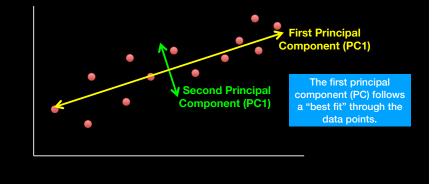


Recap of Lecture 8

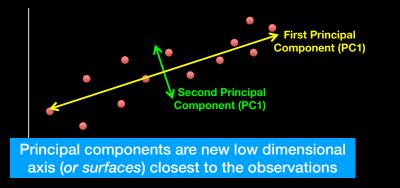
- Introduction to machine learning
 - Unsupervised, supervised and reinforcement learning
- Clustering
 - K-means clustering
 - Hierarchical clustering
- Dimensionality reduction, visualization and 'structure' analysis
 - Principal Component Analysis (PCA)

[Muddy Point Feedback Link]


A long time ago in a galaxy far, far away....

PCA: Principal Component Analysis

PCA projects the features onto the principal components.

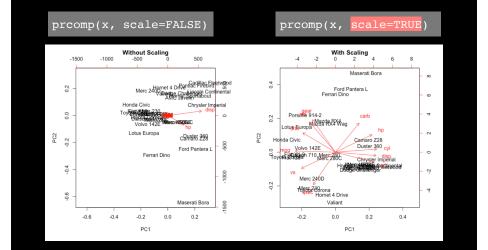

The motivation is to reduce the features dimensionality while only losing a small amount of information.

PCA: Principal Component Analysis

PCA projects the features onto the principal components.

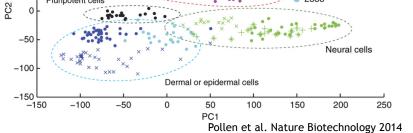
The motivation is to reduce the features dimensionality while only losing a small amount of information.

Recap: PCA objectives

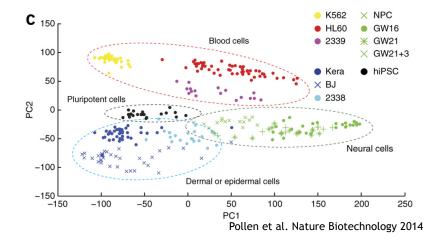

- To reduce dimensionality
- To visualize multidimensional data
- To choose the most useful variables (features)
- To identify groupings of objects (e.g. genes/samples)
- To identify outliers

Practical PCA issue: Scaling

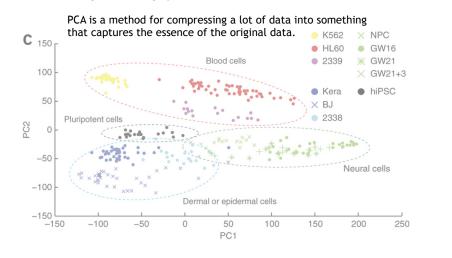
> data(mtcars) > head(mtcars)


	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb	
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4	
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4	
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1	
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1	
Hornet Sportab	out 18.7	8	360	175	3.15	3.440	17.02	0	0	3	2	
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1	
# Means and sta	andard d	evia	tions	vary	/ a lo	ot						
> round(colMean	ns(mtcar	s), :	2)									
mpg cyl	disp	hj	o di	rat	w	t qs	ec	vs		am	gear	carb
20.09 6.19	230.72 1	46.69	Э З	.60	3.22	2 17.8	35 0	.44	(9.41	3.69	2.81
<pre>> round(apply(mtcars, 2, sd), 2)</pre>												
mpg cyl	disp	h	o di	rat	w	t qs	ec	vs		am	gear	carb
6.03 1.79	123.94	68.5	5 O	.53	0.98	8 1. [.]	79 0	.50	(9.50	0.74	1.62

