Recap From Last Time:

* Sequence alignment is a fundamental operation underlying
much of bioinformatics.

. Y /A | Introduced dot matrices, dynamic programing and the
Foundations of Bioir orbma_.t ‘ o BLAST heuristic approaches.

Lecture 1’3{ A Q "~

i = Key point. Even when optimal solutions can be obtained
’Qﬁ they are not necessarily unique or reflective of the
biologically correct alignment.
" Barf @1 glealy .
P Introduced classic global and local alignment algorithms
‘EICSHHBJQ (Needleman-Wunsch and Smith—-Waterman) and their major

W application areas.

Heuristic approaches are necessary for large database

searches and many genomic applications.
Feedback
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Sequence motifs and patterns: Simple approaches for
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Sequence profiles and position specific scoring matrices Q. Where do our alignment match and

(PSSMs): Building a_ndlsearching with profiles, Their mis-match scores typically come from?
advantages and limitations

PSI-BLAST algorithm: Application of iterative PSSM
searching to improve BLAST sensitivity

Hidden Markov models (HMMs): More versatile probabilistic
model for detection of remote similarities




By default BLASTp match scores come from the
BLOSUMG62 matrix
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S-1 4 Blocks Substitution Matrix. Scores obtained from
T-1 W5 observed frequencies of substitutions in blocks of
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Protein scoring matrices reflect the
properties of amino acids

Nonpolar, aliphatic R groups
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Negatively charged R groups
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Glutan Co0
Aspartat: lutamate

Protein scoring matrices reflect the
properties of amino acids
tiny

aliphatic ﬁ; P\ small
TN
M

NI ————
hydrophobic / S

aromatic positive

Key Trend: High scores for amino acids in the same “biochemical group” and
low scores for amino acids from different groups.

N.B. BLOUSM62 does not take the local
context of a particular position into account

(i.e. all like substitutions are scored the same
regardless of their location in the molecules).

We will revisit this later...
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Functional cues from conservation patterns

Within a protein or nucleic acid sequence there may be a small number of
characteristic residues that occur consistently. These conserved “sequence
fingerprints” (or motifs) usually contain functionally important elements

» E.g., the amino acids that are consistently found at enzyme active sites or the
nucleotides that are associated with transcription factor binding sites.

ATP/GTP-binding proteins: G-x(4)-G-K-T

* * k%

G GKT

Conservation [B—p

Functional cues from conservation patterns...

Many DNA patterns are binding sites for
Transcription Factors.

» E.g., The Gal4 binding sequence
-N(11)-C-C-G

Gal4
g TATA-box ’: Gene
* %k % *.%k %

GAL3 CGGTCCACTGTGTG
GAL7 CGGAGCACTGTTG

GCY1l CGGGGCAGACTATT
GALl1 CGGATTAGAAGCCG
GAL10 CGGAGGAGAGTCTT
GAL2 CGGAAAGCTTCCTT
PCL10 CGGAGTATATTGC

CGG CcCG

Representing recurrent sequence patterns
Beyond knowledge of invariant residues we can define position-based
representations that highlight the range of permissible residues per position.

» Pattern: Describes a motif using a qualitative consensus sequence
(e.g., IUPAC or regular expression). N.B. Mismatches are not tolerated!

[LFI]-x-G-[PT]-P-G-x-G-K-[TS]-[AGSI]
» Profile: Describes a motif using quantitative information captured in a position
specific scoring matrix (weight matrix).

Profiles quantify similarity and often span larger stretches of sequence.

* Logos: A useful visual representation of sequence motifs.

Image generated by:
weblogo.berkeley.edu




PROSITE is a protein pattern and profile database

Currently contains > 1790 patterns and profiles: http://prosite.expasy.org/
Example PROSITE patterns:

PS00087; SOD_CU_ZN_1
[GA]-[IMFAT]-H-[LIVF]-H-{S}-x-[GP]-[SDG]-x-[STAGDE]
The two Histidines are copper ligands
Each position in the pattern is separated with a hyphen

X can match any residue

[] are used to indicate ambiguous positions in the pattern
e.g., [SDG] means the pattern can match S, D, or G at this position

{ } are used to indicate residues that are not allowed at this position
e.g., {S} means NOT S (not Serine)

() surround repeated residues, e.g., A(3) means AAA

Information from http://ca.expasy.org/prosite/prosuser.html

Defining sequence patterns

There are four basic steps involved in defining a new PROSITE style pattern:

1. Construct a multiple sequence alignment (MSA)

2. Identify conserved residues

3. Create a core sequence-pattern (i.e. consensus sequence)

4. Expand the pattern to improve sensitivity and specificity for detecting desired
sequences - more on this shortly...

T
T
T
T
T

Y
3. 1-G-pg-GKta--g-

4. [LFI]-x-G-x-[PI]-[GF]-x-G-K-[TS] <«——

Pattern advantages and disadvantages

Advantages:

Relatively straightforward to identify (exact pattern matching is fast)
Patterns are intuitive to read and understand

Databases with large numbers of protein (e.g., PROSITE) and DNA sequence
(e.g., JASPER and TRANSFAC) patterns are available.

Disadvantages:

Patterns are qualitative and deterministic
(i.e., either matching or not!)

We lose information about relative frequency of each residue at a position
E.g., [GAC] vs 0.6 G,0.28 A,and 0.12C

Can be difficult to write complex motifs using regular expression notation

Cannot represent subtle sequence motifs

Side note: pattern sensitivity, specificity, and PPV

In practice it is not always possible to define one single regular expression type
pattern which matches all family sequences (true positives) while avoiding
matches in unrelated sequences (true negatives).

I:l True
negatives

False
B positives

O True
positives

O Matching [5) False
pattern negatives
Sensitivity = TP/ (TP+FN)
Specificity = TN/ (TN+FP) PPV = TP/ (TP+FP)

The positive predictive value (or PPV) assesses how big a proportion of the
sequences matching the pattern are actually in the family of interest.
(i.e., the probability that a positive result is truly positive!)




Side note: pattern sensitivity, specificity, and PPV

Type I error Type II error
(false positive) (false negative) - ® [ True
= 7'—(.— it You're not O U/0gp0O negatives
s DDDD B O OOO = gi;iiives
= 0 o Q ©) OITDg‘slitives
H (| Matching [5) False
pattern negatives

You're

pregnant Sensitivity = TP/ (TP+FN) = Fraction of total circles we found

(i.e. things we want!)

Specificity = TN/ (TN+FP) = Fraction of total squares we missed
(i.e. things we don’t want!)

PPV = TP/ (TP+FP) = Fraction of our highlighted matches that are actually circles
(i.e. proportion of the things we found that are what we want!)

ROC plot example

ROC plot of sequence searching performance...
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Sequence motifs and patterns: Simple approaches for
finding functional cues from conservation patterns

Sequence profiles and position specific scoring matrices
(PSSMs): Building and searching with profiles, Their
advantages and limitations

PSI-BLAST algorithm: Application of iterative PSSM

searching to improve BLAST sensitivity
H3 (HMMERS3) has a much higher search sensitivity and specificity than BLASTp

In each benchmark, true positive subsequences have been selected to be no more than Hidden Markov models (HMMS?: MOI’G versatile pI’ObabI“StIC
25% identical to any sequence in the query alignment ... (see paper for details). model for detection of remote similarities

See: Eddy (2011) PLoS Comp Biol 7(10): e1002195




Sequence profiles

A sequence profile is a position-specific scoring matrix (or PSSM, often
pronounced 'possum’) that gives a quantitative description of a sequence motif.

Unlike deterministic patterns, profiles assign a score to a query sequence and are
widely used for database searching.

A simple PSSM has as many columns as there are positions in the alignment, and
either 4 rows (one for each DNA nucleotide) or 20 rows (one for each amino acid).

Sequence position, k ——

(]

T . / Pk-\

N My=kgk—j

e g j

a5 )

é e Mg My; score for the jth nucleotide at position k

l Pxj Pprobability of nucleotide j at position k

PSSM P; ‘“background” probability of nucleotide j

See Gibskov et al. (1987) PNAS 84,4355

Computing a transcription factor bind site PSSM

Position k = 1 2 3 4
A: 0 0 6 10
c: 9 10 1 0
G: 0 0 0 0
T 1 0 3 0
Consensus: C C [ACT] A
M —tog| Pu) p = SuTE Om
(e P AT I
J
P;
(C.+p. 1Z+1) P
M, =1 P R )

P;

Alignment Counts Matrix:

5 6 7 8 9 10 11 12 13
5 0 1 5 0 3 10 8 10
0 0 0 2 1 1 0 0 0
0 0 0 1 9 5 0 0 0
5 10 9 2 0 1 0 2 0
[ATT T T N G N A [AT] A

Number of jth type nucleotide at position k
Total number of aligned sequences
“background” probability of nucleotide j

probability of nucleotide j at position k

Adapted from Hertz and Stormo,
Bioinformatics 15:563-577

Computing a transcription factor bind site PSSM...

Alignment Matrix: Cyj

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13
A: 0 0 6 10 5 0 1 5 0 310 8 10
c 9| 10 1 0 0 0 0 2 1 1 0 0 0
G: 0 0 0 0 0 0 0 1 9 5 0 0 0
T 1 0 3 0 5 10 9 2 0 1 0 2 0

C.+p,/Z+1 25/10+1
k=1,j=A: M, = 10g(L\ =1o (M) =24
- P, 025
C.+p. lZ+1 25/1 1
k=1, j= Mk=log(7" L \=lo (794'0 3/10+ )=1.2
’ P; 025
C.+p,/1Z+1 1+025/10+1
k=1,5=T: M, = tog| St /21y (¥) --08
p; 0.25

3 4 5 6 7 8 9 10 11 12 13
0.8 1.3 0.6 -24 -0.8 0.6 -24 0.2 1.3 1.1 1.3
-0.8 -24 -24 -24 -24 -0.2 -08 -0.8 -24 -24 -24
-24 -24 -24 -24 -24 -0.8 1.2 06 -24 -24 -24
0.2 -24 0.6 1.3 1.2 -02 -24 -08 -24 -02 -24

Scoring a test sequence

Query Sequence

(ool 7\ Nelel\

PSSM:
Position k = 1 2 3 4 5 6

A: 24 24 08 E 06 -24
c ElEl 08 24 -24 -24

G: 24  -24 24 -24

- 2.4
T 08 -24 [02] -24 El

2.4
Testseq: C cC T A T T

Query Score =

7 8 9 10 11 12 13
-0.8 24 02 E| 11 E
24 02 -08 -08 -24 -24 -24
24 -08 E| 2.4 24 24
E| 0.2 -24 -08 -2.4 2.4

T A G G A T A

0.6 + 1.3 + 1.2
+ -0.2 + 1.3




Scoring a test sequence

Query Sequence

ool 7\ .Nelel\

PSSM:
Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: 24 24 08 E 06 -24 -0.8 24 02 E| 11 E
c ElEl 08 24 -24 -24 -24 -02 -0.8 -0.8 -24 -2.4 -24
G: 24 24 24 -24 24 24 -24 -08 El 24 24 -24
T 08 -24 [02] -24 El El 02 24 -08 -24 2.4

Testseq: C cC T A T T T A G G A T A

.6+ 1.3 + 1.2

Query Score = 1.
+ -0.2 + 1.3

+ O

Q. Does the query sequence match the DNA sequence profile?

Scoring a test sequence...

