
Replace “math” with “R
programing” to help reframe

your self criticism when
learning…

Side-Note:

BGGN 213
R Functions

Lecture 6

Barry Grant

http://thegrantlab.org/bggn213

http://thegrantlab.org/bggn213

Recap From Last Time:
• Why it is important to visualize data during exploratory data

analysis.

• Discussed data visualization best practices and how good
visualizations optimize for the human visual system.

• Introduced the extensive graphical capabilities of base R
with a focus on generating and customizing scatterplots,
histograms, bar graphs, boxplots, (dendrograms and
heatmaps).

• Use the par() function to control fine grained details of the
afore mentioned plot types.

• Used (and SAVED!) an R script with all our work!

[MPA Link]

Today’s Learning Goals
• Last days R visualization hands-on exercise revisited…

• Make our work error free and produce a nice report!

• More on data import
• File pre-check recommendations
• Using read.table() and friends for flat files

• Writing your own functions
• What, Why, When and How

• Hands-on session
• Practice, tips, techniques for troubleshooting, and best

practice guidelines for writing and debugging your functions

Today’s Learning Goals
• Last days R visualization hands-on exercise revisited…

• Make our work error free and produce a nice report!

• More on data import
• File pre-check recommendations
• Using read.table() and friends for flat files

• Writing your own functions
• What, Why, When and How

• Hands-on session
• Practice, tips, techniques for troubleshooting, and best

practice guidelines for writing and debugging your functions

Class 5 Revisited
• Open your previous class05 RStudio project

(and your saved R script)

• Can you source this class05.R file to re-generate
all your plots without error?

[Take 2-3 minutes]

1
2

• If so you can now generate a nice HTML report
of your work to date...

Today’s Learning Goals
• Last days R visualization hands-on exercise revisited…

• Make our work error free and produce a nice report!

• More on data import
• File pre-check recommendations
• Using read.table() and friends for flat files

• Writing your own functions
• What, Why, When and How

• Hands-on session
• Practice, tips, techniques for troubleshooting, and best

practice guidelines for writing and debugging your functions

• Get organized!
• Start a new ‘project’ in your class directory (e.g. a folder on

your Desktop where you are storing all your class material)
• In RStudio File > New Project > New Directory > … class06

• Inspect the file at the command line
• Move the input file into your project directory Use the UNIX

commands head, less etc.
• Does it have a header line or comments to be included,

ignored or removed?
• Avoid file (or field names) with spaces or special characters

such as ?, $,%, ^, &, *, } etc.
• Short names are prefered over longer names.
• Does the file end with a blank line or a RTN?

Pre-check recommendations

Pre-check recommendations
• Get organized!

• Start a new ‘project’ in your class directory (e.g. a folder on
your Desktop where you are storing all your class material)

• In RStudio File > New Project > New Directory > … class06

• Inspect the file
• Move the input file into your project directory
• Open it from the RStudio Files tab.
• Does it have a header line or comments to be included,

ignored or removed?
• Avoid file (or field names) with spaces or special characters

such as ?, $,%, ^, &, *, } etc.
• Short names are preferred over longer names.
• Does the file end with a blank line or a RTN?

read.table() and friends for flat files
• The read.table() function is the base of all flat file import functions

• read.delim(“filename.txt”, sep=“\t”) TAB
• read.csv(“filename.txt”, sep=“,”) COMMA
• read.csv2(“filename.txt”, sep=“;”) SEMI-COLON
• read.table(“filename.txt”, sep=“”) WHITE SPACE

• What other differences are there between these functions?

• MS EXCEL file import options include:
• Export (i.e. “Save As…”) your excel data to plain text CSV format.
• Or if you must, use readxl::read_excel() to read specified parts of your sheets.

• For fast and convenient reading of very large flat files files
• Try data.table::fread() use is similar to read.table() but it automatically finds

field separators and header rows. It is also much faster!

• Saving and loading .RData files…
• Use the functions save() and load() for saving and loading multiple objects to

space efficient binary format files.