Practical PCA issue: Scaling


Reference Slides

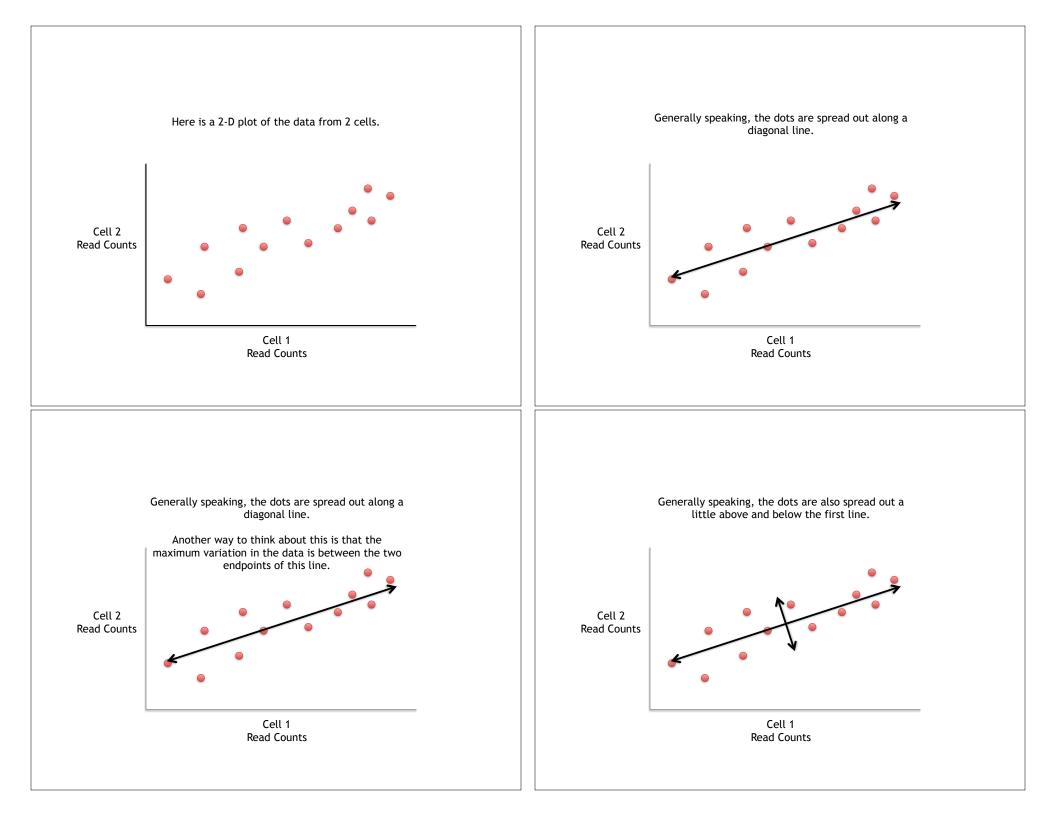
Your turn! **Unsupervised Learning Mini-Project** Input: read, View/head, PCA: prcomp, Cluster: kmeans, hclust Compare: plot, table, etc. This PCA plot shows clusters of cell types. This graph was drawn from single-cell RNA-seq. There were about 10,000 transcribed genes in each cell. K562 × NPC **C** 150 GW16 HL60 ₩ GW21 Blood cells 2339 100 X GW21+3 hiPSC Kera 50 × BJ 2338 Pluripotent cells 0 Neural cells

