

Recap From Last Time:

- What is R and why should we use it?
- Familiarity with R's basic syntax.
- Familiarity with major R data structures namely **vectors** and **data.frames**.
- Understand the basics of using **functions** (arguments, vectorizion and re-cycling).
- Appreciate how you can use R scripts to aid with reproducibility.

DataCamp Homework Reminder!!

[MPA Link]

Today's Learning Goals

- Appreciate the major elements of **exploratory data analysis** and why it is important to visualize data.
- Be conversant with data visualization best practices and understand how good visualizations optimize for the human visual system.
- Be able to generate informative graphical displays including scatterplots, histograms, bar graphs, boxplots, dendrograms and heatmaps and thereby gain exposure to the extensive graphical capabilities of R.
- Appreciate that you can build even more complex charts with ggplot and additional R packages such as rgl.

Today's Learning Goals

- Appreciate the major elements of **exploratory data analysis** and why it is important to visualize data.
- Be conversant with data visualization best practices and understand how good visualizations optimize for the human visual system.
- Be able to generate informative graphical displays including scatterplots, histograms, bar graphs, boxplots, dendrograms and heatmaps and thereby gain exposure to the extensive graphical capabilities of R.
- Appreciate that you can build even more complex charts with ggplot and additional R packages such as rgl.

Why visualize at all?

	X	у	
1	5.00	0.00	
2	4.18	2.75	
3	1.98	4.59	
4	-0.86	4.92	
5	-3.43	3.64	
6	-4.86	1.16	
7	-4.70	-1.70	
8	-2.99	-4.01	
9	-0.30	-4.99	
10	2.49	-4.34	
11	4.46	-2.25	
12	4.97	0.57	
13	3.84	3.20	
14	1.45	4.79	
15	-1.42	4.79	

	x	у	
Min.	-4.86	-4.99	
1st Qu.	-2.21	-1.98	
Median	1.45	1.16	
Mean	0.65	0.87	
3rd Qu.	4.01	4.12	
Max.	5.00	4.92	

Exploratory Data Analysis

- ALWAYS look at your data!
- If you can't see it, then don't believe it!
- Exploratory Data Analysis (EDA) allows us to:
 - 1. Visualize distributions and relationships
 - 2. Detect errors
 - 3. Assess assumptions for confirmatory analysis
- EDA is the first step of data analysis!

Exploratory Data Analysis 1977

- Based on insights developed at Bell Labs in the 60's
- Techniques for visualizing and summarizing data
- What can the data tell us? (in contrast to "confirmatory" data analysis)
- Introduced many basic techniques:
 - 5-number summary, box plots, stem and leaf diagrams,...
- 5 Number summary:
 - extremes (min and max)
 - · median & quartiles
 - More robust to skewed & longtailed distributions

Side-note: How to summarize data?

x <- rnorm(1000)

Side-note: Mean & standard deviation

Fine for normally distributed data

Side-note: 5 number summary

Minimum, Q1, Q2, Q3, and maximum

Side-note: 5 number summary

Minimum, Q1, Q2, Q3, and maximum

Side-note: 5 number summary

Minimum, Q1, Q2, Q3, and maximum

Side-note: 5 number summary

Minimum, Q1, Q2, Q3, and maximum

Side-note: 5 number summary

Minimum, Q1, Q2, Q3, and maximum

The Trouble with Summary Stats

Set	A	Set	В	Se	t C	Set	D
X	Υ	x	Υ	X	Υ	X	Υ
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81		8.77		7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.1	14	8.84	8	7.04
6	7.24	6	6.13		6.08	8	5.25
4	4.26	4	3.1	4	5.39	19	12.5
12	10.84	12	9.11	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
	5.68		4.74		5.73	8	6.89
Cummany Statistics Linear Bagrassian							
Summa	Summary Statistics Linear Regression						
u _x = 9.0 u _y = 7.5	$\sigma_{X} = 3.$ $\sigma_{Y} = 2.$		$Y = 3 + R^2 = 0.0$			[Anscomi	oe 73]

