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Next Up:
• Overview of structural bioinformatics 
• Motivations, goals and challenges 


• Fundamentals of protein structure 
• Structure composition, form and forces


• Representing, interpreting & modeling protein structure 
• Visualizing and interpreting protein structures

• Analyzing protein structures

• Modeling energy as a function of structure 

• Drug discovery & Predicting functional dynamics

Key concept: 
Potential functions describe a systems 

energy as a function of its structure
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For physics based potentials 
energy terms come from physical theory
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Total potential energy
The potential energy can be given as a sum of 
terms for: Bond stretching, Bond angles, Bond 

rotations, van der Walls and Electrostatic 
interactions between atom pairs

Now we can calculate the potential energy 
surface that fully describes the energy of a 

molecular system as a function of its geometry 
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Key concept: 
Now we can calculate the potential energy 
surface that fully describes the energy of a 

molecular system as a function of its geometry 
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the gradients of 
the energy

F(x) = − dV/dx

Moving Over The Energy Surface

•Energy Minimization 
drops into local minimum

•Molecular Dynamics 
uses thermal energy to 
move smoothly over 
surface

•Monte Carlo Moves are 
random. Accept with 
probability:

exp(−ΔV/dx)
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PHYSICS-ORIENTED APPROACHES
Weaknesses

Fully physical detail becomes computationally intractable
Approximations are unavoidable

(Quantum effects approximated classically, water may be treated crudely)
Parameterization still required

Strengths
Interpretable, provides guides to design
Broadly applicable, in principle at least
Clear pathways to improving accuracy

Status
Useful, widely adopted but far from perfect
Multiple groups working on fewer, better approxs

Force fields, quantum
entropy, water effects

Moore’s law: hardware improving

–Johnny Appleseed

Put Levit’s Slide here on Computer Power Increases!
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Two main approaches:
(1). Physics-Based
(2). Knowledge-Based

POTENTIAL FUNCTIONS DESCRIBE A SYSTEMS 
ENERGY AS A FUNCTION OF ITS STRUCTURE KNOWLEDGE-BASED DOCKING POTENTIALS

Histidine 

Ligand  
carboxylate

Aromatic 
stacking



Example: ligand carboxylate O to protein histidine N
Find all protein-ligand structures in the PDB with a ligand carboxylate O

1.   For each structure, histogram the distances from O to every histidine N
2.   Sum the histograms over all structures to obtain p(rO-N)
3.   Compute E(rO-N) from p(rO-N)

ENERGY DETERMINES PROBABILITY 
(STABILITY)

Boltzmann distribution
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Boltzmann:

Inverse Boltzmann:

Basic idea: Use probability as a proxy for energy

KNOWLEDGE-BASED POTENTIALS
Weaknesses

Accuracy limited by availability of data

Strengths
Relatively easy to implement
Computationally fast

Status
Useful, far from perfect
May be at point of diminishing returns

(not always clear how to make improvements)

Computer Aided 
Drug Discovery

Next Up:
• Overview of structural bioinformatics 
• Motivations, goals and challenges 


• Fundamentals of protein structure 
• Structure composition, form and forces


• Representing, interpreting & modeling protein structure 
• Visualizing and interpreting protein structures

• Analyzing protein structures

• Modeling energy as a function of structure 

• Drug discovery & Predicting functional dynamics



THE TRADITIONAL EMPIRICAL PATH TO 
DRUG DISCOVERY

Compound library  
(commercial, in-house, 

synthetic, natural)

High throughput screening 
(HTS)

Hit confirmation

Lead compounds 
(e.g., µM Kd)

Lead optimization
(Medicinal chemistry)

Potent drug candidates  
(nM Kd) 

Animal and clinical  
evaluation

COMPUTER-AIDED LIGAND DESIGN

Aims to reduce number of compounds synthesized and assayed

Lower costs

Reduce chemical waste

Facilitate faster progress

Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based

Two main approaches:
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SCENARIO 1:
RECEPTOR-BASED DRUG DISCOVERY