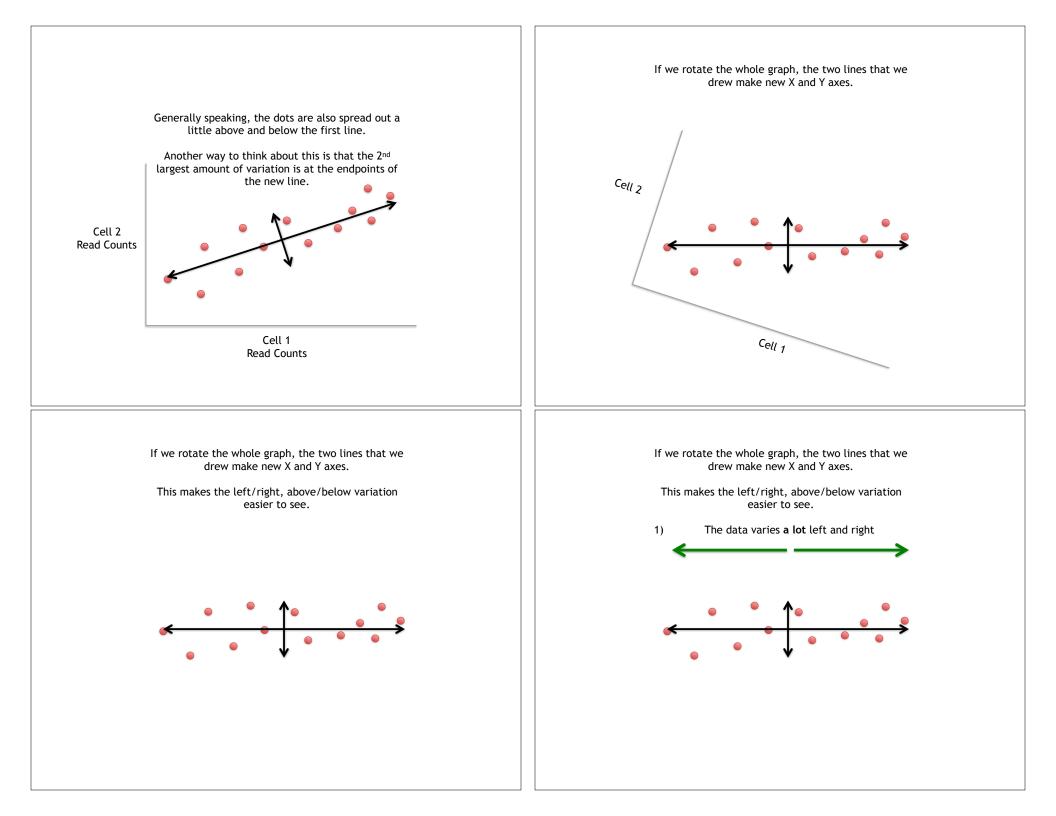

This PCA plot shows clusters of cell types.

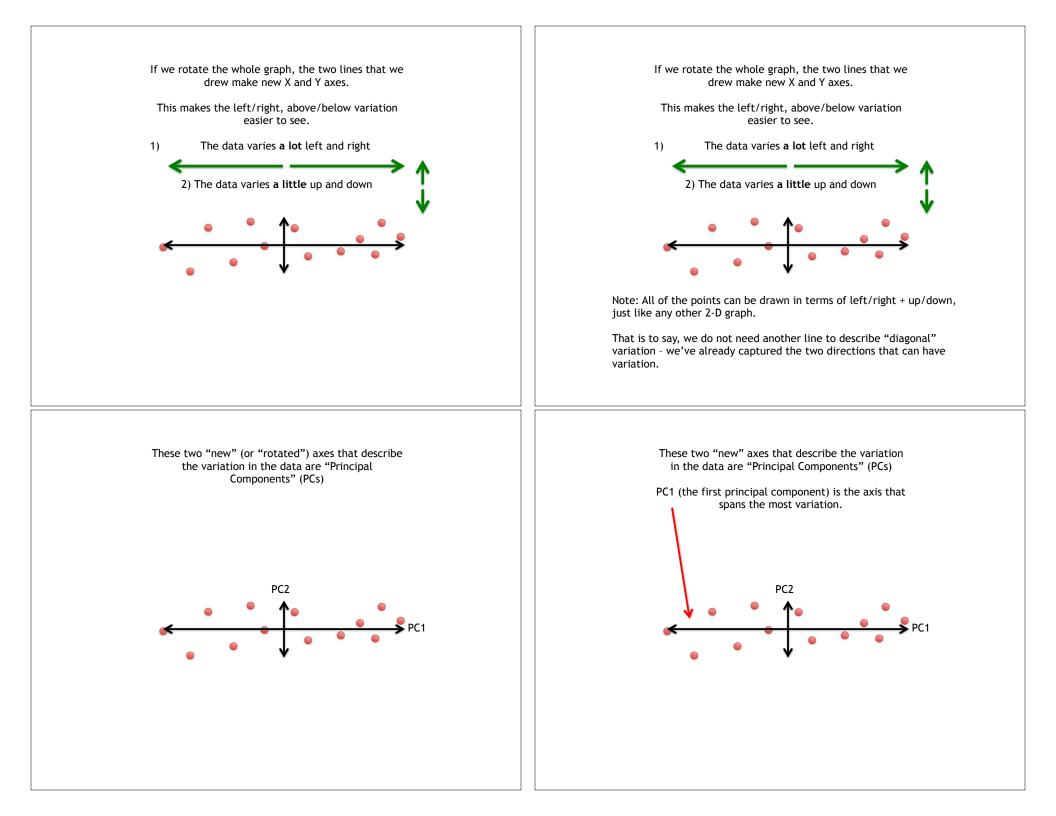
Each dot represents a single-cell and its transcription profile The general idea is that cells with similar transcription should cluster.

