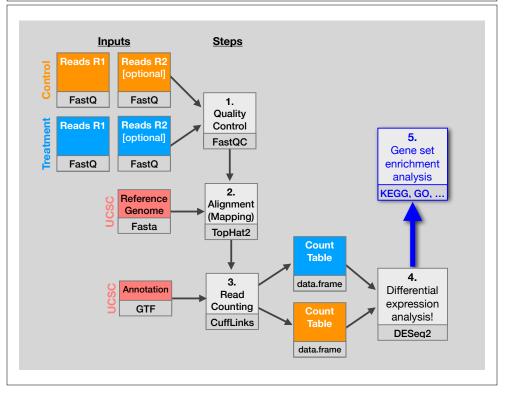



x ‡	baseMean 🗘	log2FoldChange 🌲	lfcSE ‡	stat 🗘	pvalue 🗘	padj 🗘	symbol 🗘
ENSG00000152583	954.77093	5	0.23713648	18.421286	8.867079e-76	1.342919e-71	
ENSG00000179094	743.25269	2.8638885	0.17555825	16.313039	7.972621e-60	6.037267e-56	PER1
ENSG00000116584	2277.91345	-1.0347000	0.06505273	-15.905557	5.798513e-57	2.927283e-53	ARHGEF2
ENSG00000189221	2383.75371	3.3415441	0.21241508	15.731200	9.244206e-56	3.500088e-52	MAOA
ENSG00000120129	3440.70375	2.9652108	0.20370277	14.556557	5.306416e-48	1.607313e-44	DUSP1
ENSG00000148175	13493.92037	1.4271683	0.10036663	14.219550	6.929711e-46	1.749175e-42	STOM
ENSG00000178695	2685.40974	-2.4890689	0.17806407	-13.978501	2.108817e-44	4.562576e-41	KCTD12
ENSG00000109906	439.54152	5.9275950	0.42819442	13.843233	1.397758e-43	2.646131e-40	ZBTB16
ENSG00000134686	2933.64246	1.4394898	0.10582729	13.602255	3.882769e-42	6.533838e-39	PHC2
ENSG00000101347	14134.99177	3.8504143	0.28490701	13.514635	1.281894e-41	1.941428e-38	SAMHD1
ENSG00000096060	2630.23049	3.9450524	0.29291821	13.468102	2.409807e-41	3.317866e-38	FKBP5
ENSG00000166741	7542.25287	2.2195906	0.16673544	13.312050	1.970000e-40	2.486304e-37	NNMT
ENSG00000125148	3695.87946	2.1985636	0.16700546	13.164621	1.402400e-39	1.633797e-36	MT2A
ENSG00000162614	5646.18314	1.9711402	0.15020631	13.122885	2.434854e-39	2.633990e-36	NEXN
ENSG00000106976	989.04683	-1.8501713	0.14778657	-12.519211	5.861471e-36	5.918132e-33	DNM1
ENSG00000187193	199.07694	3.2551424	0.26090711	12.476250	1.006146e-35	9.523804e-33	MT1X
ENSG00000256235	1123.47954	1.2801193	0.10547438	12.136779	6.742862e-34	6.007096e-31	SMIM3
ENSG00000177666	2639.57020	1.1399947	0.09606884	11.866436	1.768422e-32	1.487930e-29	PNPLA2
ENSG00000164125	7257.00808	1.0248523	0.08657600	11.837603	2.494830e-32	1.988642e-29	FAM198B
ENSG00000198624	2020.04495	2.8141014	0.24063429	11.694515	1.359615e-31	1.029569e-28	CCDC69
ENSG00000123562	5008.55294	1.0045453	0.08901501	11.285123	1.554241e-29	1.120904e-26	MORF4L2
ENSG00000144369	1283.77980	-1.3090041	0.11714863	-11.173875	5.473974e-29	3.768333e-26	FAM171B
ENSG00000196517	241.91536	-2.3456877	0.21047366	-11.144804	7.591120e-29	4.998588e-26	SLC6A9
ENSG00000135821	19973.40000	3.0413943	0.27601796	11.018828	3.100706e-28	1.956675e-25	GLUL

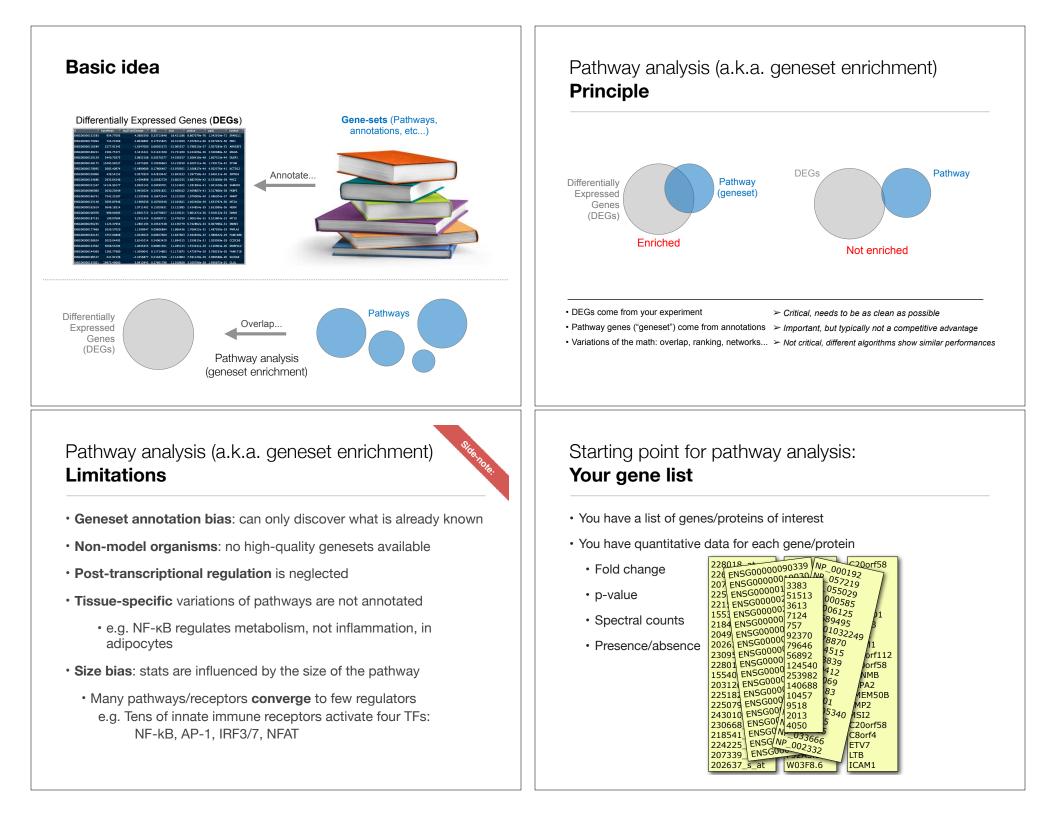


My high-throughput experiment generated a long list of genes/proteins...

What do I do now? 🤥

Pathway analysis! (a.k.a. geneset enrichment)

Use bioinformatics methods to help extract biological meaning from such lists...


Basic idea

Differentially Expressed Genes (DEGs)

