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Todays Menu:
• What is a Genome? 

• Genome sequencing and the Human genome project 


• What can we do with a Genome? 
• Compare, model, mine and edit


• Modern Genome Sequencing 
• 1st, 2nd and 3rd generation sequencing


• Workflow for NGS 
• RNA-Sequencing and Discovering variation

What is a genome?

The total genetic 
material of an 
organism by which 
individual traits are 
encoded, controlled, 
and ultimately passed 
on to future 
generations

Genetics and Genomics

• Genetics is primarily the study of individual genes, 
mutations within those genes, and their inheritance 
patterns in order to understand specific traits. 

• Genomics expands upon classical genetics and 
considers aspects of the entire genome, typically 
using computer aided approaches.

Side note!



Genomes come in  
many shapes

• Primarily DNA, but can be 
RNA in the case of some 
viruses


• Some genomes are circular, 
others linear


• Can be organized into 
discrete units (chromosomes) 
or freestanding molecules 
(plasmids)

Prokaryote

Eukaryote

Bacteriophage

Side note!

Under a microscope, a 
Eukaryotic cell's genome (i.e. 
collection of chromosomes) 
resembles a chaotic jumble of 
noodles. The looping is not 
random however and appears 
to play a role in controlling 
gene regulation.

Image credit:  
Scientific American 
March 2019

Side n
ote!

Genomes come in  
many sizes

Modified from image by Estevezj / CC BY-SAGenome size (Mb)
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Genome Databases
NCBI Genome:  

http://www.ncbi.nlm.nih.gov/genome 
  



Genome Databases
(EBI) Ensemble Genomes:  

http://ensemblgenomes.org 
  

Genome Databases
UCSC Genome Browser Gateway:  

https://genome.ucsc.edu/ 
  

Early Genome Sequencing

• Chain-termination “Sanger” 
sequencing was developed in 
1977 by Frederick Sanger, 
colloquially referred to as 
the “Father of Genomics” 

• Sequence reads were 
typically 750-1000 base pairs 
in length with an error rate 
of ~1 / 10000 bases

http://en.wikipedia.org/wiki/Frederick_Sanger

The First Sequenced Genomes

http://en.wikipedia.org/wiki/Phi_X_174 http://phil.cdc.gov/

Haemophilus influenzae 
• Completed in 1995
• 1,830,140 base pairs, dsDNA 
• 1,740 genes

Bacteriophage φ-X174 
• Completed in 1977 
• 5,386 base pairs, ssDNA 
• 11 genes



The Human Genome Project

• The Human Genome Project (HGP) was an 
international, public consortium that began in 
1990 

– Initiated by James Watson 
– Primarily led by Francis Collins 
– Eventual Cost: $2.7 Billion  

• Celera Genomics was a private corporation that 
started in 1998 

– Headed by Craig Venter  
– Eventual Cost: $300 Million 

• Both initiatives released initial drafts of the 
human genome in 2001 

– ~3.2 Billion base pairs, dsDNA 
– ~20,400 coding (& ~24,000 non-coding) genes*

*Latest numbers < link > 

DeCode Genetics INC.

Modern Genome Sequencing

• Next Generation Sequencing (NGS) technologies 
have resulted in a paradigm shift from long reads 
at low coverage to short reads at high coverage 

• This provides numerous opportunities for new 
and expanded genomic applications

Reference 

Reads 



Rapid progress of  
genome sequencing
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Image source: https://en.wikipedia.org/wiki/Carlson_curve Image source: https://en.wikipedia.org/wiki/Carlson_curve
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20,000 fold 

change in 


the last 

decade!

MRI: $4k

Rapid progress of  
genome sequencing

Major impact areas for  
genomic medicine

• Cancer: Identification of driver mutations and drugable variants, Molecular 
stratification to guide and monitor treatment, Identification of tumor specific 
variants for personalized immunotherapy approaches  (precision medicine).


• Genetic disease diagnose: Rare, inherited and so-called ‘mystery’ disease 
diagnose.