Looking at Data

X Mean: 54.2659224 Y Mean: 47.8313999 X SD : 16.7649829 Y SD : 26.9342120 Corr. : -0.0642526 Key point: You need to visualize your data! https://github.com/stephlocke/datasauRus

Today's Learning Goals

- Appreciate the major elements of **exploratory data analysis** and why it is important to visualize data.
- Be conversant with data visualization best practices and understand how good visualizations optimize for the human visual system.
- Be able to generate informative graphical displays including scatterplots, histograms, bar graphs, boxplots, dendrograms and heatmaps and thereby gain exposure to the extensive graphical capabilities of R.
- Appreciate that you can build even more complex charts with **ggplot** and additional R packages such as **rgl**.

Key Point:

Good visualizations optimize for the human visual system.

Key Point: The most important measurement should exploit the highest ranked encoding possible

- Position along a common scale
- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue

Key Point: The most important measurement should exploit the highest ranked encoding possible

- Position along a common scale
- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue

Key Point: The most important measurement should exploit the highest ranked encoding possible

• Position along a common scale

• Position on identical but nonaligned scales

Length

• Angle or Slope

Area

• Volume or Density or Color saturation/hue

Observation: Alphabetical is almost never the correct ordering of a categorical variable.

The most important measurement should exploit the highest ranked encoding possible.

- Position along a common scale
- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue

The most important measurement should exploit the highest ranked encoding possible.

- Position along a common scale
- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue

If growth (slope) is important, plot it directly.

The most important measurement should exploit the highest ranked encoding possible.

- Position along a common scale
- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue

Observation: Pie charts are <u>ALWAYS</u> a mistake.

Apart from MPAs :-)

Piecharts are the information visualization equivalent of a roofing hammer to the frontal lobe. They have no place in the world of grownups, and occupy the same semiotic space as short pants, a runny nose, and chocolate smeared on one's face. They are as professional as a pair of assless chaps.

http://blog.codahale.com/2006/04/29/google-analytics-the-goggles-they-do-nothing/

Piecharts are the information visualization equivalent of a roofing hammer to the frontal lobe. They have no place in the world of grownups, and occupy the same semiotic space as short pants, a runny nose, and chocolate smeared on one's face. They are as professional as a pair of assless chaps.

http://blog.codahale.com/2006/04/29/google-analytics-the-goggles-they-do-nothing/

Tables are preferable to graphics for many small data sets. A table is nearly always better than a dumb pie chart; the only thing worse than a pie chart is several of them, for then the viewer is asked to compare quantities located in spatial disarray both within and between pies... Given their low data-density and failure to order numbers along a visual dimension, pie charts should never be used.

-Edward Tufte, The Visual Display of Quantitative Information

Tables are preferable to graphics for many small data sets. A table is nearly always better than a dumb pie chart; the only thing worse than a pie chart is several of them, for then the viewer is asked to compare quantities located in spatial disarray both within and between pies... Given their low data-density and failure to order numbers along a visual dimension, pie charts should never be used.

-Edward Tufte, The Visual Display of Quantitative Information

Who do you think did a better job in tonight's debate?

	Clinton	Trump
Among Democrats	99%	1%
Among Republicans	53%	47%

The most important measurement should exploit the highest ranked encoding possible.

- Position along a common scale
- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue

The most important measurement should exploit the highest ranked encoding possible.

- Position along a common scale
- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue

Observation: Comparison is trivial on a common scale.

Today's Learning Goals

- Appreciate the major elements of **exploratory data analysis** and why it is important to visualize data.
- Be conversant with data visualization best practices and understand how good visualizations optimize for the human visual system.
- Be able to generate informative graphical displays including scatterplots, histograms, bar graphs, boxplots, dendrograms and heatmaps and thereby gain exposure to the extensive graphical capabilities of R.
- Appreciate that you can build even more complex charts with **ggplot** and additional R packages such as **rgl**.