ENS600000152583	954.77093	4.3583590	0.23713645	18.421285	8.867079e-75	1.342919e-71	SPAREL1
ENS600000175034	743.25269	2.8518385	0.17555825	16.313039	7.972621e-60	6.037267e-56	
ENSEC00000116584	2277.91345	-1.0347000	0.06505273	-15.905557	5.798513e-57	2.9272834-53	ARHIGEF2
ENSEC00000189221	2383.75371	3.3415441	0.21241508	15.731200	9.2442058-55	3.500038e-52	MAGA
ENSG00000120129	3440.70375	2.9552106	0.20370277	14.554557	5.105416e-48	1.6073134-44	DUSP1
ENSG00000148175	13493.92037	1.4271683	0.10036663	14.219550	6.929711e-46	1.749175e-42	
ENSCC0010178695	2685.40974	-2.4850589	0.17805407	-13.978501	2.103817e-44	4.562576e-41	
ENSCC0000109906	439.54152	5.9275950	0.42819442	13.843233	1.397758e-43	2.646131e-40	281816
ENSC00010134686	2933.64246	1.4394898	0.10582729	13.602255	3.882769e-42	6.531838e-19	
ENSG00000101347	14134.59177	3.8504143	0.28490701	13.514635	1.281894e-41	1.941428e-38	SAMED1
ENSCC0010036060	2630.23049	3.9450524	0.29291821	13.468102	2.403807e-41	3.317856e-38	FKBPS
ENSC00010166741	7542.25287	2.2195916	0.16673544	13.312050	1.970000e-40	2.486304e-37	NNNT
ENSC00010125148	3695.87946	2.1985636	0.16703546	13.164621	1.402400e-39	1.633797e-36	
ENSC00010162614	5646.18314	1.9711402	0.15020631	13.122885	2.434854e-39	2.633990e-36	NEWN
ENSC00000106976	989.04683	-1.8501713	0.14778657		5.851471e-36	5.918132e-33	DNN1
ENSC00010187193	199.07694	3.2551424	0.26090711	12.476250	1.005146e-35	9.523804e-33	
ENSEC00000256235	1123.47954	1.2801193	0.10547438	12.136779	6.742862e-34	6.007095e-31	SMIN3
ENSEC00000177666	2639.57020	1.1399947	0.05605884	11.855435	1.763422e-32	1.487930e-29	PNPLA2
ENSG00000164125	7257.00808	1.0248523	0.05657600	11.837603	2.494830e-32	1.938842e-29	FAM1988
EN5600000198624	2020.04495	2.8141014	0.24063429	11.694515	1.359615e-31	1.029569e-28	CCDC69
ENSIG00000123562	5018.55294	1.0045453	0.08501501	11.235123	1.554241e-29	1.120904e-26	M0474L2
ENSEC00000144369	1283.77980	-1.3090041	0.11714863	-11.173875	5.4739748-29	3.7683334-26	FAM1718
ENSCE0010196517	241.91535	-2.3456877	0.21047166	-11.144804	7.5911208-29	4.9385884-26	5.05A9
DESCR0010135821	19973.40000	3 0413943	0.27501795	11.018828	3.1037058-28	1.9556751-25	CLUL

Gene-sets (Pathways, annotations, etc...)

Translating between identifiers

- · Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- · Often you will have to translate one set of ids into another
 - A program might only accept certain types of ids
 - · You might have a list of genes with one type of id and info for genes with another type of id

Translating between identifiers

- Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- · Often you will have to translate one set of ids into another
 - A program might only accept certain types of ids
 - · You might have a list of genes with one type of id and info for genes with another type of id
- · Various web sites translate ids -> best for small lists
 - UniProt < <u>www.uniprot.org</u>>; IDConverter < <u>idconverter.bioinfo.cnio.es</u> >

Translating between identifiers: UniProt < <u>www.uniprot.org</u> >

Search in Protein Knowledgebas	Query	(Search) (Clear) Fie	lids »		
,,		Search	Blast	Align	Retrieve ID Mapping
	WELCOME		NEWS	6	3
Id	lentifiers	From			
		EMBL/GenBank/DD	BJ	\$	Map
		То			Swap
		UniProtKB AC		÷	Clear
. L		or Choose File n	o file selected		

Translating between identifiers

- Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- · Often you will have to translate one set of ids into another
 - · A program might only accept certain types of ids
 - You might have a list of genes with one type of id and info for genes with another type of id
- Various web sites translate ids -> best for small lists
 - UniProt < <u>www.uniprot.org</u>>; IDConverter < <u>idconverter.bioinfo.cnio.es</u> >
- VLOOKUP in Excel good if you are an excel whizz I am not!
 - Download flat file from Entrez, Uniprot, etc; Open in Excel; Find columns that correspond to the 2 IDs you want to convert between; Sort by ID; Use vlookup to translate your list

Translating between identifiers: Excel VLOOKUP

VLOOKUP(lookup_value, table_array, col_index_num)

	Edit			Font			Aligr	ment		Nu	mber
Ê	🎚 🖕 🛃 Fi	II 🔻 Cali	bri (Body)	· 12	• A• A•		= ab	: 🔻 📆 Wr	ap Text 🔻	General	
Pa	ste 🗸	ear • B	ΙU		\$ - <u>A</u>				Merge 👻	* %	,
	B3	÷ 😣	$\bigcirc (= f$	× =VLOOk	(UP(A3,\$G\$	3:\$0\$304	90,2,FALSE)				
1	A	<u>B</u>	С	D	E	F	G	Н		J	K
1	Data Table						Annotation 1	able			
2	RefSeq	Symbol	Exp1	Exp2	Exp3		RefSeq	Symbol	Entrez ID	Unigene	RefSeq
	NM_153103	Kif1c	2.31975457	1.24558927	2.78816871		NM_001001	Zfp85-rs1	22746	Mm.288396	NM_00
4	NM_146017		4.15029735	3.08055836	1.18919962		NM_001001	Scap	235623	Mm.288741	NM_0
5	NM_018883		3.83282512	0.0522951	0.64684259		NM_001001	Scap	235623	Mm.288741	NM_0
6	NM_145936	Tspyl2	0.45449369	1.62761318	7.59770627		NM_001001	Fbxo41	330369	Mm.38777	NM_0
7	NM_026599	Cgnl1	4.84541871	2.84751796	1.61595768		NM_001001	Taf9b	407786	Mm.19440	NM_0
8	NM_013926	Cbx8	1.22903318	0.2863077	0.02952665		NM_001001	Taf9b	407786	Mm.19440	NM_0
9	NR_015566	A330023F24	1.44695053	0.98809479	1.59330144		NM_001001	BC051142	407788	Mm.73205	NM_0
0	NM_008623	Mpz	0.50749263	0.94350028	6.10581569		NM_001001	BC051142	407788	Mm.73205	NM_0
1	NM_183127	Fate1	2.45672795	4.87960794	3.60759511		NM_001001	BC048546	232400	Mm.259234	NM_0
2	NM_008943		4.78701069	4.15302647	0.85432314		NM_001001	Zfp941	407812	Mm.359154	NM_0
3	NM_025382		0.66397344	1.40664187	3.09539802		NM_001001	BC031181	407819	Mm.29866	NM_0
4	NM_182841		1.25528938	0.20505996	2.76879488		NM_001001	Baz2b	407823	Mm.486364	NM_0
5	NM_030061		0.17670108	2.75415469	2.98900691		NM_001001	Tmem204	407831	Mm.34379	NM_0
6	NM_133216		6.572343	0.59671282	3.84650536		NM_001001	Ccdc111	408022	Mm.217385	NM_0
7	NM 030063		7.05132762	0.65043627	1.68111836		NM 001001	BC048507		Mm.177840	

Translating between identifiers

- Many different identifiers exist for genes and proteins, e.g. UniProt, Entrez, etc.
- · Often you will have to translate one set of ids into another
 - · A program might only accept certain types of ids
 - · You might have a list of genes with one type of id and info for genes with another type of id
- Various web sites translate ids -> best for small lists
 - UniProt < <u>www.uniprot.org</u> >; IDConverter < <u>idconverter.bioinfo.cnio.es</u> >
- VLOOKUP in Excel -> good if you are an excel whizz I am not!
 - Download flat file from Entrez, Uniprot, etc; Open in Excel; Find columns that correspond to the two ids you want to convert between; Use vlookup to translate your list

• Use the merge() or mapIDs() functions in R - fast, versatile & reproducible!

Also clusterProfiler::bitr() function and many others... [Link to clusterProfiler vignette]

bitr: Biological Id TranslatoR

clusterProfiler provides bitr and bitr_kegg for converting ID types. Both bitr and bitr_kegg support man, species including model and many non-model organisms.

##		SYMBOL	ENTREZID
##	1	GPX3	2878
##	2	GLRX	2745
##	3	LBP	3929
##	4	CRYAB	1410
##	5	DEFB1	1672
##	6	HCLS1	3059

See package vignette: https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html

GO < <u>www.geneontology.org</u> >

- · What function does HSF1 perform?
 - response to heat; sequence-specific DNA binding; transcription; etc
- Ontology => a structured and controlled vocabulary that allows us to annotate gene products consistently, interpret the relationships among annotations, and can easily be *handled by a computer*
- GO database consists of 3 ontologies that describe gene products in terms of their associated biological processes, cellular components and molecular functions

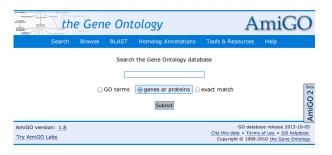
What functional set databases do you want?

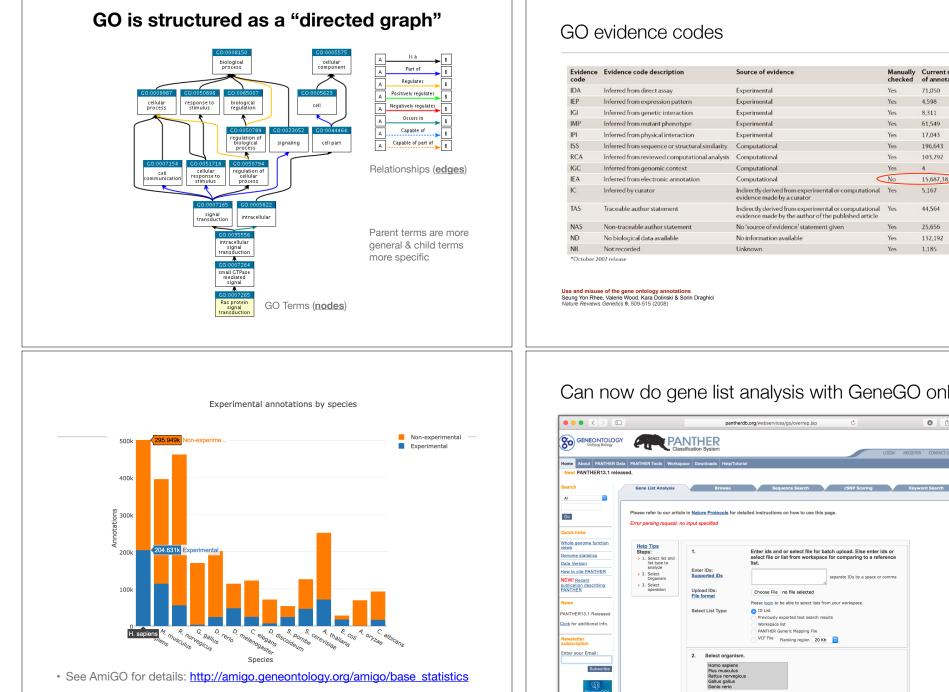
DEGs

Pathway

GO

IPA


etc


KEGG

- Most commonly used:
 - Gene Ontology (GO)
 - **KEGG Pathways** (mostly metabolic)
 - GeneGO MetaBase
- Ingenuity Pathway Analysis (IPA) [NGENUITY]
- · Many others...
 - Enzyme Classification, PFAM, Reactome,
 - Disease Ontology, MSigDB, Chemical Entities of Biological Interest, Network of Cancer Genes etc...
 - See: Open Biomedical Ontologies (<u>www.obofoundry.org</u>)

GO Annotations

- · GO is not a stand-alone database of genes/proteins or sequences
- Rather gene products get annotated with GO terms by UniProt and other organism specific databases, such as Flybase, Wormbase, MGI, ZFIN, etc.
- Annotations are available through AmiGO < <u>amigo.geneontology.org</u> >