HIV Protease/KNI-272 complex

Structure of Targeted Protein Known: Structure-Based Drug Discovery

PROTEIN-LIGAND DOCKING

VDW

Dihedral

Screened Coulombic
+ -

Potential function  
Energy as function of structure

Docking software 
Search for structure of lowest energy

Structure-Based Ligand Design

STRUCTURE-BASED VIRTUAL SCREENING

Candidate ligands

Experimental assay

Compound 
database

3D structure of target 
(crystallography, NMR, 

bioinformatics 
modeling)

Virtual screening 
(e.g., computational 

docking)

Ligands

Ligand optimization  
Med chem, 

crystallography, modeling

Drug 
candidates

COMPOUND LIBRARIES

Commercial 
(in-house pharma) Government (NIH) Academia



COMMON SIMPLIFICATIONS USED IN  
PHYSICS-BASED DOCKING

Quantum effects approximated classically

Protein often held rigid

Configurational entropy neglected

Influence of water treated crudely

Do it Yourself!

Hand-on time!  

You can use the classroom computers or your own 
laptops. If you are using your laptops then you will need 

to install MGLTools 

https://bioboot.github.io/bggn213_W19/lectures/#12

Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based

e.g. MAP Kinase Inhibitors

Using knowledge of 
existing inhibitors to 
discover more

Scenario 2
Structure of Targeted Protein Unknown: 

Ligand-Based Drug Discovery



Why Look for Another Ligand if You Already Have Some?

Experimental screening generated some ligands, but they don’t 
bind tightly enough

A company wants to work around another company’s chemical 
patents

An high-affinity ligand is toxic, is not well-absorbed, difficult to 
synthesize etc.

LIGAND-BASED VIRTUAL SCREENING

Compound Library Known Ligands

Molecular similarity
Machine-learning

Etc.

Candidate ligands

Assay

Actives

Optimization  
Med chem, crystallography, 

modeling

Potent drug candidates

CHEMICAL SIMILARITY  
LIGAND-BASED DRUG-DISCOVERY

Compounds 
(available/synthesizable)

Compare with known ligands
Different

Test experimentally

Similar

Don’t bother

CHEMICAL FINGERPRINTS 
BINARY STRUCTURE KEYS
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CHEMICAL SIMILARITY FROM 
FINGERPRINTS  

NI=2Intersection

NU=8Union

Tanimoto Similarity 
(or Jaccard Index), T

+ 1

Bulky 
hydrophobe

Aromatic

5.0 ±0.3 Å 3.2 ±0.4 Å

2.8 ±0.3 Å

Pharmacophore Models
Φάρμακο (drug) + Φορά (carry)

A 3-point pharmacophore

Molecular Descriptors 
More abstract than chemical fingerprints

Physical descriptors
molecular weight
charge
dipole moment
number of H-bond donors/acceptors
number of rotatable bonds
hydrophobicity (log P and clogP)

Topological
branching index
measures of linearity vs interconnectedness

Etc. etc.

Rotatable bonds

A High-Dimensional “Chemical Space”
Each compound is a point in an n-dimensional space

Compounds with similar properties are near each other

Descr
iptor 1

Descriptor 2

De
sc

rip
to

r 3

Point representing a 
compound in descriptor 
space

Apply multivariate statistics and machine learning for descriptor-
selection. (e.g. partial least squares, PCA, support vector machines, 

random forest, deep learning etc.)



Proteins and Ligand are Flexible

+

Ligand

Protein

Complex

ΔGo

Proteinase K 

NMA (Normal Mode Analysis) is a bioinformatics 
method to predict the intrinsic dynamics of biomolecules

https://bioboot.github.io/bggn213_W19/lectures/#12

Do it Yourself!

Reference Slides
Molecular Dynamics (MD) and Normal Mode Analysis 

(NMA) Background and Cautionary Notes

[ Muddy Point Assessment ]

PREDICTING FUNCTIONAL DYNAMICS

• Proteins are intrinsically flexible molecules with 
internal motions that are often intimately coupled to 
their biochemical function

– E.g.  ligand and substrate binding, conformational 
activation, allosteric regulation, etc.

• Thus knowledge of dynamics can provide a deeper 
understanding of the mapping of structure to 
function 

– Molecular dynamics (MD) and normal mode analysis 
(NMA) are two major methods for predicting and 
characterizing molecular motions and their properties



McCammon, Gelin & Karplus, Nature (1977) 
[ See: https://www.youtube.com/watch?v=ui1ZysMFcKk ]

• Use force-field to find 
Potential energy between 
all atom pairs 

• Move atoms to next state 

• Repeat to generate 
trajectory

MOLECULAR DYNAMICS SIMULATION
Divide time into discrete (~1fs) time steps (∆t)
(for integrating equations of motion, see below)

t
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t

Divide time into discrete (~1fs) time steps (∆t)
(for integrating equations of motion, see below)

At each time step calculate pair-wise atomic forces (F(t)) 
(by evaluating force-field gradient)

Nucleic motion described classically

Empirical force field

t



Divide time into discrete (~1fs) time steps (∆t)
(for integrating equations of motion, see below)

At each time step calculate pair-wise atomic forces (F(t)) 
(by evaluating force-field gradient)

Nucleic motion described classically

Empirical force field

Use the forces to calculate velocities and move atoms to new positions
(by integrating numerically via the “leapfrog” scheme)

t

BASIC ANATOMY OF A MD SIMULATION
Divide time into discrete (~1fs) time steps (∆t)
(for integrating equations of motion, see below)

At each time step calculate pair-wise atomic forces (F(t)) 
(by evaluating force-field gradient)

Nucleic motion described classically

Empirical force field

Use the forces to calculate velocities and move atoms to new positions
(by integrating numerically via the “leapfrog” scheme)

REPEAT,  (iterate many, many times… 1ms = 1012 time steps) 

t

MD Prediction of Functional Motions 
“close”

“open”

Yao and Grant, Biophys J. (2013)

• MD is still time-consuming for large systems
• Elastic network model NMA (ENM-NMA) is an example 

of a lower resolution approach that finishes in seconds 
even for large systems.

Atomistic

C. G.

• 1 bead /  
1 amino acid

• Connected by 
springs

Coarse Grained

i

j
rij

COARSE GRAINING: NORMAL MODE ANALYSIS 
(NMA)



Ilan Samish et al. Bioinformatics 2015;31:146-150 

INFORMING SYSTEMS BIOLOGY?

Genomes

DNA & RNA sequence

DNA & RNA structure

Protein sequence

Protein families,  
motifs and domains

Protein structure

Protein interactions

Chemical entities

Pathways

Systems

Gene expression

Literature and ontologies

• Structural bioinformatics is computer aided structural biology

• Described major motivations, goals and challenges of structural 
bioinformatics 

• Reviewed the fundamentals of protein structure

• Explored how to use R to perform structural bioinformatics analysis!

• Introduced both physics and knowledge based modeling approaches 
for describing the structure, energetics and dynamics of proteins 
computationally

• Introduced both structure and ligand based bioinformatics 
approaches for drug discovery and design

SUMMARY

[ Muddy Point Assessment ]

• A model is never perfect 
A model that is not quantitatively accurate in every respect does 
not preclude one from establishing results relevant to our 
understanding of biomolecules as long as the biophysics of the 
model are properly understood and explored. 

• Calibration of parameters is an ongoing imperfect process
Questions and hypotheses should always be designed such that 
they do not depend crucially on the precise numbers used for the 
various parameters. 

• A computational model is rarely universally right or wrong
A model may be accurate in some regards, inaccurate in others.  
These subtleties can only be uncovered by comparing to all 
available experimental data.

CAUTIONARY NOTES 