Query Sequence Best Possible Sequence
cCHANNNAGCRANA  ccHRANNNAGGRAR

PSSM:

Position k = 1 2 3 a 5 6 10 11 12 13

7 8 9o
A: 2.4 -24 El 06 -24 -0.8 24 02 El El El
c El El 08 24 -24 -24 -24 -02 -08 -0.8 -2.4 -24 -2.4
G: 24 24 24 24 -24 -24 24 -08 24 24 24
0 0.8 -24 02 -24 El 0.2 -24 -08 -24 -02 -24

Max Score: C C A A T T T A G G A A A

Max Score = 1.
+

N+
+ o
o ©
o +
+ -
- W
W+
+ o
N
.
+ -
- W
w +

A. Following method in Harbison et al. (2004) Nature 431:99-104

Heuristic threshold for match = 60% x Max Score = (0.6 x 13.8 = 8.28);
11.9 > 8.28; Therefore our query is a potential TFBS!

Picking a threshold for PSSM matching

Again, you want to select a threshold that minimizes FPs (e.g., how many shuffled
or random sequences does the PSSM match with that score) and minimizes FNs
(e.g., how many of the ‘real’ sequences are missed with that score).

0 True
negatives

o False
positives

O True
positives

[5) False
negatives

FP=0, FN=7, TP=5 5/(5+0) =1
Fp=1, FN=1, TP=11 11/(11+1) = 0.92
FP=5, FN=0, TP=12 12/(12+5) = 0.71

Q. Which threshold has the best PPV (TP/(TP+FP)) ?

Searching for PSSM matches

If we do not allow gaps (i.e., no insertions or deletions):

Perform a linear scan, scoring the match to the PSSM at each position in the
sequence - the “sliding window” method

CCTATTAGCAATAGC....

——

If we allow gaps:

Can use dynamic programming to align the profile to the protein sequence(s)
(with gap penalties)

We will discuss PSI-BLAST shortly...

see Mount, Bioinformatics: sequence and genome analysis (2004)

Can use hidden Markov Model-based methods
We will cover HMMs in the next lecture...
see Durbin et al., Biological Sequence Analysis (1998)




Side note: Building PSSMs from unaligned sequences

Patterns and profiles are most often built on the basis of known site equivalences
(i.e. from a pre-calculated MSA).

However, a number of programs have been developed that employ local multiple
alignments to search for common sequence elements in unaligned sequences.

————

Global similarity Local non-consistent similarity

Gibbs sampling methods:
Motif Sampler - http://bayesweb.wadsworth.org/gibbs/gibbs.html

AlignAce - http://atlas.med.harvard.edu/cgi-bin/alignace.pl

Expectation maximization method:
MEME - http://meme.sdsc.edu/

See: Lawrence et al. (1993) Science. 262, 208-14

Profiles software and databases

Pftools is a package to build and search with profiles,
http://www.isrec.isb-sib.ch/ftp-server/pftools/

The package contains (among other programs):
» pfmake for building a profile starting from multiple alignments
» pfsearch to search a protein database with a profile
» pfscan to search a profile database with a protein

PRINTS database of PSSMs
http://bioinf.man.ac.uk/dbbrowser/PRINTS

Collection of conserved motifs used to characterize a protein
» Uses fingerprints (conserved motif groups).
» Very good to describe sub-families.

BLOCKS is another PSSMs database similar to prints
http://www.blocks.fhcrc.org

ProDom is collection of protein motifs obtained automatically using PSI-BLAST
http://prodes.toulouse.inra.fr/prodom/doc/prodom.html

Profiles software and databases...

InterPro is an attempt to group a number of protein domain databases.
http://www.ebi.ac.uk/interpro

It currently includes:

» Pfam
PROSITE
PRINTS
ProDom
SMART
TIGRFAMs

v v v v v

» InterPro tries to have and maintain a high quality of annotation
+ The database and a stand-alone package (iprscan) are available for UNIX
platforms, see:
ftp://ftp.ebi.ac.uk/pub/databases/interpro
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Hands-on sections 1 & 2:

Comparing methods and the trade-off

between sensitivity, selectivity and
performance

Recall: BLOUSMG62 does not take the local
context of a particular position into account

(i.e. all like substitutions are scored the same
regardless of their location in the molecules).

By default BLASTp match scores come from the

@
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< HHR=RD
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BLOSUM®62 matrix

¢
0
1 B S5
L 1 7
B 0 -1 4
e Note. All matches of Alanine for Alanine
B 0 -2 -2 6 . ays
it 27 <t B score +{1 regardless of their position or
i 4 A 5 context in the molecule.
0 =¥ =1 0 '
3 =1 2-2-2-2 @& o 8
=2 =1 0 0o @ o
I =71 0 | -1 5
1 2 1 2 0.:=2:=1 1 B
1 -3 -1 3 3 -3 -3 -3 W
-1-2-1-3-1-49-3-4-3-2-3-2-2 @ B 42
1 0 -2 0 3 3 =3 =2 =2 2 W8 B 4
2 -2 -2 -4 -2 3 -3 -3 -3-3-1 3 0 'Q 1 6
3 -2 2 -2 -1 1 B ]
3 4 -3 | 4 -3 -2 3 -3 3 BN
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PSI-BLAST: Position specific iterated
BLAST

* The purpose of PSI-BLAST is to look deeper
into the database for matches to your query
protein sequence by employing a scoring
matrix that is customized to your query

— PSI-BLAST constructs a multiple sequence
alignment from the results of a first round BLAST
search and then creates a “profile” or specialized
position-specific scoring matrix (PSSM) for
subsequent search rounds




Inspect the blastp output to identify empirical “rules”
regarding amino acids tolerated at each position