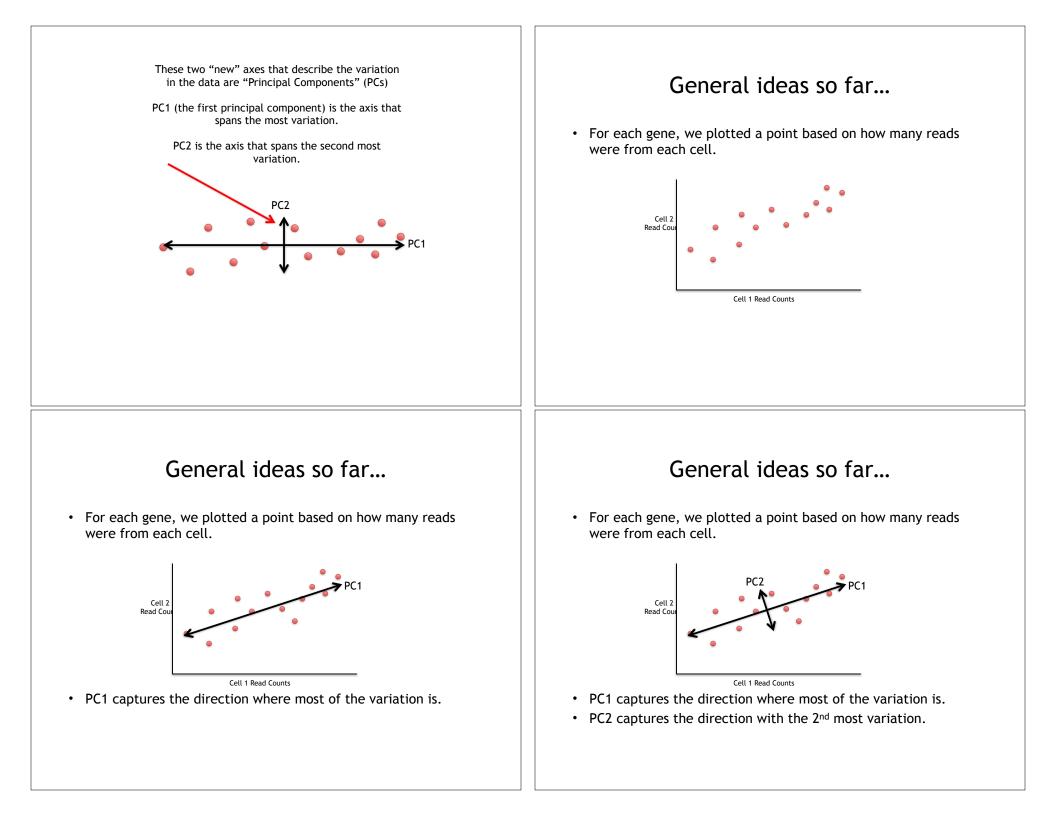
This PCA plot shows clusters of cell types.