Your turn!
https://bioboot.github.io/bggn213_S18/class-material/test1.txt

Do it Yourself!

• Start a new RStudio Project in a clean directory
• Open a new Rmarkdown document and give it a

name and descriptive text.
• Download each of the above files and move them

into your Project
• Experiment with read.table() to get their data

successfully input into your R session.

https://bioboot.github.io/bggn213_S18/class-material/test2.txt
https://bioboot.github.io/bggn213_S18/class-material/test3.txt

https://bioboot.github.io/bggn213_S18/class-material/test1.txt
https://bioboot.github.io/bggn213_S18/class-material/test2.txt
https://bioboot.github.io/bggn213_S18/class-material/test3.txt

Today’s Learning Goals
• Last days R visualization hands-on exercise revisited…

• Make our work error free and produce a nice report!

• More on data import
• File pre-check recommendations
• Using read.table() and friends for flat files

• Writing your own functions
• What, Why, When and How

• Hands-on session
• Practice, tips, techniques for troubleshooting, and best

practice guidelines for writing and debugging your functions

What is a function

 name.of.function <- function(arg1, arg2) {
 statements
 return(something)
}

1 2

1

2

Name (can be almost anything you want)

Body (where the work gets done)

3

3

Arguments (i.e. input to your function)

What is a function

add <- function(x, y=1) {
 # Sum the input x and y
 x + y
}

1 2

1

2

Name (in this case “add”)

Body (will return the result of the last statement)

3

3

Arguments (here “x” and “y”)

Your function is treated just
like any other function…

add <- function(x, y=1) {
 # Sum the input x and y
 x + y
}

add(x=1, y=4)
add(1, 4)
add(1)

add(c(1, 2, 3))
add(c(1, 2, 3), 4)

add(1, 2, 2)
add(x=1, y=“b”)

Why would you write a
function

What does this code do?

df$a <- (df$a - min(df$a)) / (max(df$a) - min(df$a))

df$b <- (df$b - min(df$a)) / (max(df$b) - min(df$b))

df$c <- (df$c - min(df$c)) / (max(df$c) - min(df$c))

df$d <- (df$d - min(df$d)) / (max(df$a) - min(df$d))

When you find yourself doing the same thing 3 or
more times it is time to write a function.

Why would you write a
function

Consider copy and paste errors:

df$a <- (df$a - min(df$a)) / (max(df$a) - min(df$a))

df$b <- (df$b - min(df$a)) / (max(df$b) - min(df$b))

df$c <- (df$c - min(df$c)) / (max(df$c) - min(df$c))

df$d <- (df$d - min(df$d)) / (max(df$a) - min(df$d))

When you find yourself doing the same thing 3 or
more times it is time to write a function.

Why would you write a
function

Here the intent is far more clear

df$a <- rescale(df$a)

• Makes the purpose of the code more clear
• Reduce mistakes from copy/paste
• Makes updating your code easer
• Reduce duplication and facilitate re-use.

Consider the advantages:

How would you write this
function

First consider the original code:

df$a <- (df$a - min(df$a)) / (max(df$a) - min(df$a))

df$b <- (df$b - min(df$a)) / (max(df$b) - min(df$b))

df$c <- (df$c - min(df$c)) / (max(df$c) - min(df$c))

df$d <- (df$d - min(df$d)) / (max(df$a) - min(df$d))

Start with a working code snippet, simplify, reduce
calculation duplication,…

How would you write this
function

Simplify to work with a generic vector named “x”

x <- (x - min(x)) / (max(x) - min(x))

Start with a working code snippet, simplify, reduce
calculation duplication,…

How would you write this
function

Note that we call the min() function twice…

x <- (x - min(x)) / (max(x) - min(x))

Start with a working code snippet, simplify, reduce
calculation duplication,…

How would you write this
function

Note that we call the min() function twice…

xmin <- min(x)
x <- (x - xmin) / (max(x) - xmin)