A R N D C Q E G H I

L KM F P S TW Y V

1M 1-2
2K -1 1
3w @3 -3-4-5-3-2-3-3 . . b -3-312 2 -3
730496 66  FTVDENGQMSATAKGRVRLFNNWDVCADMIGSFTDTEDFAKFKMKYUGVASFLQKGNDDH 125 4V 0 -3 -3 -4 -1 -3 -3 -4 20 amino acids 8 -2 0 -3 -1 4
200678 63  FSVDEKGHMSATAKGRVRLLSNUEVCADMVGTFTDTEDPAKFKMKYWGVASFLQRGNDDH 122 5w M-3 -3 -4 -5 -3 -2 -3 -3 =F=F =T =3I =0T =4 -3 -3 12 2 -3
206588 34  FSVDEKGHMSATAKGRVRLLSNUEVCADMVGTFTDTEDPAKFKMKYWGVASFLQRGNDDH 93 6 A 5 -2 -2 -2 -1-1-1 0-2-2-2-1-1-3-11 0-3-2 0
2136812 2 MS ATAKGRVRLLNNWDVCADMVGTF TDTEDP AKFKMKYUGVASFLQKGNDDH 53 7L > 2 4 -4 -1 -2 -3 -4 -3 2 4-3 2 0 -3 -3 -1 -2 -1 1
132408 65  FKIEDNGKTTATAKGRVRILDKLELCANMVGTFIETNDPAKYRMKYHGALAILERGLDDH 124 e -1 -3-3-4-1-3-3-4-3 2 2-3 1 3-3-2-1-2 0 3
267584 44  FSUDESGKVTATAHGRVIILNNWEMCANMFGTFEDTPDPAKFKMRYWGAASYLQTGNDDH 103 orn M1 -3 4 -4 -1 -2 -3-4-3 2 4-3 2 0-3-3-1-2-1 2
267585 44  FSVDGSGKVTATAQGRVIILNNWEMCANMFGTFEDTPDPAKFKMRYWGAAAYLQSGNDDH 103 o o 4 A 1 o _m s B 2 2 1 oo
8777608 63  FTIHEDGAMTATAKGRVIILNNWENCADMMATFETTPDPAKFRMRYVGAASYLQTGNDDH 122 12 JI; _E, _g _‘21 _3 _1 _i _i 3 _; _g _3 _i _i _g _:15 i é _g _;‘ 3
6657453 60 FKVEEDGTHMTATAIGRVIILNNUENCANMFGTFEDTEDP AKFKMKYWGAAAYLQTGYDDH 119 12 a 5 -2 -2 -2 -1 -1 -1 0 -2 -2 -2 -1 -1 -3 -1 1 0 -3 -2 0
10697027 81 FKVQEDGTHMTATATGRVIILNNUENCANMFGTFEDTEEPARFKMKYWGAAAYLQTGYDDH 140 1 2 2 1 2 7
13645517 1 MVGTF TDTEDP AKFRMKYUGVASFLQKGNDDH 32 S All the amino acids from -3 -3 -3 - 00
13925316 38  FSVDGSGKMTATAQGRVIILNNWEMCANMFGTFEDTPDPAKFKMRYWGAAAYLQIGNDDH 97 14 3 iy 1-2-3-11-1-3-3-1
131643 65  YTVEEDGTMTASSKGRVKLFGFUVICADMAAQYTDPTTPAKMYMTYQGLASYLSSGGDNY 126 12 : i position 1 to N (the end 2 ‘i ‘g ‘1 i g ‘g ‘2 ‘i
. of your query protein)
37 s 2-T 0-1-1 0 0 0-1-2-3 0-2-3-1 4 1-3-2-2
38 G 0-3-1-2-3-2-2 6-2-4-4-2-3-4-2 0-2-3-3-4
39T 0-1 0-1-1-1-1-2-2-1-1-1-1-2-1 1 5-3-2 0
40w @8-3 -3 -4 -5 -3 -2 -3 -3 -3 -3 -2 -3 -2 1 -4 -3 -3 9 2 -3
RLK C D.ET KRT NL)Y.G 41y @2 -2-2-3-3-2-2-3 2-2-1-2-1 3-3-2-2 2 7-1
422 4-2-2-2-1-1-1 0-2-2-2-1-1-3-1 1 0-3-2 0
A R NDCOQEGHTIIULI KMT FU&PSTWYV A R NDCQE G HIUL KMU FUZP S TW Y V
1M -1-2-2-3-2-1-2-3-2 1 2-2 6 0-3-2-1-2-1 1 1M . . .
2K -1 1 0 1 -4 2 4 -2 0 -3 -3 3 -2 -4 -1 0 -1 -3 -2 -3 2 K The PSI-BLAST PSSM is essentially a query customized
3W -3-3-4-5-3-2-3-3-3-3-2-3-2 1-4-3-3 2 -3 3w scoring matrix that is more sensitive than BLOSUM.
av 0-3-3-4-1-3-3-4-4 3 1-3 1-1-3-2 0-3-1 4 4v
5W -3-3-4-5-3-2-3-3-3-3-2-3-2 1-4-3-3[12]2 -3 5W -3-3-4-5-3-2-3-3-3-3-2-3-2 1-4-3-312 2 -3
6 A -2-1-1-1 0-2-2-2-1-1-3-1 1 0-3-2 0 6a [5}2-2-2-1-1-1 0-2-2-2-1-1-3-1 1 0-3-2 0
7L -4-1-2-3-4-3 2 4-3 2 0-3-3-1-2-1 1 7L -2-2-4-4-1-2-3-4-3 2 4-3 2 0-3-3-1-2-1 1
8 L -4-1-3-3-4-3 2 2-3 1 3-3-2-1-2 0 3 8L -1-3-3-4-1-3-3-4-3 2 2-3 1 3-3-2-1-2 0 3
9 L -4 P—f—A—b—a—a—u—a_a—03 -3 -1 -2 -1 2 9L -1-3 -4 -4 (—8—A—st—a_a0 42203 -3 -1 -2 -1 2
10 L -4 { Note: A given amino 3-3-1-2-1 1 10 L -4 { Note: A given amino 3-3-1-2-1 1
11 A 24 . . . f1 1 0-3-2 0 11 A 24 . . . k1 1 0-3-2 0
12 a -2 Jacid (such as alanine)in|; 1 o -3-2 o 12 a -2 | acid (such as alanine)in|; 1 o -3-2 o
13w -4 1your query proteincan 3 -3 -2 00 13w -4 1your query proteincan [3-3-2 7 0 0
14 A -2 . . 1 1-1-3-3-1 14 A -2 . . 1 1-1-3-3-1
15 A 1 | receive different scores 1 3 0 -3 -2 -2 15 A 1 | receive different scores [1 3 o0 -3 -2 -2
16 2 for matching alanine 1 10-3-2- 16 2 for matching alanine 1 10-3-2-
37 s -1 o -1 {depending on the 1 4 1-3-2-2 37s 2-1 o -14{depending on the 1 4 1-3-2-2
38 G -3 -1 -2 - PRSI ; 2 0-2-3-3-4 38 G 0 -3 -1 -2 - PROR ; 2 0-2-3-3-4
39 T 1 o -1 | position in the protein 11 5-3-2 0 397 o -1 o .1 lpositionin the protein 11 5-3-2 0
40 W -3 -3 -4 -5 - 4 -3-3[9]2-3 40 W -3 -3 -4 -5 - 4-3-3 9 2-3
41y -2 -2 -2 -3 —————— 3-2-2 2 7-1 1Y -2 -2 -2 -3 —————— 3-2-2 2 7-1
42a [4}2-2-2-1-1-1 0-2-2-2-1-1-3-1 1 0-3-2 0 42an [4}2-2-2-1-1-1 0-2-2-2-1-1-3-1 1 0-3-2 0




PSI-BLAST: Position-Specific Iterated BLAST

Many proteins in a database are too distantly related to a query to be detected
using standard BLAST. In many other cases matches are detected but are so distant
that the inference of homology is unclear. Enter the more sensitive PSI-BLAST

BLAST input sequence to

I find significant alignments

A
Construct a multiple
sequence alignment (MSA)

v

3. Construct a PSSM . 5.) lterate

v

BLAST PSSM profile to
search for new hits

4.

(see Altschul et al., Nuc. Acids Res. (1997) 25:3389-3402)

@]
Start search with single OO o0 8 @)

human HBB sequence

Neuroglobin

B

Result of initial
BLASTp search

subsequent
PSI-BLAST
iteration

(note, more
globin hits!)




Result of later
PSI-BLAST
iteration

(note, potential
“corruption”!)

Description

hemoglobin subunit beta [Homao sapiens]
hemoglobin subunit delta [Homo sapiens]

ns]

hemaglobin subunit gamma-2 [Homo sapiens]

hemoglobin subunit gamma-1 [Home sapiens
hemoglobin subunit alpha [Homo sapiens

hemoglobin subunit zeta [Homo sapiens]

Max
score

Total
score

100%
100%
100%
100%
100%
97%
97%

100%
93%
76%
73%
73%
43%
36%

Accession

NP_005321.1
NP_000175.1
NP_000550.2
NP_00

NP_005323.1

Max

Description
score

hemoglobin subunit beta [Homo sapiens]
hemoglobin subunit delta [Homo sapiens]

niens)

hemoglobin subunit gamma-1 [Home sapiens
hemoglobin subunit alpha [Homo sapiens

hemoglobin subunit zeta [Homo sapiens]

myoglobin [Homo sapiens]

neuroglobin [Homo sapiens]

Total
score

100%
100%
100%
100%
100%
97%
97%

80.5 80.5 97%

54.7 547 92%

100%
93%
76%
73%
73%
43%
36%

2e-19 26%

2e-09 23%

Accession

NP_000508,1
NP_000510.1
NP_005321.1
NP_000175.1

NP_000550.2

New relevant globins found only by PSI-BLAST

Description

hemoglobin subunit beta [Homao sapiens]
hemoglobin subunit delta [Homo sapiens]

niens)

hemoglobin subunit gamma-1 [Home sapiens
hemoglobin subunit alpha [Homo sapiens

hemoglobin subunit zeta [Homo sapiens]

myoglobin [Homo sapiens]

neuroglobin [Homo sapiens]

myoglobin [Homo sapiens]
hamoglobin subunit alpha {Home sapians]

hemoglobin unit mu [Homo sapiens)

hemoglobin subunit theta-1 [Homo sapiens]

neuroglobin [Homo sapiens]

PREDICTED: cytoglobin isoforrn X2 [Homo sapiens]

Max
score

147
147
134
115

PREDICTED: microtubule cross-linking factor 1 isoform X1 [Homo sapie 46.3

PREDICTED: microtubule cross-linking factor 1 is

n X4 [Homo sapie 46.3

Total Query
score cover

301 100%
284 100%
240 100%
235 100%
232 100%
114 97%
100 97%

80.5 97%

54.7 92%

159 97%
151 97%
147 97%
147 97%
134 92%
115  66%
463 27%
46.3  27%

E
value

100%
93%
76%
73%
73%
43%
36%

2e-19 26%

2e-09 23%

Accession

NP_000508.1
NP_000510.1
NP_005321.1
NP_000175.1

NP_000550.2

NP_005359.1
NP_000508.1
NP_005322

NP_067080.1

16879605,

XP_005258156.1

Inclusion of irrelevant hits can lead to PSSM corruption




Max Total Query E

Accession
score score cover value

Description
hemoglobin subunit beta [Homo sapiens] 301 301 100% 2e-106 NP_000508.1
hemoglobin subunit delta [Homo sapiens] 284 284 100% 7e-100 NP_000510.1

hemaoglobin subunit epsilon [Homo sapiens] 240 240 100% 2e-82 NP_005321.1

hemoglobin subunit gamma-2 [Homo sapiens] 235 235 100% 2e-80 NP_000175.1
hemoglobin subunit gamma-1 [Homo sapiens 232 232 100% 3e-79 NP_000550.2

hemoglobin subunit alpha [Homo sapiens] 114 97% 7e-33 NP_000508.1

hemoglobin subunit zeta [Homo sapiens] 100 97% 3e-27 NP_005323.1

myeglobin [Homo sapiens] 80.5 97% 2e-19 26% NP_005359.1

neuroglobin [Homo sapiens] 54.7 92% 2e-09°123% NP_067080.1

myoglobin [Homo sapiens] 97% NP_005359.1

hemoglobin subunit alpha [Homo sapiens 7% NP_000508.1

hemoglobin subunit mu [Homao sapiens) 97% NP_001003938.1

hemoglobin subunit theta-1 [Homo sapiens] 97% NP_005322.1
neuroglobin [Homo sapiens] 92% NP_067080.1

PREDICTED: cytoglobin isoform X2 [Homo sapiens] 66% XP_016879605.1

PREDICTED: microtubule cross-linking faclor 1 isoform X1 [Homo sapie 46.3 46.3 27% XP_011523942.1

PREDICTED: microtubule cross-linking factor 1 isoform X4 [Homo sapie 46.3 46.3 27% XP_005258156.1

Score and E value depends on PSSM

PSI-BLAST is performed in five steps

* A normal blastp search uses a scoring matrix (e.g., BLOSUM62) to
perform pairwise alignments of your query sequence (such as RBP)
against the database. PSI-BLAST also begins with a protein query that is
searched against a database of choice.

* PSI-BLAST constructs a multiple sequence alignment (MSA) from an
initial blastp-like search. It then creates a PSSM based on that multiple
alignment.

* This PSSM is then used as a query to search the database again.
* PSI-BLAST estimates the statistical significance of the database
matches, essentially using the parameters we described for gapped

alignments.

* The search process is continued iteratively, typically 3 to 5 times. At each
step a new PSSM is built.

PSI-BLAST returns dramatically more hits

You must decide how many iterations to perform and which sequences to include!

You can stop the search process at any point - typically whenever few new
results are returned or when no new “sensible” results are found.

Iteration glzsows'gg glgsows'gg
1 34 61
2 314 79
3 416 57
4 432 50
5 432 50

Human retinol-binding protein 4 (RBP4; P02753) was used as a query in a PSI-
BLAST search of the RefSeq database.

Example PSI-BLAST PSSM at iteration 3

The PSI-BLAST PSSM is essentially a query customized scoring matrix that is
more sensitive than BLOSUM (e.g. BLOSUM Saa = +4)

20 amino acids types

A R NDOCOQEGHTITLI KXKMTF®PSTWYV
-2-3-2-1-2-3-2 1 2-2 6 0-3-2-1-2-11
o 1-4 2 4-2 0-3-3 3-2-4-1 0-1-3-2-3
-4 -5 -3 -2-3-3-3-3-2-3-2 1-4-3-3 2 -3
-3 -4-1-3-3-4-4 3 1-3 1-1-3-2 0-3-1 4
-4 -5 -3 -2-3-3-3-3-2-3-2 1-4-3-3[12 2-3
-2-2-1-1-1 0-2-2-2-1-1-3-1 1 0-3-2 0
-4 -4 -1-2-3-4-3 2 4-3 2 0-3-3-1-2-11
-3 -4-1-3-3-4-3 2 2-3 1 3-3-2-1-2 0 3
-4 -4 -1-2-3-4-3 2 4-3 2 0-3-3-1-2-1 2
-4 -4 -1-2-3-4-3 2 4-3 2 0-3-3-1-2-11
-2-2-1-1-1 0-2-2-2-1-1-3-1 1 0-3-2 0
-2-2-1-1-1 0-2-2-2-1-1-3-1 1 0=-3-2 0
-4 -4-2-2-3-4-3 1 4-3 2 1-3-3-2[70 0
-1-2-1-1-2 4-2-2-2-1-2-3-11-1-3-3-1
0-1-2 2 0 2-1-3-3 0-2-3-1 3 0-3-2-2
-1-2-1-1-1 3-2-2-2-1-1-3-1 1 0-3-2-1

©
prEpIEpPOCOOEP < RE

Query residues/positions
-
IS

S 2-1 0-1-1 0 0 0-1-2-3 0-2-3-1 4 1-3-2-2
38 G 0-3-1-2-3-2-2 6-2-4-4-2-3-4-2 0-2-3-3-4
39T 0-1 0-1-1-1-1-2-2-1-1-1-1-2-1 1 5-3-2 0
40w -3 -3 -4-5-3-2-3-3-3-3-2-3-2 1-4-3-3 2 -3
41Y -2 -2 -2-3-3-2-2-3 2-2-1-2-1 3-3-2-2 2 7-1
A —2 -2-2-1-1-1 0-2-2-2-1-1-3-1 1 0-3-2 0




PSI-BLAST errors: the corruption problem

The main source of error in PSI-BLAST searches is the spurious amplification of
sequences that are unrelated to the query.

There are three main approaches to stopping corruption of PSI-BLAST queries:
» Perform multi-domain splitting of your query sequence
If a query protein has several different domains PSI-BLAST may find database
matches related to both individually. One should not conclude that these hits
with different domains are related.
- Often best to search using just one domain of interest.

» Inspect each PSI-BLAST iteration removing suspicious hits.
E.g., your query protein may have a generic coiled-coil domain, and this may
cause other proteins sharing this motif (such as myosin) to score better than
the inclusion threshold even though they are not related.
- Use your biological knowledge!

» Lower the default expect level (e.g., E = 0.005 to E = 0.0001).
This may suppress appearance of FPs (but also TPs)

Profile advantages and disadvantages

Advantages:
* Quantitate with a good scoring system

»  Weights sequences according to observed diversity
Profile is specific to input sequence set

» \Very sensitive
Can detect weak similarity

+ Relatively easy to compute
Automatic profile building tools available

Disadvantages:
» If a mistake enters the profile, you may end up with irrelevant data
The corruption problem!

* Ignores higher order dependencies between positions
i.e., correlations between the residue found at a given position and those found
at other positions (e.g. salt-bridges, structural constraints on RNA etc...)

» Requires some expertise and oversight to use proficiently

Todays Menu

Sequence motifs and patterns: Simple approaches for
finding functional cues from conservation patterns

Sequence profiles and position specific scoring matrices
(PSSMs): Building and searching with profiles, Their
advantages and limitations

PSI-BLAST algorithm: Application of iterative PSSM
searching to improve BLAST sensitivity

Hidden Markov models (HMMs): More versatile probabilistic
model for detection of remote similarities

Hands-on sections 3 & 4:
Comparing methods and the trade-off
between sensitivity, selectivity and
performance




Problems with PSSMs: Positional dependencies Markov chains: Positional dependencies \/

Do not capture positional dependencies The connectivity or topology of a Markov chain can easily be designed to capture
dependencies and variable length motifs.

WEIRD b 0.6 WEIRD
WEIRD E ! WEIRD Ma [—|Ms
WEIQH T | 04 WEIQH |mol—|mrl—{uzl—{ums Ve
WEIRD Q 0.4 WEIRD Start M4 M’s End
WEIQH A Y WEIQH

W1 |

Recall that a PSSM for this motif would give the sequences WEIRD and WEIRH

equally good scores even though the RH and QR combinations were not observed
Note: We never see QD or RH, we only see RD and QH. qualy 9 9 2

However, P(RH)=0.24, P(QD)=0.24, while P(QH)=0.16

on shuffled target sequences
I I

Use of HMMER HMMER vs BLAST .| wenc: )

WU BLASTP |

2 0]
. . . EBR ¢ o= B 18> HMMER BLAST g
Widely used by protein family 18 - B ol HER2 i
e o NS Program PHMMER BIASTP JU———" 00000
databases .
Query Single sequence 10" 3
y s
Use ‘Seed allgnments Target Sequence database
. Database 100 T T T
10 100 1000
Until 2010 Program HMMSCAN RPSBIAST query length M (residues)
1 I ue Single sequence monoshuffled negatives;
Computationally expensive Query gle sed 10 homelogous regions per posiive
. Target Profile HMM database, PSSM database, Tl L 1 L
Restricted to HMMs constructed from Datopase e, Pfam e.g.CDD
multiple sequence alignments Program HMMSEARCH PSI BIAST 3 (no fters)
H H H ue Profile HMM PSSM
Command line application Query
Target Sequence database
Database
Program JCKHMMER PSI-BIAST
Query Single sequence
Target Sequence database
Database T T T T
0.001 0.01 01 1 10
mean false positives per search
u [
® Modified from: S. R. Eddy ®

PAERS PLoS Comp. Biol., 7:e1002195, 2011. < N




Fast Web Searches

* Parallelized searches across compute farm
* Average query returns ~1 sec

* Range of sequence databases
* Large Comprehensive
* Curated / Structure
* Metagenomics
* Representative Proteomes

Hy
Janclia fz

wrioad the documentation
o the command fing

& version of HmmER. (POF,
392 K8)

Qstn Read the nline hep orthe
HMMER webserve

* Family Annotations = : »mm"hmmer Janella org

* Pfam

* Batch and RESTful API

» Automatic and Human interface

.
arm

Alternative Download Options.

Visualization of Results — By Score

Pfam Domains

Distribution of Significant Hits @

- more
significant

B Bacteria B Other Sequences

Eukaryota ® Archaea

B Viruses ™ Unclassified Sequences

N N
HMMER HHML T
E m bioseauence analysis usina profile hidden Markov models pmcliuﬁL
S .-
ia(467) Ornithort Ornit 15(65)
V |QI6IUS_AEDAE | SH2/SH3 adaptor protein | Aedes aegypti@ 25e31 | & Dasyuromorphia(72) Dasyuridae(72) ————— Sarcophilus(72)
=y EISZ‘.':; u.{;.:;e:m o P % Identity % Similarity Bit E-value e . e s [ -
=y (count) (count) Score 5 o
start end start end start end Ind. Cond. Pi H b (D
7 62 4 81 9 63 002 0.81 36.4 (20) 50.9 (28) 195 0.2 0.00011 - e [ = [ @
Rodentia(244) c ) cr ) T
.................................................... [ — ; — :
Query 7 lpnlf-l.ﬁvlsldntlslt.lllr ilg ynhﬂg elcea.t klgqt 62 Muridae(198) Mus(83)
d va yd+ a g 1 + kt+tet+ +1 q n g+vpsny+ . = [ 25
Target 9 DVCYVVAKYDYAAGGAOBEDERKNBRYLLLD--DSKHRVRVONSENQSGYESNIVK 3 i T
PP 5566799 % *kkkkkkkkkkkkk*x**987775,.455677766516777****x**x*x96 b )

Species Distribution
Species. Count View

Rattus norvegicus @ 115 Show
Homo sapiens@ 86 Show
Mus musculus@ 83 Show
cophilus harrisii? 72 Show
Omithorhynchus anatinus@ 65 Show
Cricetulus griseust? a6 Show

ooy

Search Details
Jump to threshold page




Visualization of Results — By

.
D I
] HMMER
biosequence analysis using profile hidden Markov models

FrRIWCSr rosuts Wechkmre e WAL Comprehensive compilation of both multiple sequence alignments and profile

S Srch Ak HMMs of protein families.
Score | Taxonomy [iBBMaIAY Download

PFAM: Protein Family Database of Profile HMMs

e http://pfam.sanger.ac.uk/
with domain architecture: SH2, example:F6Q3Z0_CIOINE View Scores PFAM consists of two databases:
Show All R R L L P E)) » Pfam-A is a manually curated collection of protein families in the form of

multiple sequence alignments and profile HMMs. HMMER software is used to
ple:FYN_HUMANGE View Scores perform searches.