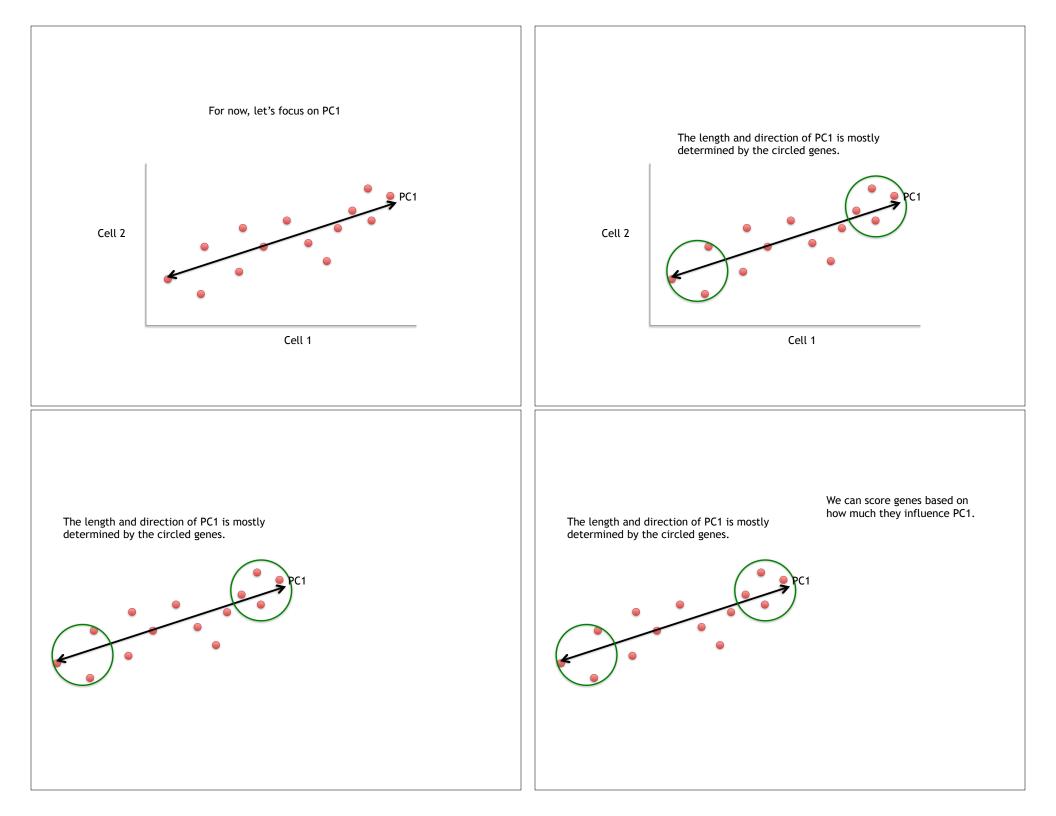
How does transcription from 10,000 genes get compressed to a single dot on a graph?

