

Recap From Last Time:

- Substitution matrices: Where our alignment match and mis-match scores typically come from
- Comparing methods: The trade-off between *sensitivity, selectivity* and *performance*
- Sequence motifs and patterns: Finding functional cues from conservation patterns
- Sequence profiles and position specific scoring matrices (PSSMs), Building and searching with profiles, Their advantages and limitations
- PSI-BLAST algorithm: Application of iterative PSSM searching to improve BLAST sensitivity
- Hidden Markov models (HMMs): More versatile probabilistic model for detection of remote similarities

Feedback

Today's Learning Goals

- Familiarity with R's basic syntax.
- Familiarity with major R data structures.
- Understand the basics of using functions.
- Be able to use R to read and parse comma-separated (.csv) formatted files ready for subsequent analysis.
- Appreciate how you can use R scripts to aid with reproducibility.

What is R?

R is a freely distributed and widely used programing **language** and **environment** for <u>statistical computing</u>, <u>data analysis</u> and <u>graphics</u>.

R provides an unparalleled interactive environment for data analysis.

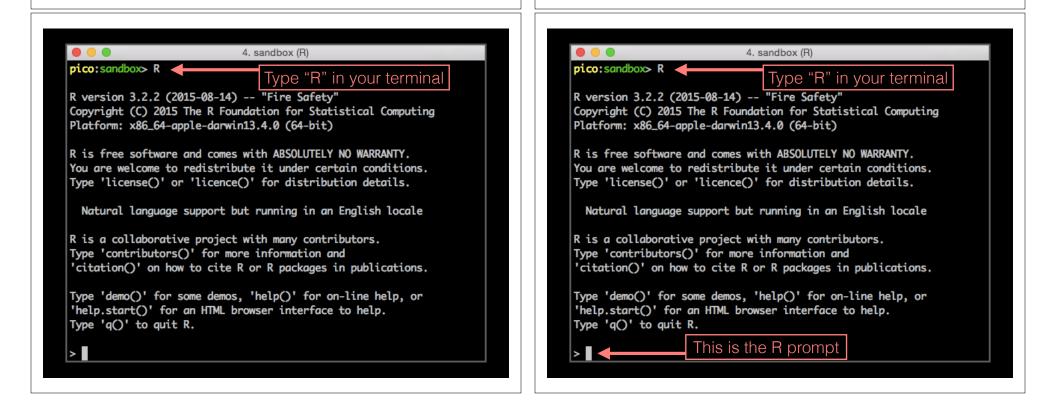
It is script-based (*i.e.* driven by computer code) and not GUI-based (point and click with menus).

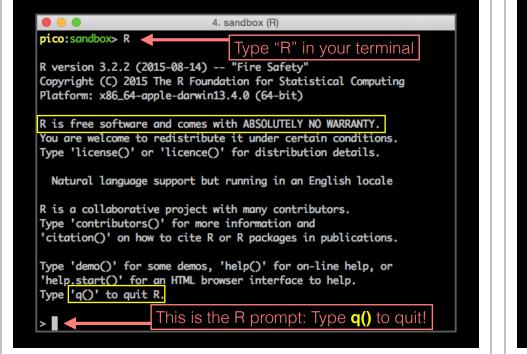
Loo:sandboo-R
version 3.2.2 (2015-08-14) "Fire Safety" apyright (C) 2015 The R Foundation for Statistical Computing Latform: x86_64-apple-derwin13.4.0 (64-bit)
is free software and cames with ABSOLUTELY NO WARRANTY. ou are welcome to redistribute it under certain conditions. ype 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
is a collaborative project with many contributors. ype 'contributors()' for more information and citation()' on how to cite R or R packages in publications.
ype 'demcQ' for some demos, 'helpQ' for on-line help, or help.stortQ' for an HTML browser interface to help. ype 'qQ' to quit R.

4. sandbox (R)

pico:sandbox> R

R version 3.2.2 (2015-08-14) -- "Fire Safety" Copyright (C) 2015 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin13.4.0 (64-bit)


R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.


Natural language support but running in an English locale

R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.

>

What R is **NOT**

A performance optimized software library for incorporation into your own C/C++ etc. programs.

A molecular graphics program with a slick GUI.

Backed by a commercial guarantee or license.

Microsoft Excel!

What about Excel?

- Data manipulation is easy
- Can see what is happening
- But: graphics are poor
- Looping is hard
- Limited statistical capabilities
- Inflexible and irreproducible

Use the right tool!

• There are many many things Excel just cannot do!

11

54 Christie Bahlai @cbahlai · 2h Weekly plug for scripted analyses:

Coauthor: "Can you change x,y,z about the analysis?" Me [not crying]: "Yes." [changes 2 lines of code]

Rule of thumb: Every analysis you do on a dataset will have to be redone 10-15 times before publication. Plan accordingly!

Why use R?

Productivity Flexibility Designed for data analysis

R is designed specifically for data analysis

- Large friendly user and developer community.
 - As of Jan 6th 2019 there are 13,645 add on **R packages** on <u>CRAN</u> and 1,649 on <u>Bioconductor</u> - much more on these later!
- Virtually every statistical technique is either already built into R, or available as a free package.
- Unparalleled data analysis environment for high-throughput genomic data.