• Health management: Predisposition testing for complex diseases (e.g. 
cardiac disease, diabetes and others), optimization and avoidance of 
adverse drug reactions.  


• Health data analytics: Incorporating genomic data with additional health 
data for improved healthcare delivery.


• Prenatal testing, transplant rejection, pathogen detection, microbiome etc.

Goals of Cancer Genome Research

• Identify changes in the genomes of 
tumors that drive cancer progression


• Identify new targets for therapy


• Select drugs based on the genomics of 
the tumor


• Provide early cancer detection and 
treatment response monitoring 


• Utilize cancer specific mutations to derive 
neoantigen immunotherapy approaches 

Marc Rosenthal

Cancer Genomics



What can go wrong in cancer genomes? 

Type of change Some common technology to study changes 
DNA mutations WGS, WXS 

DNA structural variations WGS 

Copy number variation (CNV) CGH array, SNP array, WGS 

DNA methylation Methylation array, RRBS, WGBS 

mRNA expression changes mRNA expression array, RNA-seq 

miRNA expression changes miRNA expression array, miRNA-seq 

Protein expression Protein arrays, mass spectrometry 

WGS = whole genome sequencing, WXS = whole exome sequencing 

RRBS = reduced representation bisulfite sequencing, WGBS = whole genome bisulfite sequencing 

What can go wrong in  
cancer genomes?What can go wrong in cancer genomes? 

Type of change Some common technology to study changes 
DNA mutations WGS, WXS 

DNA structural variations WGS 

Copy number variation (CNV) CGH array, SNP array, WGS 

DNA methylation Methylation array, RRBS, WGBS 

mRNA expression changes mRNA expression array, RNA-seq 

miRNA expression changes miRNA expression array, miRNA-seq 

Protein expression Protein arrays, mass spectrometry 

WGS = whole genome sequencing, WXS = whole exome sequencing 

RRBS = reduced representation bisulfite sequencing, WGBS = whole genome bisulfite sequencing 

• Sequencing by Synthesis: Uses a polymerase 
to incorporate and assess nucleotides to a 
primer sequence 
– 1 nucleotide at a time 

• Sequencing by Ligation: Uses a ligase to 
attach hybridized sequences to a primer 
sequence 
– 1 or more nucleotides at a time (e.g. dibase)

DNA Sequencing Concepts

Modern NGS Sequencing Platforms

Modified from Mardis, ER (2011), Nature, 470, pp. 198-203

Illumina now dominates 
the sequencing market

• Today more than 90% of all sequencing is done on illumina 
machines


• Generating millions to billions of reads per run (machine 
dependent)


• High fidelity (>99.9% accuracy for short ~300 bp reads)


• $1,000 per human genome in 48 hours*



Illumina now dominates 
the sequencing market

• Today more than 90% of all sequencing is done on illumina 
machines


• Generating millions to billions of reads per run (machine 
dependent)

MiSeq NextSeq NovaSeq

(3 billion reads) (13 billion reads)(30 million read)

Illumina Flow Cells

• MiSeq (1-30 million read)


• NextSeq (3 billion reads)


• NovaSeq (13 billion reads)

Preparing Samples

Insert

(DNA for sequencing)

Insert Primer

Capture 
Sequence

Capture 
Sequence

Primer

AdaptersAdapters (DNA for sequencing)

Adapters are required for sequencing 

Adapter sequences include primer binding sites and capture sequences

Preparing Samples



Illumina – Reversible terminators

Images adapted from: Metzker, ML (2010), Nat. Rev. Genet, 11, pp. 31-46

Enzymatic amplification on glass surface Polymerase-mediated 
incorporation of end blocked 
fluorescent nucleotides

Cleave dye & blocking group, repeat…

Fluorescent emission from incorporated 
dye-labeled nucleotides

1 2

3

Illumina Sequencing - Video

https://www.youtube.com/watch?src_vid=womKfikWlxM&v=fCd6B5HRaZ8

NGS Sequencing Terminology

Sequence CoverageInsert Size

length

0 200 400 600

insert size

0 1 2 3 4 5 6 7 8 9 10 11 12

Base coverage by sequence

6X

Terminology: “Generations” of DNA Sequencing

Schadt, EE et al (2010), Hum. Mol. Biol., 19(RI2), pp. R227-R240



• Currently in active development 
• Hard to define what “3rd” generation means 
• Typical characteristics:

Third Generation Sequencing

– Long sequence reads (1,000bp+) 

– Single molecule (no PCR 
amplification step required) 

– Often associated with "nanopore 
technology" (e.g. Oxford Nanopore's 
MinION USB sequencer) 

– Note that other approaches are 
being developed...

The first direct RNA  
sequencing by nanopore

• For example this new nanopore direct RNA-sequencing 
method was published last year:

            https://www.nature.com/articles/nmeth.4577


• "Sequencing the RNA in a biological sample can unlock a 
wealth of information, including the identity of bacteria and 
viruses, the nuances of alternative splicing or the 
transcriptional state of organisms. However, current methods 
have limitations due to short read lengths and reverse 
transcription or amplification biases. Here we demonstrate 
nanopore direct RNA-seq, a highly parallel, real-time, single-
molecule method that circumvents reverse transcription or 
amplification steps.”

Side-Note:

What can we do with all 
this sequence information?

Population Scale Analysis

We can now begin to assess genetic differences on a 
very large scale, both as naturally occurring variation 
in human and non-human populations as well 
somatically within tumors

https://www.genomicsengland.co.uk/the-100000-genomes-project/



• While the sequencing of the human genome was a great 
milestone, the DNA from a single person is not representative of 
the millions of potential differences that can occur between 
individuals 

• These unknown genetic variants could be the cause of many 
phenotypes such as differing morphology, susceptibility to disease, 
or be completely benign. 

-William Cowper, 1785

“Variation is the spice of life”
-Kruglyak & Nickerson, 2001

“Variety’s the very spice of life”

Types of Genomic Variation

• Single Nucleotide Polymorphisms 
(SNPs) – mutations of one 
nucleotide to another  

• Insertion/Deletion Polymorphisms 
(INDELs) – small mutations removing 
or adding one or more nucleotides 
at a particular locus  

• Structural Variation                 
(SVs) – medium to large sized 
rearrangements of chromosomal 
DNA

AATCTGAGGCAT 
AATCTCAGGCAT

AATCTGAAGGCAT 
AATCT--AGGCAT

Darryl Leja, Courtesy: National Human Genome Research Institute. 

Differences Between Individuals

The average number of genetic differences in the 
germline between two random humans can be broken 
down as follows: 

• 3,600,000 single nucleotide differences 
• 344,000 small insertion and deletions 
• 1,000 larger deletion and duplications

[ Numbers from: 1000 Genomes Project, Nature, 2012 ]

Numbers change depending on ancestry!

SNP

ATCCTGATTCGGTGAACGTTATCGACGATCCGATCGA
        CGGTGAACGTTATCGACGATCCGATCGAACTGTCAGC
         GGTGAACGTTATCGACGTTCCGATCGAACTGTCAGCG

TGAACGTTATCGACGTTCCGATCGAACTGTCATCGGC
TGAACGTTATCGACGTTCCGATCGAACTGTCAGCGGC
TGAACGTTATCGACGTTCCGATCGAACTGTCAGCGGC

GTTATCGACGATCCGATCGAACTGTCAGCGGCAAGCT
TTATCGACGATCCGATCGAACTGTCAGCGGCAAGCT

ATCCTGATTCGGTGAACGTTATCGACGATCCGATCGAACTGTCAGCGGCAAGCTGATCGATCGATCGATGCTAGTG 

TTATCGACGATCCGATCGAACTGTCAGCGGCAAGCT
TCGACGATCCGATCGAACTGTCAGCGGCAAGCTGAT

ATCCGATCGAACTGTCAGCGGCAAGCTGATCG  CGAT
TCCGAGCGAACTGTCAGCGGCAAGCTGATCG  CGATC 
TCCGATCGAACTGTCAGCGGCAAGCTGATCGATCGA 

GATCGAACTGTCAGCGGCAAGCTGATCG  CGATCGA 
AACTGTCAGCGGCAAGCTGATCG  CGATCGATGCTA 

TGTCAGCGGCAAGCTGATCGATCGATCGATGCTAG 

INDEL

ATCCTGATTCGGTGAACGTTATCGACGATCCGATCGA

TCAGCGGCAAGCTGATCGATCGATCGATGCTAGTG 

reference genome

sequencing error  
or genetic variant? 

sequencing error 
or genetic 
variant?

Discovering Variation: SNPs and INDELs



Genotyping Small Variants

• Once discovered, oligonucleotide probes can 
be generated with each individual allele of a 
variant of interest  

• A large number can then be assessed 
simultaneously on microarrays to detect 
which combination of alleles is present in a 
sample

SNP Microarrays

Maggie Bartlett, Courtesy: National Human Genome Research Institute. 

TAACGATGAATCTTAGGCATCGCGC

TAACGATGAATCGTAGGCATCGCGC

GGCTTAAGTACCCTATGGATTACGG

GGCTTAAGTACCTTATGGATTACGG

genotype: T/T

genotype: C/T

Shearing
Labeling

Impact of Genetic Variation

There are numerous ways genetic variation can 
exhibit functional effects

Premature stop codons

TAC->TAA

Frameshift mutation

TAC->T-C

Gene or exon deletion

Transcription factor  
binding disruption

ATGCAAAT->ATGCAGAT

Oct-1

X

Do it Yourself!

Hand-on time!  

Sections 1 to 3 please (up to running Read Alignment) 
See IP address on website for your Galaxy server



http://uswest.ensembl.org/Help/View?id=140 Access a jetstream galaxy instance!
Use assigned IP address

Do it Yourself!



Each sequencing “read” consists of 4 lines of data : 
1. The first line (which always starts with ‘@’) is a unique ID for 

the sequence that follows  

2. The second line contains the bases called for the sequenced 
fragment  

3. The third line is always a “+” character  

4. The forth line contains the quality scores for each base in the 
sequenced fragment (these are ASCII encoded…)

Raw data usually in FASTQ format 

@NS500177:196:HFTTTAFXX:1:11101:10916:1458 2:N:0:CGCGGCTG 

ACACGACGATGAGGTGACAGTCACGGAGGATAAGATCAATGCCCTCATTAAAGCAGCCGGTGTAA

+

AAAAAEEEEEEEEEEE//AEEEAEEEEEEEEEEE/EE/<<EE/AAEEAEE///EEEEAEEEAEA< 

1

2

3

4

1

2

3

4

• Each sequence base has a corresponding numeric quality 
score encoded by a single ASCII character typically on the 
4th line (see     above) 

• ASCII characters represent integers between 0 and 127 

• Printable ASCII characters range from 33 to 126 

• Unfortunately there are 3 quality score formats that you 
may come across… 

ASCII Encoded Base Qualities

@NS500177:196:HFTTTAFXX:1:11101:10916:1458 2:N:0:CGCGGCTG 

ACACGACGATGAGGTGACAGTCACGGAGGATAAGATCAATGCCCTCATTAAAGCAGCCGGTGTAA

+

AAAAAEEEEEEEEEEE//AEEEAEEEEEEEEEEE/EE/<<EE/AAEEAEE///EEEEAEEEAEA< 4

4

Interpreting Base Qualities in R

ASCII Range Offset Score Range
Sanger, Illumina 

(Ver > 1.8) fastqsanger 33-126 33 0-93

Solexa, Ilumina 
(Ver < 1.3)

fastqsolexa 59-126 64 5-62

Illumina  
(Ver 1.3 -1.7) fastqillumina 64-126 64 0-62

> library(seqinr) 
> library(gtools) 
> phred <- asc( s2c("DDDDCDEDCDDDDBBDDDCC@") ) - 33 
> phred 
##  D  D  D  D  C  D  E  D  C  D  D  D  D  B  B  D  D  D  C  C  @ 
## 35 35 35 35 34 35 36 35 34 35 35 35 35 33 33 35 35 35 34 34 31 

> prob <- 10**(-phred/10)

Interpreting Base Qualities in R

> library(seqinr) 
> library(gtools) 
> phred <- asc( s2c("DDDDCDEDCDDDDBBDDDCC@") ) - 33 
> phred 
##  D  D  D  D  C  D  E  D  C  D  D  D  D  B  B  D  D  D  C  C  @ 
## 35 35 35 35 34 35 36 35 34 35 35 35 35 33 33 35 35 35 34 34 31 

> prob <- 10**(-phred/10)



FastQC Report

 7 

Examining and Manipulating FastQ data 

Quality Scores 
The FastQ format provides a simple extension to the FastA format, and stores a simple 
numeric quality score with each base position. Despite being a “standard” format, FastQ has 
a number of variants, deriving from different ways of calculating the probability that a base 
has been called in error, to different ways of encoding that probability in ASCII, using one 
character per base position.  

PHRED scores 
Quality scores were originally derived from the PHRED program which was used to read 
DNA sequence trace files, and linked various sequencing metrics such as peak resolution and 
shape to known sequence accuracy. The PHRED program assigned quality scores to each 
base, according to the following formula: 
 
!_!"#$% = !−10!!"#10!(!") 
 
where Pe is the probability of erroneously calling a base. PHRED put all of these quality 
scores into another file called QUAL (which has a header line as in a FastA file, followed by 
whitespace-separated integers. The lower the integer, the higher the probability that the base 
has been called incorrectly.  
 
PHRED Quality Score  Probability of incorrect base call Base call accuracy 
10 1 in 10 90 % 
20 1 in 100 99 % 
30 1 in 1000 99.9 % 
40 1 in 10000 99.99 % 
50 1 in 100000 99.999 % 
While scores of higher than 50 in raw reads are rare, with post-processing (such as read 
mapping or assembly), scores of as high as 90 are possible. 
 
Quality scores for NGS data are generated in a similar way. Parameters relevant to a 
particular sequencing chemistry are analyzed for a large empirical data set of known accuracy. 
The resulting quality score lookup tables are then used to calculate a quality score for de novo 
next-generation sequencing data. 
 

Solexa scores 
The Solexa quality scores, which were used in the earlier Illumina pipelines, are calculated 
differently from the PHRED scores: 
!!_!"#$%& = !−10!!"#10!( !"

!!!") 
 
  

FASTQC is one approach which provides a visual 
interpretation of the raw sequence reads  

– http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

FASTQC Per Tile Quality shows shows the deviation 
from the average quality for each tile

• In Illumina libraries the sequence identifier encodes the 
flowcell tile from which each read came.

• "Hot" colors indicate that a 
tile had worse quality reads 
than other tiles for that base


• Suggesting transient 
problems such as bubbles 
going through the flowcell, 
smudges or debris inside 
the flowcell lane.



Per-base sequence content highlights the 
proportion of each base in each position

• In a random library there would be little to no difference 
between the different bases of a sequence run.


•• Note that some types 
of libraries (e.g. RNA-
Seq) will nearly 
always produce 
biased sequence 
composition at the 
start of the read.

GC content should follow a 
normal distribution

• An unusually shaped distribution could indicate a 
contaminated library or some other kinds of biased subset 
(frequent in metagenomic data sets).

• Sharp peaks on an 
otherwise smooth 
distribution are normally 
the result of a specific 
contaminant (e.g. 
adapter dimers)

Increasing the quality of 
sequences

• Filtering of sequences (i.e. removing sequences):  

• with small mean quality score


• with too many N bases


• based on their GC content


• Cutting/Trimming sequences from low quality score 
parts (i.e the tails/ends of reads)


• Re-run your sequencing job



• Once sequence quality has been assessed, the next 
step is to align/map the sequence to a reference 
genome 

• There are many distinct tools for doing this; which one 
you choose is often a reflection of your specific 
experiment and personal preference

Sequence Alignment 

BWA 
Bowtie2 
SOAP2 
Novoalign 
mr/mrsFast 
Eland 
Blat 
Bfast

BarraCUDA 
CASHx 
GSNAP 
Mosiak 
Stampy 
SHRiMP 
SeqMap 
SLIDER

RMAP 
SSAHA 
etc

Feature comparison: 10.1093/bioinformatics/bts605

• Once sequence quality has been assessed, the next 
step is to align/map the sequence to a reference 
genome 

• There are many distinct tools for doing this; which 
one you choose is often a reflection of your specific 
experiment and personal preference

Sequence Alignment 

BWA 
Bowtie 
SOAP2 
Novoalign 
mr/mrsFast 
Eland 
Blat 
Bfast

BarraCUDA 
CASHx 
GSNAP 
Mosiak 
Stampy 
SHRiMP 
SeqMap 
SLIDER

RMAP 
SSAHA 
etc

Feature comparison: 10.1093/bioinformatics/bts605

Feature comparison: 10.1093/bioinformatics/bts605
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Reads R1

FastQ

Reads R2 
[optional]

FastQ

Reads R1

FastQ

Reads R2 
[optional]

FastQ 1. 
Quality 
Control

FastQC

Reference 
Genome

Fasta

2. 
Alignment 
(Mapping)

TopHat2

3. 
Read 

Counting

CuffLinks
Count 
Table

data.frame

Count 
Table

data.frame
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GTFU
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SC …Now what?

This is where we  
stoped last day

Reads R1

FastQ
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[optional]

FastQ
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FastQ 1. 
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2. 
Alignment 
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3. 
Read 

Counting

CuffLinks
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Table

data.frame

Count 
Table

data.frame
4. 

Differential 

expression 

analysis!
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DESeq2

Our missing step



RNA Sequencing
The absolute basics

Normal Cells Mutated Cells

• The mutated cells behave differently than the normal cells 

• We want to know what genetic mechanism is causing the 
difference  

• One way to address this is to examine differences in gene 
expression via RNA sequencing… 

Normal Cells Mutated Cells

Each cell has a bunch of 
chromosomes

Normal Cells Mutated Cells

Each chromosome has a 
bunch of genes

Gene1 Gene2 Gene3



Normal Cells Mutated Cells

Some genes are active more than 
others

mRNA 
transcripts

Gene1 Gene2 Gene3

Normal Cells Mutated Cells

Gene 2 is  
not active

mRNA 
transcripts

Gene1 Gene2 Gene3

Gene 3 is the 
most active

Normal Cells Mutated Cells

HTS tells us which genes are 
active, and how much they are 

transcribed!

mRNA 
transcripts

Gene1 Gene2 Gene3

Normal Cells Mutated Cells

We use RNA-Seq to measure gene 
expression in normal cells …

… then use it to measure gene 
expression in mutated cells



Normal Cells Mutated Cells

Then we can compare the two cell 
types to figure out what is different 

in the mutated cells!

Normal Cells Mutated Cells

Gene2
Gene3

Differences apparent for Gene 2 and 
to a lesser extent Gene 3

1) Prepare a sequencing library  
    (RNA to cDNA conversion via reverse transcription)  

2) Sequence 
    (Using the same technologies as DNA sequencing) 

3) Data analysis  
    (Often the major bottleneck to overall success!)  

We will discuss each of these steps in detail 
(particularly the 3rd) next day!

3 Main Steps for RNA-Seq:

Normal Cells Mutated Cells

Gene WT-1 WT-2 WT-3 …

A1BG 30 5 13 …

AS1 24 10 18 …

… … … … …

We sequenced, aligned, counted the reads per gene  
in each sample to arrive at our data matrix

Today we will get start of step 3!



Do it Yourself!

Hand-on time!  

Focus on Sections 4 please  
(After your Alignment is finished)

Feedback:  
[Muddy Point Assessment]

Additional Reference Slides  
on SAM/BAM Format and  

Sequencing Methods

 

Reference • Sequence Alignment/Map (SAM) format is 
the almost-universal sequence alignment 
format for NGS  
– binary version is BAM 

• It consists of a header section (lines start 
with ‘@’) and an alignment section 

• The official specification can be found here: 

– http://samtools.sourceforge.net/SAM1.pdf

SAM Format
Reference



Example SAM File

@HD VN:1.0 SO:coordinate 
@SQ SN:1 LN:249250621 AS:NCBI37 UR:file:/data/local/ref/GATK/human_g1k_v37.fasta M5:1b22b98cdeb4a9304cb5d48026a85128 
@SQ SN:2 LN:243199373 AS:NCBI37 UR:file:/data/local/ref/GATK/human_g1k_v37.fasta M5:a0d9851da00400dec1098a9255ac712e 
@SQ SN:3 LN:198022430 AS:NCBI37 UR:file:/data/local/ref/GATK/human_g1k_v37.fasta M5:fdfd811849cc2fadebc929bb925902e5 
@RG ID:UM0098:1 PL:ILLUMINA PU:HWUSI-EAS1707-615LHAAXX-L001 LB:80 DT:2010-05-05T20:00:00-0400 SM:SD37743 CN:UMCORE 
@RG ID:UM0098:2 PL:ILLUMINA PU:HWUSI-EAS1707-615LHAAXX-L002 LB:80 DT:2010-05-05T20:00:00-0400 SM:SD37743 CN:UMCORE 
@PG ID:bwa VN:0.5.4

1:497:R:-272+13M17D24M 113 1 497 37 37M 15 100338662 0 
CGGGTCTGACCTGAGGAGAACTGTGCTCCGCCTTCAG 0;==-==9;>>>>>=>>>>>>>>>>>=>>>>>>>>>> XT:A:U NM:i:0 SM:i:37 AM:i:0 X0:i:1 X1:i:0 
XM:i:0 XO:i:0 XG:i:0 MD:Z:37 
19:20389:F:275+18M2D19M 99 1 17644 0 37M = 17919 314 
TATGACTGCTAATAATACCTACACATGTTAGAACCAT >>>>>>>>>>>>>>>>>>>><<>>><<>>4::>>:<9 RG:Z:UM0098:1 XT:A:R NM:i:0 SM:i:0 AM:i:0 X0:i:4 
X1:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:37 
19:20389:F:275+18M2D19M 147 1 17919 0 18M2D19M = 17644 -314 
GTAGTACCAACTGTAAGTCCTTATCTTCATACTTTGT ;44999;499<8<8<<<8<<><<<<><7<;<<<>><< XT:A:R NM:i:2 SM:i:0 AM:i:0 X0:i:4 X1:i:0 
XM:i:0 XO:i:1 XG:i:2 MD:Z:18^CA19 
9:21597+10M2I25M:R:-209 83 1 21678 0 8M2I27M = 21469 -244 
CACCACATCACATATACCAAGCCTGGCTGTGTCTTCT <;9<<5><<<<><<<>><<><>><9>><>>>9>>><> XT:A:R NM:i:2 SM:i:0 AM:i:0 X0:i:5 X1:i:0 
XM:i:0 XO:i:1 XG:i:2 MD:Z:35

Header section

Alignment section

• Because SAM files are plain text (unlike their binary counterpart, 
BAM), we can take a peek at a few lines of the header with head, See:

https://bioboot.github.io/bimm143_F18/class-material/sam_format/

Reference
• Header lines contain vital metadata about the 

reference sequences, read and sample information, 
and (optionally) processing steps and comments. 

• Each header line begins with an @, followed by a 
two-letter code that distinguishes the different 
type of metadata records in the header.  

• Following this two-letter code are tab-delimited 
key-value pairs in the format KEY:VALUE (the SAM 
format specification names these tags and values). 