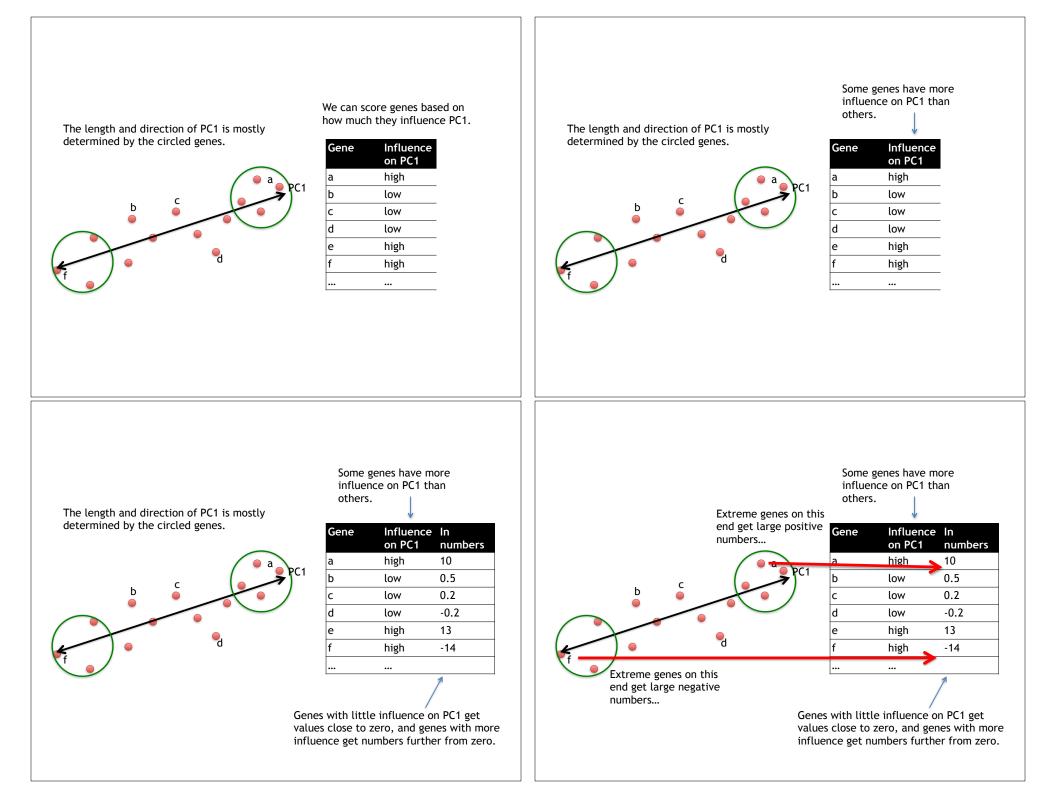

What does PCA aim to do?

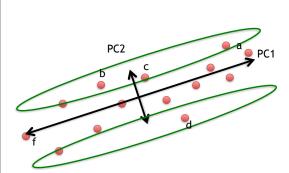

- PCA takes a dataset with a lot of dimensions (i.e. lots of cells) and flattens it to 2 or 3 dimensions so we can look at it.
 - It tries to find a meaningful way to flatten the data by focusing on the things that are different between cells. (much, much more on this later)


A PCA example


Again, we'll start with just two cells Here's the data:


Gene	Cell1 reads	Cell2 reads
a	10	8
b	0	2
с	14	10
d	33	45
e	50	42
f	80	72
g	95	90
h	44	50
i	60	50
(etc)	(etc)	(etc)





Genes that influence PC2

Gene	Influence on PC2	ln numbers
a	medium	3
b	high	10
с	high	8
d	high	-12
e	low	0.2
f	low	-0.1

Our two PCs

PC1

PC2

Gene	Influence on PC1	ln numbers	Gene	Influence on PC2	ln numbers
a	high	10	a	medium	3
b	low	0.5	b	high	10
с	low	0.2	с	high	8
d	low	-0.2	d	high	-12
e	high	13	e	low	0.2
f	high	-14	f	low	-0.1

Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

	PC1		PC2				
Gene	Influence on PC1	In numbers	Gene	Influence on PC2	In numbers		
a	high	10	a	medium	3		
b	low	0.5	b	high	10		
с	low	0.2	с	high	8		
d	low	-0.2	d	high	-12		
e	high	13	e	low	0.2		
f	high	-14	f	low	-0.1		

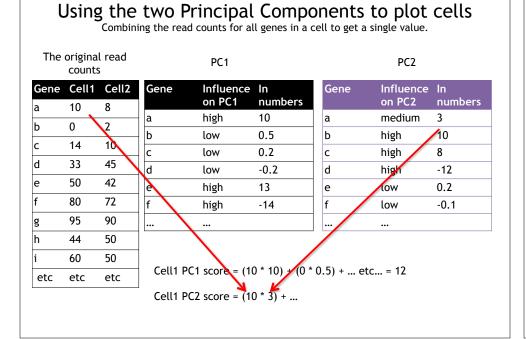
Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

