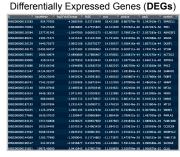
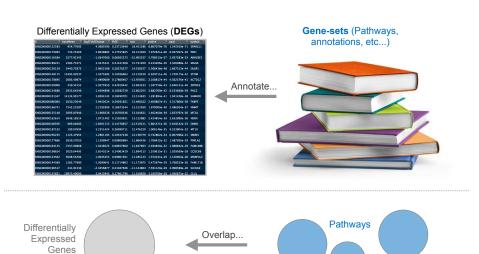

My high-throughput experiment generated a long list of genes/proteins...

What do I do now?



Pathway analysis! (a.k.a. geneset enrichment)

Use bioinformatics methods to help extract biological meaning from such lists...



Basic idea

Basic idea

Pathway analysis (a.k.a. geneset enrichment) **Principle**

- · DEGs come from your experiment
- > Critical, needs to be as clean as possible
- Pathway genes ("geneset") come from annotations > Important, but typically not a competitive advantage
- Variations of the math: overlap, ranking, networks... > Not critical, different algorithms show similar performances

Pathway analysis (a.k.a. geneset enrichment)

Pathway analysis (geneset enrichment)

Limitations

(DEGs)

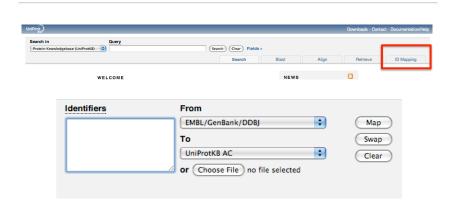


- · Non-model organisms: no high-quality genesets available
- Post-transcriptional regulation is neglected
- · Tissue-specific variations of pathways are not annotated
 - e.g. NF-kB regulates metabolism, not inflammation, in adipocytes
- Size bias: stats are influenced by the size of the pathway
 - Many pathways/receptors converge to few regulators e.g. Tens of innate immune receptors activate four TFs: NF-kB, AP-1, IRF3/7, NFAT

Starting point for pathway analysis:

Your gene list

- · You have a list of genes/proteins of interest
- You have quantitative data for each gene/protein
 - · Fold change
 - p-value
 - · Spectral counts
 - Presence/absence

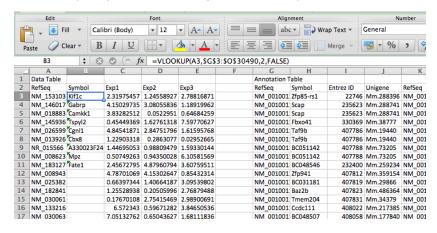

Translating between identifiers

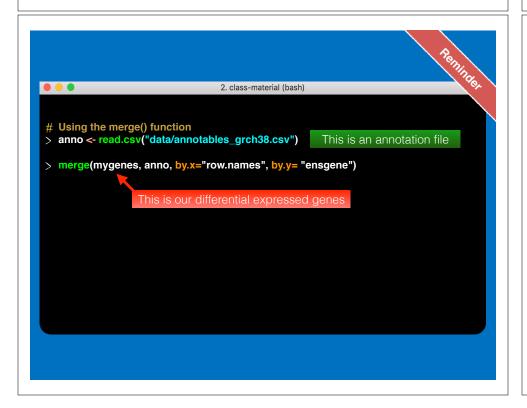
- · Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- · Often you will have to translate one set of ids into another
 - · A program might only accept certain types of ids
 - · You might have a list of genes with one type of id and info for genes with another type of id

Translating between identifiers

- Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- · Often you will have to translate one set of ids into another
 - · A program might only accept certain types of ids
 - · You might have a list of genes with one type of id and info for genes with another type of id
- Various web sites translate ids -> best for small lists
 - UniProt < www.uniprot.org>; IDConverter < idconverter.bioinfo.cnio.es >

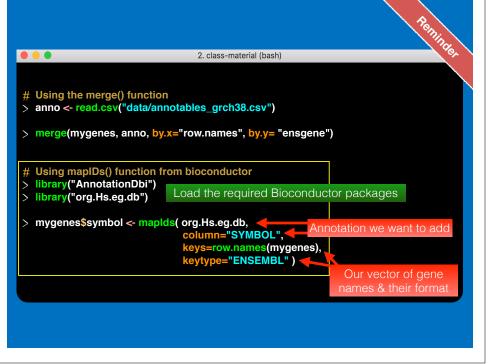
Translating between identifiers: UniProt < <u>www.uniprot.org</u> >