Different graphs for different purposes

Exploratory graphs: many images for a narrow audience (you!) **Presentation graphs**: single image for a large audience

Common Options

- Axis scales
 - > xlim c(min, max)
 - > ylim c(min, max)
- Axis labels
 - > xlab(text)
 - ylab(text)

- Plot titles
 - main(text)
 - > sub(text)
- Plot characters
 - pch(number)
- > cex(number)
- Local options to change a specific plot
- · Global options to affect all graphs

Plot Characters

Plot Type Specific Options

Plot (scatterplots and line graphs)

• Input: Almost anything. 2 x Vectors

• Output: Nothing

• Options:

type l=line, p=point, b=line+point

▶ lwd line width (thickness)

> lty line type (1=solid,2=dashed,3=dotted etc.)

plot(c(1:10)^2, typ="b", lwd=4, lty=3)

Hands-on Section 2 Notes Focus on Sections 2A & 2B in the lab handout. Try Section 2C if you have time. See notes on the following slides...

Section 2B: Barplot (a.k.a. bar graphs)

• Input: Vector (single) or Matrix (stack or group)

• Output: Bar centre positions

• Options:

names.arg Bar labels (if not from data)

▶ horiz=TRUE Plot horizontally

▶ beside=TRUE Plot multiple series as a group not stacked

barplot(VADeaths, beside = TRUE)

Controlling plot area options with par

Par

- The par() function controls global parameters affecting all plots in the current plot area
- Changes affect all subsequent plots
- Many par options can also be passed to individual plots

?par

Par examples

- Reading current value
 - > old.par <- par() \$mar</pre>
- Setting a new value
 - par(mar=c(4,11,2,1)) # Do plot
- Restoring old value after you are done
 - par(mar=old.par)

Par options

- Margins
 - mai (set margins in inches)
 - -mar (set margins in number of lines)
 - mex (set lines per inch)
 - 4 element vector (bottom, left, top, right)
- Warning
 - Error in plot.new() : figure margins too large

par(mar=c(2, 10, 1, 1))

Par options

• Multi-panel

par(mfrow=c(rows,cols))

Specifying colors

Controlled names

- > col=c("red", "green") etc.
- ▶ see colors()

· Color by number

- > col=c(1, 2, 3)
- ▶ Will give black, red, green etc.

· Hexadecimal strings string

- Of the form "#RRGGBB" where each of the pairs RR, GG, BB consists of two hexadecimal digits giving a value in the range 00 to FF:
 - #FF0000 (red)
 - ▶ #0000FF (blue)

Built in color schemes

- Functions to generate colors
- Pass in the number of colors you want,

e.g. to get 7 different colors:

- ▶ rainbow(7)
- heat.colors(7)
- > cm.colors(7)
- terrain.colors(7)
- topo.colors(7)
- ▶ Etc.

rainbow(7)

Color Packages

- Color Brewer
 - Set of pre-defined, optimized palettes
 - library(RColorBrewer)
 - brewer.pal(n colours, palette)
- ColorRamps
 - Create smooth palettes for ramped color
 - Generates a function to make actual color vectors
 - colorRampPalette(c("red","white","blue"))
 - colorRampPalette(c("red","white","blue"))(5)

Applying Color to Plots

- Vector of numbers or specified colors passed to the col parameter of a plot function
- Vector of factors used to divide the data
 - Colors will be taken from the set color palette
 - Can read or set using pallette() function
 - palette()
 - palette(brewer.pal(9,"Set1")

plot(1:5, col=1:5, pch=15, cex=2)

Dynamic use of color

- Coloring by density
 - Pass data and palette to densCols()
 - Vector of colors returned
- See Lab Supplement (online):
 - Plotting with color in R

https://www.rdocumentation.org/packages/grDevices/versions/3.4.3/topics/densCols

Homework!

New **<u>DataCamp</u>** Assignments

- RStudio IDE (Pt 1)
- Intermediate R
 - Conditionals and Control Flow
 - Functions
 - Loops

Muddy Point Assessment Form Link

Useful new website: https://www.data-to-viz.com/