Description: SH3 domain [PfamEf]
with do! Coordinates: 88 - 135 (alignment region 88 - 135)

Show All
Match Coordinates

Target: 85 - 245
Query: 9- 161

« Pfam-B contains additional protein sequences that are automatically aligned.
yr, example:D6W7G8_TRICAE? View Scores Pfam-B serves as a useful supplement that makes the database more
comprehensive.

with domain archite|

Show Al ——————(&i2)

S— — - + Pfam-A also contains higher-level groupings of related families, known as clans
with domain architecture: SH2, SOCS_box, example:B3F7U0_ANOGA® View Scores
Smticﬁ with domain architecture: SH3_1, SH2, SH3_1, example:A8XPY6_CAEBRE View Scores
Qoarz_Livus/e2389¢ MBEYED1GRA. .P.RIV.H................Hp6...LENL
QIMENO_ARATH/320-391 RETFENESFC..S.KET.G....... seoe AF...FSU
FULHUMAN/318-339 MEEERMEAN. .M. .NEE.L.............00. VPES..LCRC
QOVN79_OROME/S0-112 ANHSEVIIENC . . . .THV.H................ INDAA.FNQE

QeL&7_PNTA/792819  NLQTIQMYRX..E.SLQ.V.........
QUFHLE_ARATH/301-32¢  NLWSLNLSR. .
SLIK6_MOUSE/65-87 RPFHLSLLN. .
Qenssg_ENENV978-1000 THTSLNIAS. .A.
QXLUQZ ARATH/92-113  AMKSLDVSF . .N. .
QSFHI3_ARATH/169-188  RLTSLNLDF . .N. .
Q898G0_LOTE/268-288  YLERINLDK. .N. .
QEHGU2_MAIZE/678699  NLRILSIVDC..V.

i
N
A
N
N
N
Fepsiyimoc il G0 G R ISR A R HMMs are linear models and are thus unable to capture higher order
s
N
N
T

—ifeor. s e anef HMM limitations

QREB2_ARATV350-377 HETEIYMSY. .L..
Gasorwmnvizsror  KNEVEOMWo . 5. WM N1l BoRve ike correlations among positions (e.g. distant cysteins in a disulfide bridge, RNA
Q9VSAI_OROME/1115-113¢ QLKALRLAC . . N.
MLR1_MOUSE/376-398 REKTLSLQK. .N.

THentilLTeA secondary structure pairs, etc).

QOTXIE_LEMA/495-965  GLRDIDLSH. .T. . KVH.N................ IDA. ..
FXL13 MOUSE/409-498 KL IYLDLSGC. .T.QVL .VEKCPRISSVVLIGSPHISDSA . FKAL
QOTXS6_LEMA/S27-998  ALTVVNANSC. .V.NLT.S....... L. AEA. ..

QSIMIXS_CHLRE/1417-199¢ LLAVLHLHD . .NP . RLA.ADG. ... .......VAGLAAA. .LPGL

coessq tromessesrr  NEEMROTEN T S s AR AR Another flaw of HMMs lies at the very heart of the mathematical theory behind
these models. Namely, that the probability of a sequence can be found from the
product of the probabilities of its individual residues.

This claim is only valid if the probability of a residue is independent of the
probabilities of its neighbors. In biology, there are frequently strong dependencies
between these probabilities (e.g. hydrophobic residues clustering at the core of
protein domains).

These biological realities have motivated research into new kinds of statistical

§ models. These include hybrids of HMMs and neural nets, dynamic Bayesian nets,
. factorial HMMs, Boltzmann trees and stochastic context-free grammars.
Fromz Schuster-Bockler et al.
4Current Protocols in Bioinformatics” See: Durbin et al. “Biological Sequence Analysis”
_'_: Jf_ = Supplement 18.




That's it!

Side Note: Orthologs vs Paralogs

Sequence comparison is most
informative when it detects homologs

Homologs are sequences that have common origins
i.e. they share a common ancestor

« They may or may not have common activity

Common Time
Ancestor
CTCGTTA Can be used

| to establish
evolutionary

/\ relationships
Recent
Species »* /

CACTGTA CATGTTA

Key terms

When we talk about related sequences we use
specific terminology.

Homologous sequences may be either:
— Orthologs or Paralogs
(Note. these are all or nothing relationships!)

Any pair of sequences may share a certain level of:
— ldentity and/or Similarity

(Note. if these metrics are above a certain level we
often infer homology)




Orthologs tend to have similar function

Orthologs: are homologs produced by speciation that
have diverged due to divergence of the organisms
they are associated with.

— Ortho = [greek: straight] ... implies direct descent
Common Time

Ancestor
CTCGTTA

k Speciation
Recent
Species } J

CACTGTA CATGTTA

Paralogs tend to have slightly different
functions

Paralogs: are homologs produced by gene
duplication. They represent genes derived from a
common ancestral gene that duplicated within an
organism and then subsequently diverged by
accumulated mutation.

— Para = [greek: along side of]

Single Duplication
Spedie

Divergence
CACTGTA

Orthologs vs Paralogs

* In practice, determining ortholog vs paralog
can be a complex problem:
— gene loss after duplication,
— lack of knowledge of evolutionary history,
— weak similarity because of evolutionary distance
* Homology does not necessarily imply exact
same function

— may have similar function at very crude level but
play a different physiological role