SAM header section

https://bioboot.github.io/bimm143_F18/class-material/sam_format/

Reference

• Samtools is a common toolkit for 
analyzing and manipulating files in SAM/
BAM format 
– http://samtools.sourceforge.net/ 

• Picard is a another set of utilities that can 
used to manipulate and modify SAM files 
– http://picard.sourceforge.net/ 

• These can be used for viewing, parsing, 
sorting, and filtering SAM files as well as 
adding new information (e.g. Read Groups)

SAM Utilities
Reference

Length limits for Illumina 
Sequencing



Additional Reference Slides  
on Sequencing Methods

 

Reference

Pacific Biosystems – Real Time Sequencing

Metzker, ML (2010), Nat. Rev. Genet, 11, pp. 31-46

zero mode  
waveguides

Pacific Biosystems – Circular Consensus 

Travers, KJ et al (2010), Nucl. Acids. Res., 38(15) pp. e159

SMRTbell template Subread Consensus Sequencing



Roche 454 - Pyrosequencing

Metzker, ML (2010), Nat. Rev. Genet, 11, pp. 
31-46

Life Technologies SOLiD – Sequence by Ligation

Metzker, ML (2010), Nat. Rev. Genet, 11, pp. 
31-46

Complete Genomics – Nanoball Sequencing

Niedringhaus, TP et al (2011), Analytical Chem., 83, pp. 
4327-4341

Wikipedia, “DNA Nanoball Sequencing”, September 26, 
2012

Has proofreading ability!

• Lower cost, lower throughput alternative for smaller 
scale projects 

• Currently three significant platforms 
– Roche 454 GS Junior 
– Life Technology Ion Torrent  

• Personal Genome Machine (PGM)  
• Proton  

– Illumina MiSeq

“Benchtop” Sequencers

Loman, NJ (2012), Nat. Biotech., 5, pp. 
434-439



PGM - Ion Semiconductor Sequencing

Wikipedia, “Ion Semiconductor Sequencing”, September 26, 
2012

• Normalization is required to make 
comparisons in gene expression – Between 
2+ genes in one sample – Between genes 
in 2+ samples  

• Genes will have more reads mapped in 
sample with high coverage than with low 
read coverage – 2x depth ≈ 2x expression  

• Longer genes will have more reads 
mapped than shorter genes – 2x length ≈ 
2x more reads

Normalization 

• N.B. Some tools for differential expression analysis such as edgeR 
and DESeq2 want raw read counts - i.e. non normalized input! 

• However, often for your manuscripts and reports you will want to 
report normalized counts - e.g. plots of Log(FoldChange) vs 
Transcripts Per Million (or TPM)   

• RPKM, FPKM and TPM all aim to normalize for sequencing depth 
and gene length. 

• RPKM was made for single-end RNA-seq and stands for Reads per : 
• Count up the total reads in a sample and divide that number 

by 1,000,000 – this is our “per million” scaling factor. 
• Divide the read counts by the “per million” scaling factor. This 

normalizes for sequencing depth, giving you reads per million 
(RPM) 

• Divide the RPM values by the length of the gene, in kilobases. 
This gives you RPKM.

Normalization: RPKM, FPKM and TPM

• FPKM was made for paired-end RNA-seq 
• With paired-end RNA-seq, two reads can 

correspond to a single fragment 
• The only difference between RPKM and 

FPKM is that FPKM takes into account that 
two reads can map to one fragment (and 
so it doesn’t count this fragment twice).



• TPM is very similar to RPKM and FPKM. The only 
difference is the order of operations. Here’s how you 
calculate TPM: 

• Divide the read counts by the length of each gene in 
kilobases. This gives you reads per kilobase (RPK). 

• Count up all the RPK values in a sample and divide this 
number by 1,000,000. This is your “per million” 
scaling factor. 

• Divide the RPK values by the “per million” scaling 
factor. This gives you TPM. 

• So you see, when calculating TPM, the only difference is 
that you normalize for gene length first, and then 
normalize for sequencing depth second. However, the 
effects of this difference are quite profound.

• When you use TPM, the sum of all TPMs in 
each sample are the same. This makes it 
easier to compare the proportion of reads 
that mapped to a gene in each sample. In 
contrast, with RPKM and FPKM, the sum of 
the normalized reads in each sample may 
be different, and this makes it harder to 
compare samples directly.