The	The original read counts			PC1		PC2			
Gene	Cell1 10	Cell2 8	Gene	Influence on PC1	ln numbers	Gene	Influence on PC2	ln numbers	
a	-	-	a	high	10	a	medium	3	
b	0	2	b	low	0.5	b	high	10	
с	14	10	с	low	0.2	с	high	8	
d	33	45	d	low	-0.2	d	high	-12	
e	50	42	е	high	13	е	low	0.2	
f	80	72	f	high	-14	f	low	-0.1	
g	95	90							
h	44	50							
i	60	50							
etc	etc	etc	-						
			-						

Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

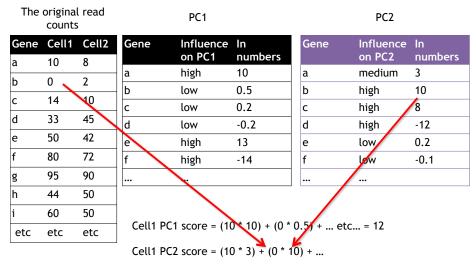
The original read counts			PC1		PC2			
Gene a	Cell1 10	Cell2 8	Gene	Influence on PC1	ln numbers	Gene	Influence on PC2	ln numbers
	· •	2	a	high	10	a	medium	3
b	0	¥	b	low	0.5	b	high	10
с	14	10	с	low	0.2	с	high	8
d	33	45	d	low	-0.2	d	high	-12
e	50	42	e	high	13	е	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90						
h	44	50				·		
i	60	50		Ľ		4		
etc	etc	etc	Cell1 P	C1 score = (re	ead count *	influence) +	for all gen	es

Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.


The	The original read counts			PC1		PC2			
Gene a	Cell1 10	Cell2 8	Gene	Influence on PC1	In numbers	Gene	Influence on PC2	ln numbers	
	· · ·	2	a	high	10	a	medium	3	
b	0	×	b	low	0.5	b	high	10	
с	14	10	c	low	0.2	с	high	8	
d	33	45	d	low	-0.2	d	high	-12	
e	50	42	e	high	13	e	low	0.2	
f	80	72	f	high	-14	f	low	-0.1	
g	95	90	1						
h	44	50							
i	60	50	-	Ŕ	V				
etc	etc	etc	Cell1 P	C1 score = (10)) * 10) +				

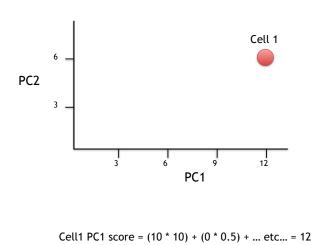
Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