Start with a working code snippet, simplify, reduce
calculation duplication,…

How would you write this
function

Further optimization to use the range() function…

rng <- range(x)
x <- (x - rng[1]) / (rng[2] - rng[1])

Start with a working code snippet, simplify, reduce
calculation duplication,…

How would you write this
function

You need a “name”, “arguments” and “body”…

rescale <- function(x) {
 rng <-range(x)
 (x - rng[1]) / (rng[2] - rng[1])
}

Test on a small example where you know the answer
rescale(1:10)

Start with a working code snippet, simplify, reduce
calculation duplication, finally turn it into a function

How would you write this
function

Test on a small example where you know the answer
rescale(1:10)

How would you get your function to work here…
rescale(c(1,2,NA,3,10))

What should your function do here?
recale(c(1,10,”string”))

Test, Fail, Change, Test again,…

Side-Note: Seeing and using
your function in RStudio

• An easy way to visualize the code of a function is to
type its name without the parentheses ().

• If you have your new function saved to a separate file
then you can load and execute it using
the source() function. E.g. source("MyUtils.R")

• The return() statement is not required in a function but
it is advisable to use it when the function performs
several computations. It has the effect of ending the
function execution and returning control to the code
which called it.

rescale <- function(x, na.rm=TRUE, plot=FALSE) {
 if(na.rm) {
 rng <-range(x, na.rm=na.rm)
 } else {
 rng <-range(x)
 }
 print("Hello")

 answer <- (x - rng[1]) / (rng[2] - rng[1])

 print("is it me you are looking for?")

 if(plot) {
 plot(answer, typ="b", lwd=4)
 }
 print("I can see it in ...")
}

rescale <- function(x, na.rm=TRUE, plot=FALSE) {
 if(na.rm) {
 rng <-range(x, na.rm=TRUE)
 } else {
 rng <-range(x)
 }
 print("Hello")

 answer <- (x - rng[1]) / (rng[2] - rng[1])
 return(answer)
 print("is it me you are looking for?")

 if(plot) {
 plot(answer, typ="b", lwd=4)
 }
 print("I can see it in ...")
}

Today’s Learning Goals
• Last days R visualization hands-on exercise revisited…

• Make our work error free and produce a nice report!

• More on data import
• File pre-check recommendations
• Using read.table() and friends for flat files

• Writing your own functions
• What, Why, When and How

• Hands-on session
• Practice, tips, techniques for troubleshooting, and best

practice guidelines for writing and debugging your functions

Your turn!
https://bioboot.github.io/bggn213_W19/lectures/#6

Do it Yourself!

Concentrate on Section 1B and questions 1 to 6.
Other sections are there for your benefit.

[Also aim to generate a HTML report from your R script]

https://bioboot.github.io/bggn213_W19/lectures/#6

Can you improve this analysis code?
library(bio3d)
s1 <- read.pdb("4AKE") # kinase with drug
s2 <- read.pdb("1AKE") # kinase no drug
s3 <- read.pdb("1E4Y") # kinase with drug

s1.chainA <- trim.pdb(s1, chain="A", elety="CA")
s2.chainA <- trim.pdb(s2, chain="A", elety="CA")
s3.chainA <- trim.pdb(s1, chain="A", elety="CA")

s1.b <- s1.chainA$atom$b
s2.b <- s2.chainA$atom$b
s3.b <- s3.chainA$atom$b

plotb3(s1.b, sse=s1.chainA, typ="l", ylab="Bfactor")
plotb3(s2.b, sse=s2.chainA, typ="l", ylab="Bfactor")
plotb3(s3.b, sse=s3.chainA, typ="l", ylab="Bfactor")

Do it Yourself!

Homework!
New DataCamp Assignments

• Introduction to R Markdown

• Functions

• Loops

Muddy Point Assessment Form Link

https://goo.gl/forms/GrFc3oDfAwCCj2BA2

Replace “math” with “R
programing” to help reframe

your self criticism when
learning…

Side-Note:

