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60		
	<u>AAN84548</u>	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60		
	<u>AAZ39780</u>	1	MVHLTPKEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60		
	ACU56984	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFKSFGDLSTPDAVMGNPK	60		
	AAD19696	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFLESFGDLSTPDAVMGNPK	60		
	<u> </u>	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59		
	AAF00489	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60		
	2YRS_B	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59		
	DIDXU B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59		
	<u>IHDB</u>	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59		
	DIDXV_B	2	HLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59		
	3KMF_C	2	HLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59		
	AAL68978	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60		
	<u>INOP</u> B	1	VHLTPEEKSAVTALWGKVNVDEVGGKALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59		
	<u>1K1K B</u>	1	VHLTPKEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59		
	AAN11320	1	MVHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60		
	<u>XP_002822173</u>	1	MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60		
	<u>1Y85</u> B	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59		
	<u>IYE0</u> B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLAVYPWTQRFFESFGDLSTPDAVMGNPK	59		
	<u>1010</u> B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59		
	CAA23759	1	MVHLTPVEKSAVTAXWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	60		
	<u>IYE2</u> B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVFPWTQRFFESFGDLSTPDAVMGNPK	59		
	<u>1Y5F</u> B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59		
	1A00_B	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPYTQRFFESFGDLSTPDAVMGNPK	59		
	1HBS B	1	VHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59		
	<u>laby</u>	1	MHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59		
	DICMY B	1	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK	59		

Common problems

- Selecting the wrong version of BLAST
- · Selecting the wrong database
- Too many hits returned
- Too few hits returned
- Unclear about the significance of a particular result are these sequences homologous?

... and alignments with dots for identities

O O NCBI Blast:gi 4504349 ref NP_000509.1 hemoglobin						
	+ S blast.ncbi.nlm	.nih.gov/Blast.cgi	Ċ			
	Query 1 AAX37051 1 AAX37051 1 AAX37051 1 AAX37051 1 AAX37051 1 AAX37050 1 P02024 1 AAX39780 1 AAX39780 1 AAX39780 1 ACU56984 1 AAX00489 1 ICOR_B 1 IAX0_B 1 IDXU_B 1 IDXU_B 1 IMOP_B 1 INOP_B 1 IXIK_B 1 INOP_B 1 IXIK_B 1 IYES_B 1 IOIO_B 1 COA23759 1 IXIS_B 1 IXIS_B		60 60 60 60 60 60 60 60 60 59 59 59 59 59 59 59 59 60 59 59 59 59 59 59 59 59 59 59 59 59 59			

How to handle too many results

- Focus on the question you are trying to answer
 - select "refseq" database to eliminate redundant matches from "nr"
 - Limit hits by organism
 - Use just a portion of the query sequence, when appropriate
 - Adjust the expect value; lowering *E* will reduce the number of matches returned

How to handle too few results

- Many genes and proteins have no significant database matches
 - remove Entrez limits
 - raise E-value threshold
 - search different databases
 - try scoring matrices with lower BLOSUM values (or higher PAM values)
 - use a search algorithm that is more sensitive than BLAST (*e.g.* PSI-BLAST or HMMer)

149

Summary of key points

- Sequence alignment is a fundamental operation underlying much of bioinformatics.
- Even when optimal solutions can be obtained they are not necessarily unique or reflective of the biologically correct alignment.
- Dynamic programming is a classic approach for solving the pairwise alignment problem.
- Global and local alignment, and their major application areas.
- Heuristic approaches are necessary for large database searches and many genomic applications.

FOR NEXT CLASS...

Check out the online:

- **Reading**: Sean Eddy's "What is dynamic programming?"
- Homework: (1) Quiz, (2) Alignment Exercise.

To Update!

Homework Grading

Both (1) quiz questions and (2) alignment exercise carry equal weights (*i.e.* 50% each).

(Homework 2) Assessment Criteria	Points	
Setup labeled alignment matrix	1	
Include initial column and row for GAPs	1	
All alignment matrix elements scored (i.e. filled in)	1	
Evidence for correct use of scoring scheme	1	
Direction arrows drawn between all cells	1	
Evidence of multiple arrows to a given cell if appropriate	1	D
Correct optimal score position in matrix used	1	С
Correct optimal score obtained for given scoring scheme	1	В
Traceback path(s) clearly highlighted	1	А
Correct alignment(s) yielding optimal score listed	1	A+