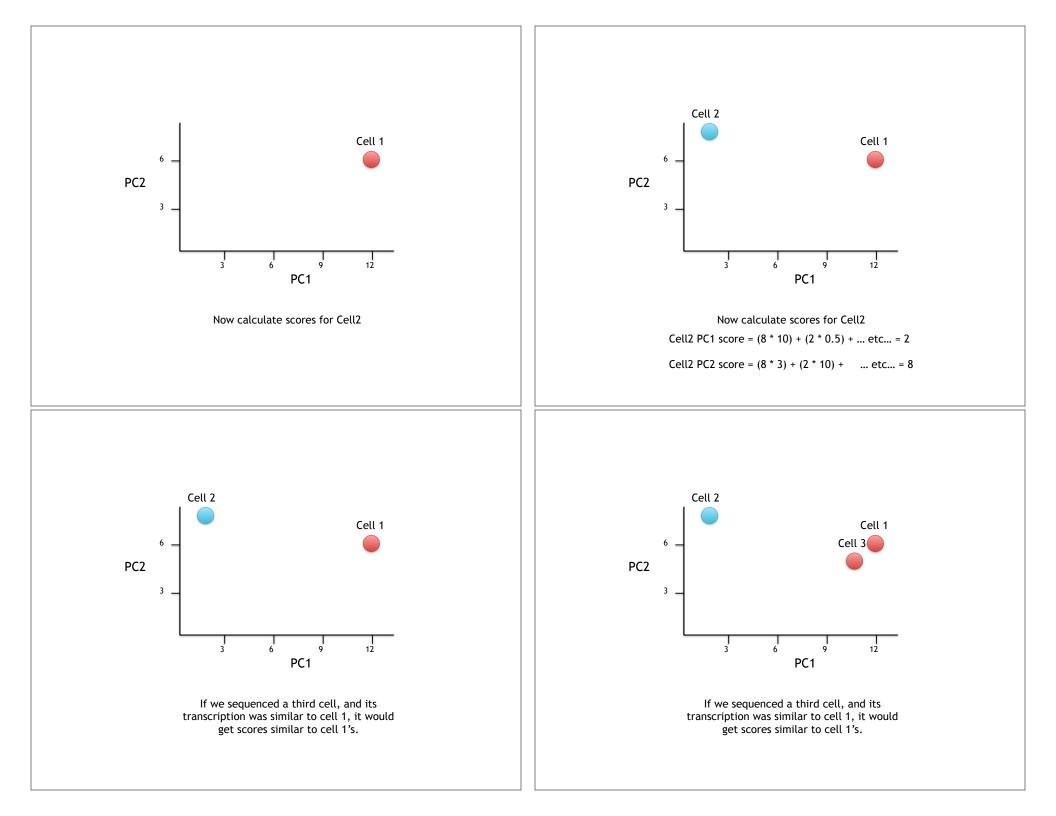
The original read counts			PC1		PC2			
Gene a	Cell1 10	Cell2 8	Gene	Influence on PC1	ln numbers	Gene	Influence on PC2	ln numbers
		-	a	high	10	a	medium	3
b	0	2	b	low	0.5	b	high	10
с	14	10	c	low	0.2	с	high	8
d	33	45	8	low	-0.2	d	high	-12
e	50	42	e	high	13	е	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90		\				
h	44	50						
i	60	50			1	1		
etc	etc	etc	Cell1 PC	C1 score = (10	0 * 10) + (0 * 0	0.5) +		


Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

The	The original read counts			PC1		PC2			
Gene	Cell1		Gene	Influence on PC1	ln numbers	Gene	Influence on PC2	In numbers	
a	10	8	a	high	10	a	medium	3	
b	0	2	b	low	0.5	b	high	10	
с	14	10	c	low	0.2	c	high	8	
d	33	45	d	low	-0.2	d	high	-12	
e	50	42	e	high	13	e	low	0.2	
f	80	72	f	high	-14	e f	low	-0.1	
g	95	90	· · · · · · · · · · · · · · · · · · ·						
h	44	50							
i	60	50							
etc	etc	etc	Cell1 PC	1 score = (10	0 * 10) + (0 *	0.5) + etc.	= 12		
L			1						

Using the two Principal Components to plot cells


Combining the read counts for all genes in a cell to get a single value.


Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

The	The original read counts		PC1				PC2				
Gene a	Cell1 10	Cell2 8	Gene	Influence on PC1	ln numbers	G	ene	Influence on PC2	ln numbers		
	-	-	a	high	10	a		medium	3		
b	0	2	b	low	0.5	b		high	10		
с	14	10	с	low	0.2	с		high	8		
d	33	45	d	low	-0.2	d		high	-12		
e	50	42	e	high	13	e		low	0.2		
f	80	72	f	high	-14	f		low	-0.1		
g	95	90									
h	44	50									
i	60	50	1								
etc	etc	etc	Cell1 P	C1 score = (10	0 * 10) + (0 *	* 0.5) + etc	= 12			
			Cell1 P	C2 score = (10	0 * 3) + (0 *	10) +	et	c = 6			

Cell1 PC2 score = (10 * 3) + (0 * 10) + ... etc... = 6

Predicting Malignancy Of New samples

```
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)</pre>
```

```
plot(wisc.pr$x[,1:2], col= (diagnosis+1))
points(npc[,1], npc[,2], col="blue", pch=16)
```

[Muddy Point Assessment]