Translating between identifiers

- · Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- · Often you will have to translate one set of ids into another
 - · A program might only accept certain types of ids
 - You might have a list of genes with one type of id and info for genes with another type of id
- Various web sites translate ids -> best for small lists
 - UniProt < www.uniprot.org>; IDConverter < idconverter.bioinfo.cnio.es >
- · VLOOKUP in Excel good if you are an excel whizz I am not!
 - Download flat file from Entrez, Uniprot, etc; Open in Excel; Find columns that correspond to the 2 IDs you want to convert between; Sort by ID; Use vlookup to translate your list

Translating between identifiers: Excel VLOOKUP


VLOOKUP(lookup_value, table_array, col_index_num)

Translating between identifiers

- · Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- · Often you will have to translate one set of ids into another
 - · A program might only accept certain types of ids
 - · You might have a list of genes with one type of id and info for genes with another type of id
- Various web sites translate ids -> best for small lists
 - UniProt < www.uniprot.org >; IDConverter < idconverter.bioinfo.cnio.es >
- VLOOKUP in Excel -> good if you are an excel whizz I am not!
 - Download flat file from Entrez, Uniprot, etc; Open in Excel; Find columns that correspond to the two ids you want to convert between; Use vlookup to translate your list
- Use the merge() or mapIDs() functions in R fast, versatile & reproducible!
 - Also clusterProfiler::bitr() function and many others... [Link to clusterProfiler vignette]

bitr: Biological Id TranslatoR

clusterProfiler provides bitr and bitr_kegg for converting ID types. Both bitr and bitr_kegg support man, species including model and many non-model organisms.

```
## SYMBOL ENTREZID
## 1 GPX3 2878
## 2 GLRX 2745
## 3 LBP 3929
## 4 CRYAB 1410
## 5 DEFB1 1672
## 6 HCLS1 3059
```

See package vignette:

https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html

GO < <u>www.geneontology.org</u> >

- What function does HSF1 perform?
 - response to heat; sequence-specific DNA binding; transcription; etc
- Ontology => a structured and controlled vocabulary that allows us to annotate gene products consistently, interpret the relationships among annotations, and can easily be handled by a computer
- GO database consists of 3 ontologies that describe gene products in terms of their associated biological processes, cellular components and molecular functions

What functional set databases do you want?

DEGs

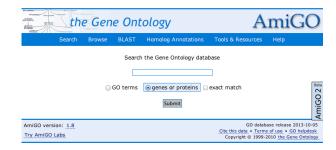
Pathway

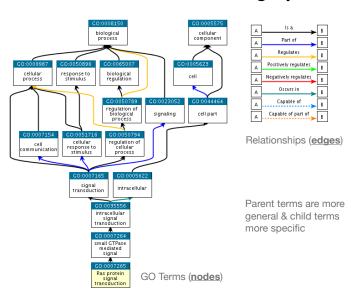
GO

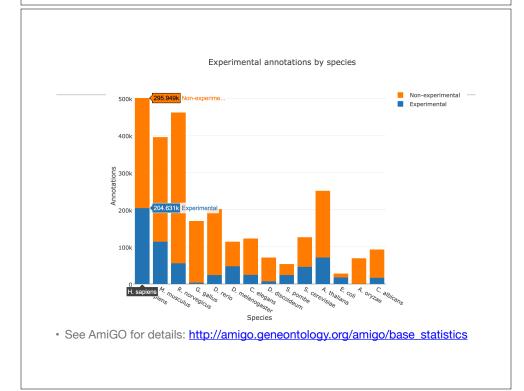
IPA

etc....

KEGG

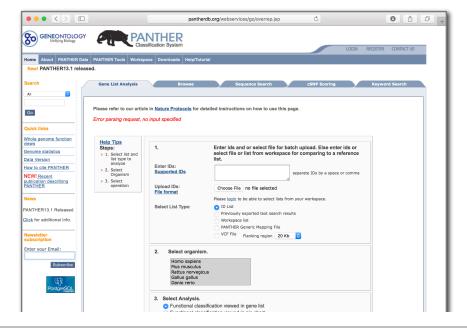

- · Most commonly used:
 - · Gene Ontology (GO)
 - KEGG Pathways (mostly metabolic)
 - · GeneGO MetaBase


- Ingenuity Pathway Analysis (IPA) INGENUITY
- · Many others...
 - Enzyme Classification, PFAM, Reactome,
 - Disease Ontology, MSigDB, Chemical Entities of Biological Interest, Network of Cancer Genes etc...
 - See: Open Biomedical Ontologies (<u>www.obofoundry.org</u>)


GO Annotations

- GO is not a stand-alone database of genes/proteins or sequences
- Rather gene products get annotated with GO terms by UniProt and other organism specific databases, such as Flybase, Wormbase, MGI, ZFIN, etc.
- Annotations are available through AmiGO < amigo.geneontology.org >

GO is structured as a "directed graph"



GO evidence codes


Evidence code	Evidence code description	Source of evidence	Manually checked	Current number of annotations*
IDA	Inferred from direct assay	Experimental	Yes	71,050
IEP	Inferred from expression pattern	Experimental	Yes	4,598
IGI	Inferred from genetic interaction	Experimental	Yes	8,311
IMP	Inferred from mutant phenotype	Experimental	Yes	61,549
IPI	Inferred from physical interaction	Experimental	Yes	17,043
ISS	Inferred from sequence or structural similarity	Computational	Yes	196,643
RCA	Inferred from reviewed computational analysis	Computational	Yes	103,792
IGC	Inferred from genomic context	Computational	Yes	4
IEA	Inferred from electronic annotation	Computational	No	15,687,382
IC	Inferred by curator	Indirectly derived from experimental or computational evidence made by a curator $ \\$	Yes	5,167
TAS	Traceable author statement	Indirectly derived from experimental or computational evidence made by the author of the published article		44,564
NAS	Non-traceable author statement	No 'source of evidence' statement given	Yes	25,656
ND	No biological data available	No information available	Yes	132,192
NR	Not recorded	Unknown	Yes	1,185

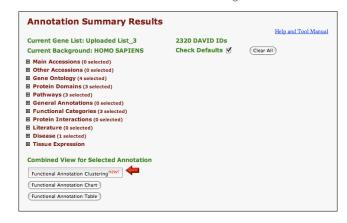
Use and misuse of the gene ontology annotations Seung Yon Rhee, Valerie Wood, Kara Dolinski & Sorin Draghici Nature Reviews Genetics 9, 509-515 (2008)

Can now do gene list analysis with GeneGO online!

Another popular online tool: **DAVID** at NIAID < <u>david.abcc.ncifcrf.gov</u> >

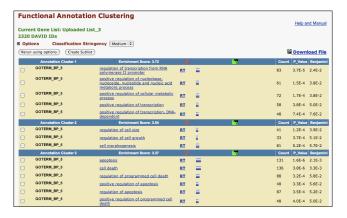
DAVID

Functional Annotation Chart


Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
Da Wei Huang, Brad T Sherman & Richard A Lempicki
Nature Protocols 4, 44 - 57 (2009)

Overlapping functional sets

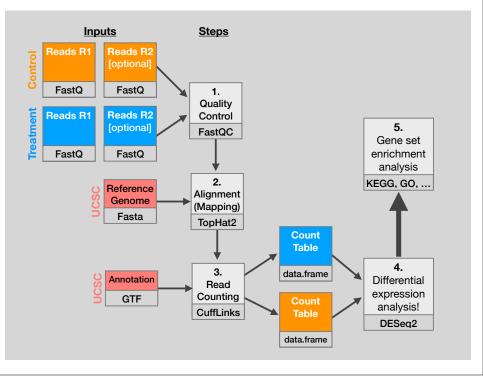
- · Many functional sets overlap
 - In particular those from databases that are hierarchical in nature (e.g. GO)
- · Hierarchy enables:
 - Annotation flexibility (e.g. allow different degrees of annotation completeness based on what is known)
 - Computational methods to "understand" function relationships (e.g. ATPase function is a subset of enzyme function)
- · Unfortunately, this also makes functional profiling trickier
 - · Clustering of functional sets can be helpful in these cases


DAVID

· DAVID now offers functional annotation clustering:

DAVID Functional Annotation Clustering

· Based on shared genes between functional sets



Want more?

- GeneGO < portal.genego.com >
 - MD/PhD curated annotations, great for certain domains (eg, Cystic Fibrosis)
 - · Nice network analysis tools
 - · Email us for access
- Oncomine < www.oncomine.org >
 - · Extensive cancer related expression datasets
 - · Nice concept analysis tools
 - · Research edition is free for academics, Premium edition \$\$\$
- · Lots and lots other R/Bioconductor packages in this area!!!

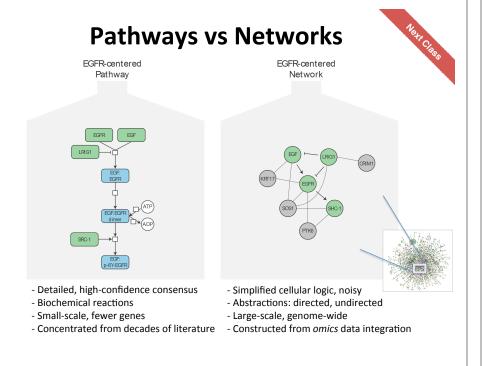
Data structure: counts + metadata

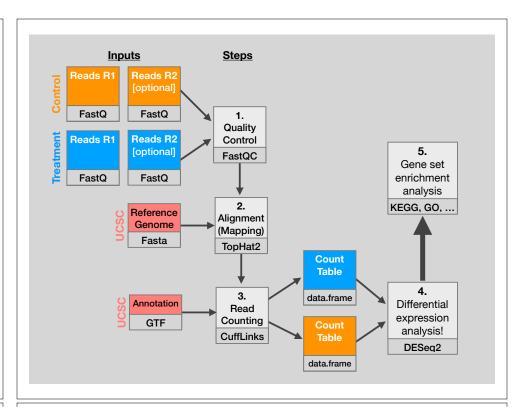
countData

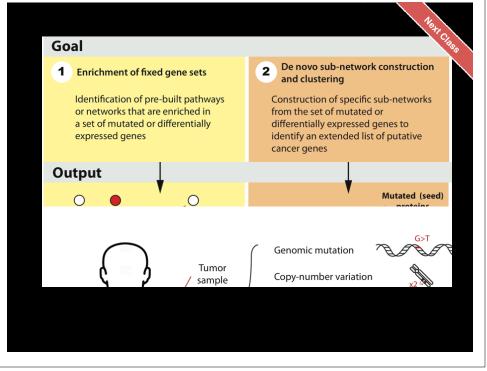
gene	ctrl_1	ctrl_2	exp_1	exp_2
geneA	10	11	56	45
geneB	0	0	128	54
geneC	42	41	59	41
geneD	103	122	1	23
geneE	10	23	14	56
geneF	0	1	2	0

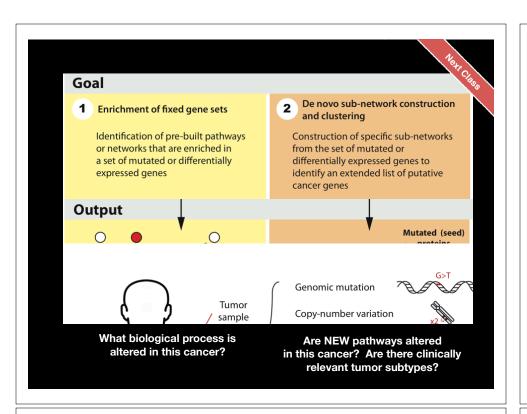
countData is the count matrix (number of reads coming from each gene for each sample)

<u>colData</u>

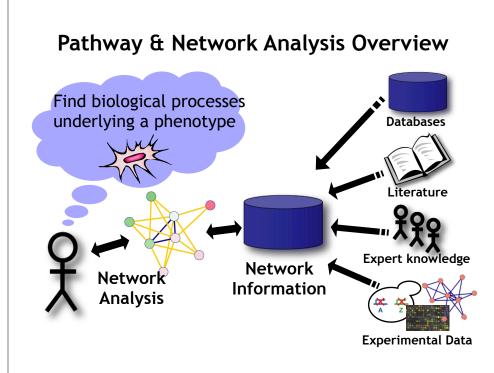

id	treatment	sex	
ctrl_1	control	male	
ctrl_2	control	female	
exp_1	treatment	male	
exp_2	treatment	female	

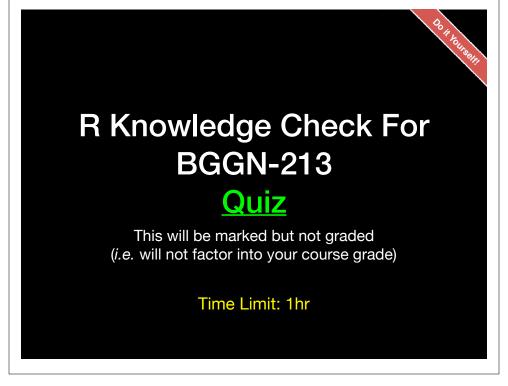

Sample names:


ctrl_1, ctrl_2, exp_1, exp_2


colData describes metadata about the *columns* of countData

First column of colData must match column names of countData (-1st)





Pathway analysis (a.k.a. geneset enrichment) **Limitations**

- Geneset annotation bias: can only discover what is already known
- Non-model organisms: no high-quality genesets available
- · Post-transcriptional regulation is neglected
- Tissue-specific variations of pathways are not annotated
 - e.g. NF-κB regulates metabolism, not inflammation, in adipocytes
- · Size bias: stats are influenced by the size of the pathway
 - Many pathways/receptors converge to few regulators e.g. Tens of innate immune receptors activate four TFs: NF-kB, AP-1, IRF3/7, NFAT