Evidence code	Evidence code description	Source of evidence	Manually checked	Current number of annotations*
IDA	Inferred from direct assay	Experimental	Yes	71,050
IEP	Inferred from expression pattern	Experimental	Yes	4,598
IGI	Inferred from genetic interaction	Experimental	Yes	8,311
IMP	Inferred from mutant phenotype	Experimental	Yes	61,549
IPI	Inferred from physical interaction	Experimental	Yes	17,043
ISS	Inferred from sequence or structural similarity	Computational	Yes	196,643
RCA	Inferred from reviewed computational analysis	Computational	Yes	103,792
IGC	Inferred from genomic context	Computational	Yes	4
IEA	Inferred from electronic annotation	Computational C	No	15,687,382
IC	Inferred by curator	Indirectly derived from experimental or computational evidence made by a curator	Yes	5,167
TAS	Traceable author statement	Indirectly derived from experimental or computational evidence made by the author of the published article	Yes	44,564
NAS	Non-traceable author statement	No 'source of evidence' statement given	Yes	25,656
ND	No biological data available	No information available	Yes	132,192
NR	Not recorded	Unknown	Yes	1,185

Can now do gene list analysis with GeneGO online!

3. Select Analysis.

• Functional classification viewed in gene list

0 6 0

arate IDs by a space or comr

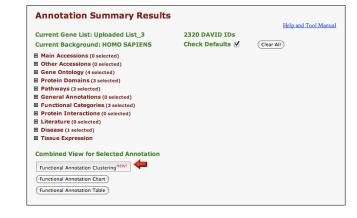
Another popular online tool: **DAVID** at NIAID < <u>david.abcc.ncifcrf.gov</u> >

me Start Analysis Short	cut to DAVID Tools Technical Center Downloads & APIs Term of Service Why DAVID? About U
Upload List Background	Analysis Wizard
Upload Gene List	
Demolist 1 Demolist 2	Tell us how you like the tool Contact us for questions
Upload Help	Step 1. Submit your gene list through left panel.
Step 1: Enter Gene List	
A: Paste a list	new!Note: Affy Exon IDs and Affy Gene Array IDs are now supported in DAVID, as "affy_id" type.
	An example:
Clear	Copy/paste IDs to "box A" > Select Identifier as "Affy_ID" > List Type as "Gene List" > Click "Submit" button
Or	1007_s_at
B:Choose From a File	1053_at 117_at
Choose File no file selected	121_at 1255_g_at
Step 2: Select Identifier	1294_at 1316_at
AFFY_ID \$	1320_at
	1405_i_at 1431_at
Step 3: List Type	1438_at 1487_at
Gene List	1494_f_at 1598_g_at
Background 🔘	
Step 4: Submit List	

DAVID

· Functional Annotation Chart

Current Current		t_1						Help and Manual
Sublist	Category	4 Term	RT	Genes	Count	\$ %	P-Value	Benjamini d
8	GOTERM_BP_5	regulation of progression through cell cycle	RT	=	98	4.2	3.3E-7	8.6E-4
	GOTERM_BP_5	apoptosis	RT	=	131	5.7	1.6E-6	2.1E-3
	GOTERM_BP_5	cell death	BT	—	136	5.9	3.8E-6	3.3E-3
	GOTERM_BP_5	regulation of transcription from RNA polymerase II promoter	RT	=	83	3.6	3.7E-5	2.4E-2
8	GOTERM_BP_5	protein kinase cascade	RT	÷	71	3.1	4.7E-5	2.4E-2
	GOTERM_BP_5	regulation of kinase activity	RT	÷	48	2.1	5.4E-5	2.3E-2
	GOTERM_BP_5	negative regulation of cell proliferation	RT	÷	48	2.1	1.0E-4	3.7E-2
	GOTERM_BP_5	regulation of cell size	RT	÷	41	1.8	1.2E-4	3.9E+2
	GOTERM_BP_5	monocarboxylic acid metabolic process	RT	÷	48	2.1	1.3E-4	3.6E-2
	GOTERM_BP_5	positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	RT	÷	61	2.6	1.5E-4	3.8E-2
8	GOTERM_BP_5	positive regulation of cellular metabolic process	RT	÷	72	3.1	1.7E-4	3.8E-2


Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources Da Wei Huang, Brad T Sherman & Richard A Lempicki Nature Protocols **4**, 44 - 57 (2009)

Overlapping functional sets

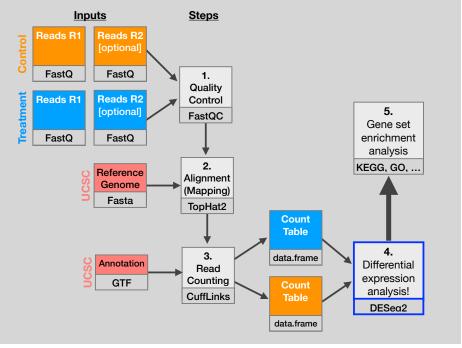
- Many functional sets overlap
 - In particular those from databases that are hierarchical in nature (e.g. GO)
- Hierarchy enables:
 - Annotation flexibility (e.g. allow different degrees of annotation completeness based on what is known)
 - Computational methods to "understand" function relationships (e.g. ATPase function is a subset of enzyme function)
- · Unfortunately, this also makes functional profiling trickier
 - · Clustering of functional sets can be helpful in these cases

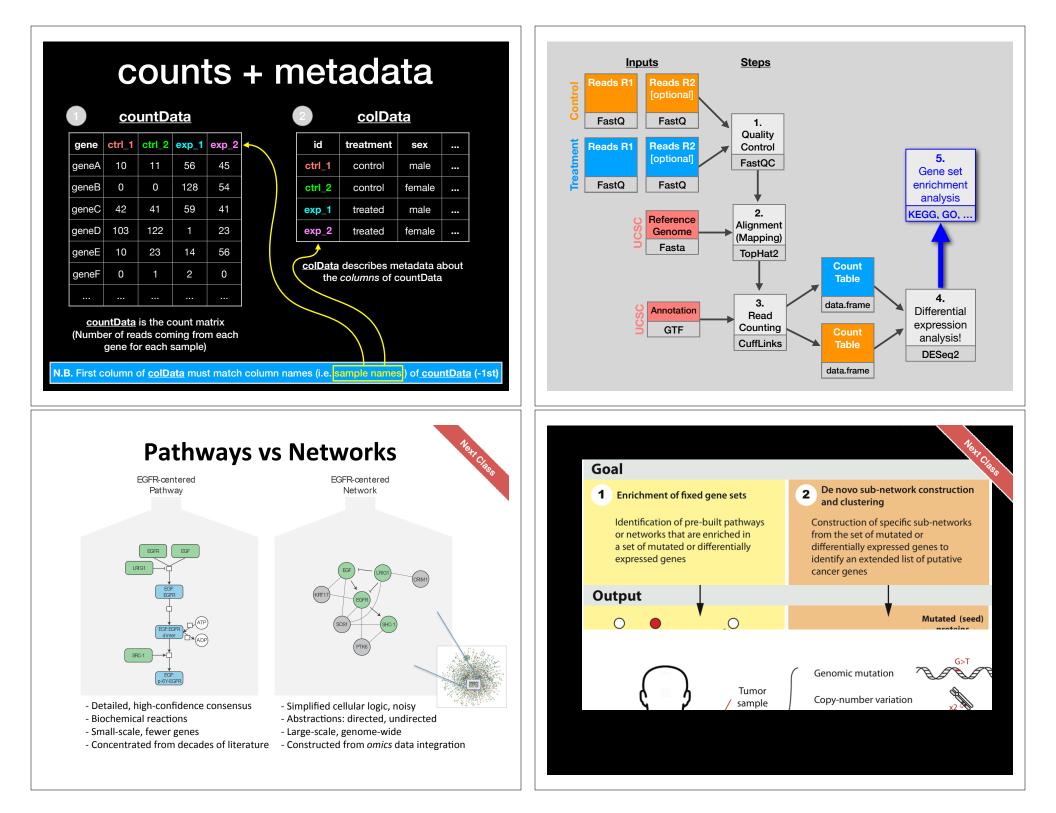
DAVID

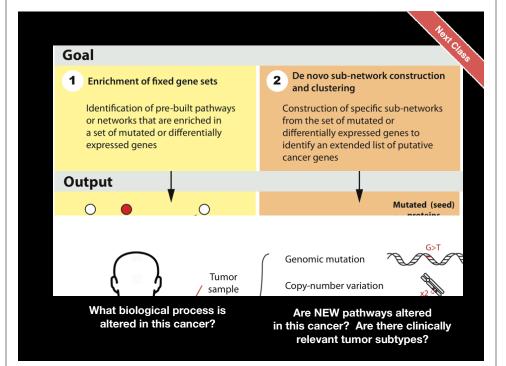
· DAVID now offers functional annotation clustering:

DAVID Functional Annotation Clustering

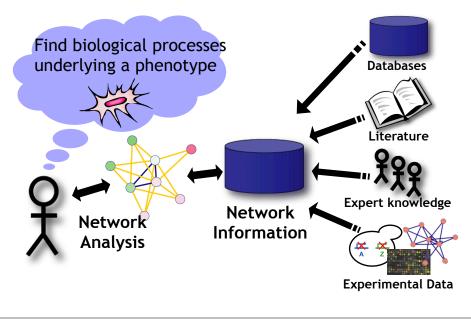
· Based on shared genes between functional sets


urre 320 Opti	ctional Annotatic nt Gene List: Uploaded Li DAVID IDs ons Classification Stri using options Create Sublis	ist_3				D		nd Manual Ioad File
The state	Annotation Cluster 1	Enrichment Score: 3.72	G					Benlamin
	GOTERM_BP_5	regulation of transcription from RNA polymerase II promoter	RT	=		83	3.7E-5	2.4E-2
	GOTERM_BP_5	positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	RI	÷		61	1.5E-4	3.8E-2
	GOTERM_BP_5	positive regulation of cellular metabolic process	BI	a - 1		72	1.7E-4	3.8E-2
3	GOTERM_BP_5	positive regulation of transcription	RT	- E		58	3.8E-4	5.0E-2
	GOTERM_BP_5	positive regulation of transcription, DNA- dependent	RT	÷		48	7.4E-4	7.6E-2
	Annotation Cluster 2	Enrichment Score: 3.54	G		1	Count	P_Value	Benjamin
3	GOTERM_BP_5	regulation of cell size	RT	18 A 19		41	1.2E-4	3.9E-2
3	GOTERM_BP_5	regulation of cell growth	RT	- E - C - C		33	3.7E-4	5.1E-2
	GOTERM_BP_5	cell morphogenesis	RT	÷		81	5.2E-4	5.7E-2
	Annotation Cluster 3	Enrichment Score: 3.37	G		1	Count	P_Value	Benjamin
	GOTERM_BP_5	apoptosis	RT	-		131	1.6E-6	2.1E-3
	GOTERM_BP_5	cell death	RT	=		136	3.8E-6	3.3E-3
	GOTERM_BP_5	regulation of programmed cell death	RT	- E		88	3.2E-4	5.8E-2
	GOTERM_BP_5	positive regulation of apoptosis	RT	18 A. A.		48	3.3E-4	5.6E-2
	GOTERM_BP_5	regulation of apoptosis	RT	÷		87	3.5E-4	5.2E-2
	GOTERM_BP_5	positive regulation of programmed cell death	RI	-		48	4.0E-4	5.0E-2


Want more?



- GeneGO < portal.genego.com >
 - MD/PhD curated annotations, great for certain domains (eg, Cystic Fibrosis)
 - Nice network analysis tools
 - · Email us for access
- Oncomine < <u>www.oncomine.org</u> >
 - · Extensive cancer related expression datasets
 - Nice concept analysis tools
 - Research edition is free for academics, Premium edition \$\$\$
- · Lots and lots other R/Bioconductor packages in this area!!!



Pathway analysis (a.k.a. geneset enrichment) Limitations

· Geneset annotation bias: can only discover what is already known

- Non-model organisms: no high-quality genesets available
- · Post-transcriptional regulation is neglected
- · Tissue-specific variations of pathways are not annotated
 - e.g. NF-κB regulates metabolism, not inflammation, in adipocytes
- · Size bias: stats are influenced by the size of the pathway
 - Many pathways/receptors converge to few regulators e.g. Tens of innate immune receptors activate four TFs: NF-kB, AP-1, IRF3/7, NFAT

Pathway & Network Analysis Overview

R Knowledge Check For BGGN-213 Quiz

This will be marked but not graded (*i.e.* will not factor into your course grade)

Time Limit: 30 mins

