
BGGN 213
Data analysis with R

Lecture 4

Barry Grant

http://thegrantlab.org/bggn213

Recap From Last Time:
• Substitution matrices: Where our alignment match and mis-match

scores typically come from

• Comparing methods: The trade-off between sensitivity, selectivity
and performance

• Sequence motifs and patterns: Finding functional cues from
conservation patterns

• Sequence profiles and position specific scoring matrices (PSSMs),
Building and searching with profiles, Their advantages and
limitations

• PSI-BLAST algorithm: Application of iterative PSSM searching to
improve BLAST sensitivity

• Hidden Markov models (HMMs): More versatile probabilistic model
for detection of remote similarities Feedback

Today’s Learning Goals
• Familiarity with R’s basic syntax.

• Familiarity with major R data structures.

• Understand the basics of using functions.

• Be able to use R to read and parse comma-separated
(.csv) formatted files ready for subsequent analysis.

• Appreciate how you can use R scripts to aid with
reproducibility.

What is R?
R is a freely distributed and widely
used programing language and
environment for statistical computing,
data analysis and graphics.

R provides an unparalleled interactive
environment for data analysis.

It is script-based (i.e. driven by
computer code) and not GUI-based
(point and click with menus).

What is R?
R is a freely distributed and widely
used programing language and
environment for statistical computing,
data analysis and graphics.

R provides an unparalleled interactive
environment for data analysis.

It is script-based (i.e. driven by
computer code) and not GUI-based
(point and click with menus).

What is R?
R is a freely distributed and widely
used programing language and
environment for statistical computing,
data analysis and graphics.

R provides an unparalleled interactive
environment for data analysis.

It is script-based (i.e. driven by
computer code) and not GUI-based
(point and click with menus).

Type “R” in your terminal What is R?
R is a freely distributed and widely
used programing language and
environment for statistical computing,
data analysis and graphics.

R provides an unparalleled interactive
environment for data analysis.

It is script-based (i.e. driven by
computer code) and not GUI-based
(point and click with menus).

Type “R” in your terminal

This is the R prompt

What is R?
R is a freely distributed and widely
used programing language and
environment for statistical computing,
data analysis and graphics.

R provides an unparalleled interactive
environment for data analysis.

It is script-based (i.e. driven by
computer code) and not GUI-based
(point and click with menus).

Type “R” in your terminal

This is the R prompt: Type q() to quit!

What R is NOT

A performance optimized software library for
incorporation into your own C/C++ etc. programs.

A molecular graphics program with a slick GUI.

Backed by a commercial guarantee or license.

Microsoft Excel!

What about Excel?
• Data manipulation is easy

• Can see what is happening

• But: graphics are poor

• Looping is hard

• Limited statistical capabilities

• Inflexible and irreproducible

• There are many many things Excel just cannot do!

Use the right tool!
Rule of thumb: Every analysis you do on a dataset

will have to be redone 10–15 times before publication.
Plan accordingly!

Why use R?
Productivity
Flexibility
Designed for data analysis

Why use R?

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

IEEE 2016 Top Programming Languages

http://www.kdnuggets.com/2015/05/r-vs-python-data-science.html?
utm_medium=email&utm_source=flipboard

• R is the “lingua franca” of data science in
industry and academia.

• Large user and developer community.
• As of April 13th 2018 there are 12,481 add

on R packages on CRAN and 1,473 on
Bioconductor - more on these later!

• Virtually every statistical technique is either
already built into R, or available as a free
package.

• Unparalleled exploratory data analysis
environment.

Modularity Core R functions are modular and work
well with others

Interactivity R offers an unparalleled exploratory
data analysis environment

Infrastructure Access to existing tools and cutting-
edge statistical and graphical methods

Support Extensive documentation and tutorials
available online for R

R Philosophy Encourages open standards and
reproducibility

Modularity Core R functions are modular and work
well with others

Interactivity R offers an unparalleled exploratory
data analysis environment

Infrastructure Access to existing tools and cutting-
edge statistical and graphical methods

Support Extensive documentation and tutorials
available online for R

R Philosophy Encourages open standards and
reproducibility

Modularity
R was designed to allow users to interactively build complex
workflows by interfacing smaller ‘modular’ functions
together.

An alternative approach is to write a single complex
program that takes raw data as input, and after hours of
data processing, outputs publication figures and a final
table of results.

All-in-one custom ‘Monster’ program

pdbaln()hmmer() pdbfit() pca()get.seq() plot()

Which would you prefer and why?

Modular

Custom

vs

The ‘monster approach’ is customized to a particular project
but results in massive, fragile and difficult to modify (therefore
inflexible, untransferable, and error prone) code.

With modular workflows, it’s easier to:
• Spot errors and figure out where they’re occurring by

inspecting intermediate results.
• Experiment with alternative methods by swapping out

components.
• Tackle novel problems by remixing existing modular

tools. 

Advantages/Disadvantages
Another common approach to bioinformatics data analysis
is to write individual scripts in Perl/ Python/Awk/C etc. to
carry out each subsequent step of an analysis

This can offer many advantages but can be challenging to
make robustly modular and interactive.

‘Scripting’ approach

1.

2.

3.

Interactivity & exploratory data analysis

Learning R will give you the freedom to explore and
experiment with your data.

“Data analysis, like experimentation, must be considered as
a highly interactive, iterative process, whose actual steps
are selected segments of a stubbily branching, tree-like
pattern of possible actions”. [J. W. Tukey]

Interactivity & exploratory data analysis

Learning R will give you the freedom to explore and
experiment with your data.

“Data analysis, like experimentation, must be considered as
a highly interactive, iterative process, whose actual steps
are selected segments of a stubbily branching, tree-like
pattern of possible actions”. [J. W. Tukey]

Bioinformatics data is intrinsically high dimensional and
frequently ‘messy’ requiring exploratory data analysis to
find patterns - both those that indicate interesting biological
signals or suggest potential problems.

R Features = functions()

How do we use R?

1. Terminal 2. RStudio

Two main ways to use R

We will use RStudio today Lets get started…
Do it Yourself!

> 2+2
[1] 4

> 3^2
[1] 9

> sqrt(25)
[1] 5

> 2*(1+1)
[1] 4

> 2*1+1
[1] 3

> exp(1)
[1] 2.718282

> log(2.718282)
[1] 1

> log(10, base=10)
[1] 1

> log(10
+ , base = 10)
[1] 1
> x=1:50
> plot(x, sin(x))

Result of the
command

Order of
precedence

Incomplete
command

Optional
argument

Some simple R commands
R prompt!

1

2

3

4

5

6

7

8

9

Do it Yourself!

10

0 10 20 30 40 50
−1

.0
−0

.5
0.

0
0.

5
1.

0

x = 1:50

si
n(

x)

Does your plot look like this?

0 10 20 30 40 50

−1
.0

−0
.5

0.
0

0.
5

1.
0

x = 1:50

si
n(

x)

plot(x, sin(x), typ="l", col="blue", lwd=3, xlab="x = 1:50")

?plot ?plot.defaultOptions:

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 10 20 30 40 500 10 20 30 40 50

−1
.0

−0
.5

0.
0

0.
5

1.
0

X Axis Label

Y
Ax

is
 L

ab
el

Key point: You need to visualize your data!

Learning a new
language is hard!

Monday, August 20, 12

Error Messages
Sometimes the commands you enter will generate errors.
Common beginner examples include:

• Incomplete brackets or quotes e.g.
((4+8)*20 <enter>
+
This eturns a + here, which means you need to enter the remaining
bracket - R is waiting for you to finish your input.
Press <ESC> to abandon this line if you don't want to fix it.

• Not separating arguments by commas e.g.
plot(1:10 col=“red”)

• Typos including miss-spelling functions and using wrong type of brackets
e.g.

exp{4}

Your turn!
https://bioboot.github.io/bggn213_S18/class-material/04_rintro/

Do it Yourself!

If you have done the introductory DataCamp course
then feel free to jump to section #3 Object Assignment

Topics Covered:
Calling Functions
Getting help in R

Vectors and vectorization
Workspace and working directory

RStudio projects

Topics Covered:
Calling Functions
Getting help in R

Vectors and vectorization
Workspace and working directory

RStudio projects

Vectors
• Vectors are the most basic data structure in R

• All elements of a vector must be the same type

• When you attempt to combine different types they will
be coerced to the most flexible type.

dbl_var <- c(1, 2.5, 4.5)
log_var <- c(TRUE, FALSE, T, F)
chr_var <- c("these are", "some", "strings")

var <- c(1, "G", "4", 0.05, TRUE)

Names
• You can name a vector in several ways:

• When creating it:

• By modifying an existing vector in place:  

• You can then use the names to access (subset)
vector elements:

x <- c(a = 1, b = 2, c = 3)

x <- 1:3; names(x) <- c("a", "b", "c")

x [c("b", "a")]

Why is this useful?
• Because if you know the name (i.e. your label)

then you don’t have to remember which element
of a vector the data you are after was stored in.
Consider this fictional example:

> grades <- c(alice=80, barry=99, chandra=60, chris=100)
> grades["barry"]
barry
 99
> which.max(grades)
chris
 4
> sort(grades)
chandra alice barry chris
 60 80 99 100

What would happen?

> x <- 1:3; names(x) <- c("a", "b", "c", "d")

> x <-1:3; names(x) <- 3:1; x[3]

> x["3"]

1

2

3

R has many data
structures

These include:
 • vector
 • data frame
 • list
 • matrix
 • factors

data.frame
• data.frame is the de facto data structure for

most tabular data and what we use for statistics
and plotting with ggplot2 - more on this later!

• Arguably the most important R data structure

• Data frames can have additional attributes such
as rownames() and colnames(), which can be
useful for annotating data, with things like
subject_id or sample_id

data.frame continued…
• Created with the function data.frame()

• Or more commonly when reading delimited files
(i.e. importing data) with the functions
read.csv(), read.table(), read_xlsx() etc…

• R Studio can do this for you via:
File > Import Dataset > From CSV…

dat <- data.frame(id = letters[1:10], x = 1:10, y = 11:20)

dep <- read.csv2("http://bio3d.uib.no/data/pdb_deposition2.csv")

Do it Yourself! Useful data.frame Functions

• head() -and tail() shows first 6 rows and last 6 rows
respectively

• dim() - returns the dimensions (i.e. number of rows and
columns)

• nrow() and ncol() returns the number of rows and
columns separately.

• rownames() and colnames()- shows the names attribute
for rows and columns

• str() - returns the structure including name, type and
preview of data in each column

Topics Covered:
Calling Functions
Getting help in R

Vectors and vectorization
Workspace and working directory

RStudio projects

Topics Covered:
Calling Functions
Getting help in R

Vectors and vectorization
Workspace and working directory

RStudio projects

Side-note: Use the code
editor for R scripts R scripts

• A simple text file with your R commands (e.g. lecture7.r)
that contains your R code for one complete analysis

• Scientific method: complete record of your analysis

• Reproducible: rerunning your code is easy for you or
someone else

• In RStudio, select code and type <ctrl+enter> to run the
code in the R console

• Key point: Save your R script!

Side-note: RStudio shortcuts

Sends entire
file to console

Re-send the lines of
code you last ran to the

console
(useful after edits)

Sends current line or
selection to console (faster

to type:
command/ctrl+enter)

Other RStudio shortcuts!
Up/Down arrows (recall cmds)

Ctrl + 2 (move cursor to console)
Ctrl +1 (move cursor to editor)

1. Terminal 2. RStudio

Rscript: Third way to use R

3. Rscript

> Rscript --vanilla
my_analysis.R

From the command line!
> Rscript --vanilla my_analysis.R
or within R: source(my_analysis.R)

R workspaces
• When you close RStudio, SAVE YOUR .R SCRIPT

• You can also save data and variables in an R workspace, but
this is generally not recommended

• Exception: working with an enormous dataset

• Better to start with a clean, empty workspace so that past
analyses don’t interfere with current analyses

• rm(list = ls()) clears out your workspace

• You should be able to reproduce everything from your R script,
so save your R script, don’t save your workspace!

R workspaces
• Set Tools > Global Options

RStudio Projects
• We will use a new RStudio project for each new class going

forward.

File > New Project > New Directory > New Project…

• These projects will help keep us organized and divide our
work into multiple contexts, each with their own working
directory, workspace, history, and source documents.

Learning Resources
• TryR. An excellent interactive online R tutorial for beginners.

< http://tryr.codeschool.com/ >

• RStudio. A well designed reference card for RStudio.
< https://help.github.com/categories/bootcamp/ >

• DataCamp. Online tutorials using R in your browser.
< https://www.datacamp.com/ >

• R for Data Science. A new O’Reilly book that will teach you
how to do data science with R, by Garrett Grolemund and
Hadley Wickham.

< http://r4ds.had.co.nz/ >

Learning Resources
• TryR. An excellent interactive online R tutorial for beginners.

< http://tryr.codeschool.com/ >

• RStudio. A well designed reference card for RStudio.
< https://help.github.com/categories/bootcamp/ >

• DataCamp. Online tutorials using R in your browser.
< https://www.datacamp.com/ >

• R for Data Science. A new O’Reilly book that will teach you
how to do data science with R, by Garrett Grolemund and
Hadley Wickham.

< http://r4ds.had.co.nz/ >

< https://www.datacamp.com/ >

< https://www.datacamp.com/ > < https://www.datacamp.com/ >

< https://www.datacamp.com/ > < https://www.datacamp.com/ >

Key Points
• R’s basic data types are logical, character,

numeric, integer and complex.

• R’s basic data structures include vectors, lists,
data frames, matrices and factors.

• Objects may have attributes, such as name,
dimension, and class.

• DataCamp, StackOverflow and help() are your
friends.

Final Knowledge Check!
• What is R and why should we use it?

• Familiarity with R’s basic syntax.

• Familiarity with major R data structures namely vectors and
data.frames (with more on lists and matrices next day).

• Understand the basics of using functions (arguments,
vectorizion and re-cycling).

• Be able to use R to read and parse comma-separated (.csv)
formatted files ready for subsequent analysis.

• Appreciate how you can use R scripts to aid with reproducibility.

Link: Muddy point assessment http://swcarpentry.github.io/r-novice-inflammation/

Sections: 1, 11 & 12 only!

Optional!

Help from within R
• Getting help for a function
> help("log")
> ?log

• Searching across packages
> help.search("logarithm")

• Finding all functions of a particular type
> apropos("log")
[7] "SSlogis" "as.data.frame.logical" "as.logical"

"as.logical.factor" "dlogis" "is.logical"
[13] "log" "log10" "log1p" "log2" "logLik" "logb"
[19] "logical" "loglin" "plogis" "print.logLik" "qlogis"

"rlogis"

?log
What the function does in general terms

How to use the function

What does the function need

What does the function return

Discover other related functions

Sample code showing how it works

Optional Exercise
Use R to do the following. Create a new script to save
your work and code up the following four equations:

1 + 2(3 + 4)

ln(43+32+1)

(4+3)(2+1)

! "
$
% &

21+2
3+4