Modularity	Core R functions are modular and work well with others
Interactivity	R offers an unparalleled exploratory data analysis environment
Infrastructure	Access to existing tools and cutting- edge statistical and graphical methods
Support	Extensive documentation and tutorials available online for R
R Philosophy	Encourages open standards and reproducibility

Modularity	Core R functions are modular and work well with others
Interactivity	R offers an unparalleled exploratory data analysis environment
Infrastructure	Access to existing tools and cutting- edge statistical and graphical methods
Support	Extensive documentation and tutorials available online for R
R Philosophy	Encourages open standards and reproducibility

Modularity

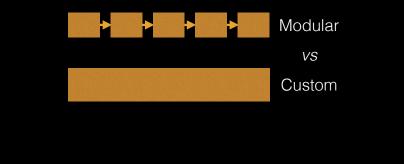
R was designed to allow users to interactively build complex workflows by interfacing smaller '**modular' functions** together.

get.seq() hmmer() pdbaln() pdbfit() pca() plot()

An alternative approach is to write a **single complex program** that takes raw data as input, and after hours of data processing, outputs publication figures and a final table of results.

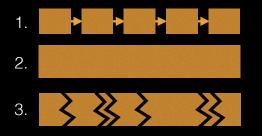
All-in-one custom 'Monster' program

F


Advantages/Disadvantages

The 'monster approach' is customized to a particular project but results in massive, fragile and difficult to modify (therefore inflexible, untransferable, and error prone) code.

With modular workflows, it's easier to:


- Spot errors and figure out where they're occurring by inspecting intermediate results.
- Experiment with alternative methods by swapping out components.
- Tackle novel problems by remixing existing modular tools.

Which would you prefer and why?

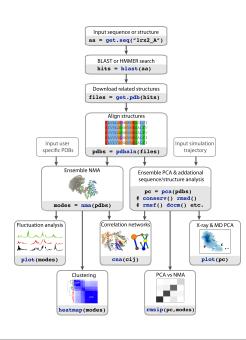
'Scripting' approach

Another common approach to bioinformatics data analysis is to write individual scripts in Perl/ Python/Awk/C etc. to carry out each subsequent step of an analysis

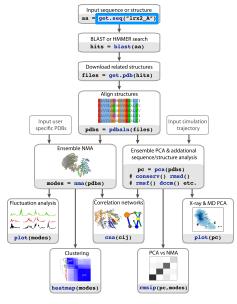
This can offer many advantages but can be challenging to make robustly modular and interactive.

Interactivity & exploratory data analysis

Learning R will give you the freedom to explore and experiment with your data.


"Data analysis, like experimentation, must be considered as a highly interactive, iterative process, whose actual steps are selected segments of a stubbily branching, tree-like pattern of possible actions". [J. W. Tukey]

Interactivity & exploratory data analysis


Learning R will give you the freedom to explore and experiment with your data.

"Data analysis, like experimentation, must be considered as a highly interactive, iterative process, whose actual steps are selected segments of a stubbily branching, tree-like pattern of possible actions". [J. W. Tukey]

Bioinformatics data is intrinsically **high dimensional** and frequently 'messy' requiring **exploratory data analysis** to find patterns - both those that indicate interesting biological signals or suggest potential problems.

R Features = functions()

How do we use R?

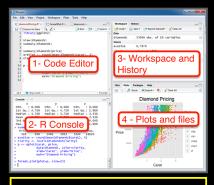
Two main ways to use R

pico:sandbox> R

>

R version 3.2.2 (2015-08-14) -- "Fire Safety" Copyright (C) 2015 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin13.4.0 (64-bit)

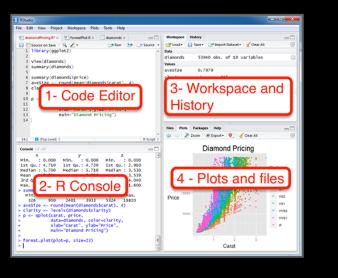
4. sandbox (R)

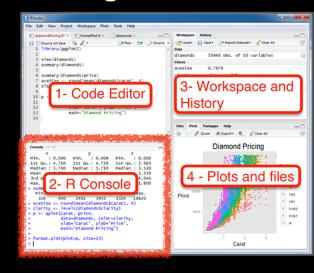

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.

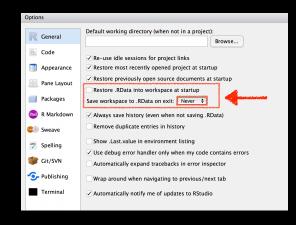
Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.


1. Terminal

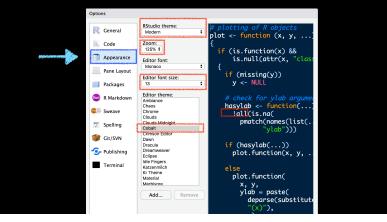

2. RStudio

Do IT YOURSELL

We will use **RStudio** today

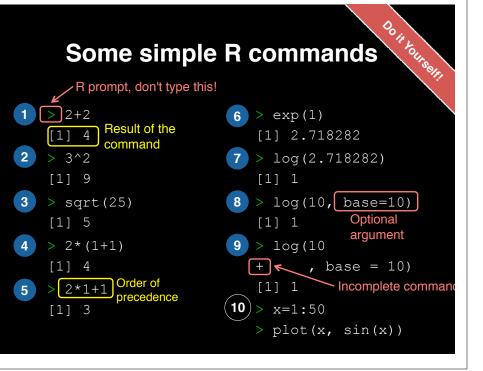


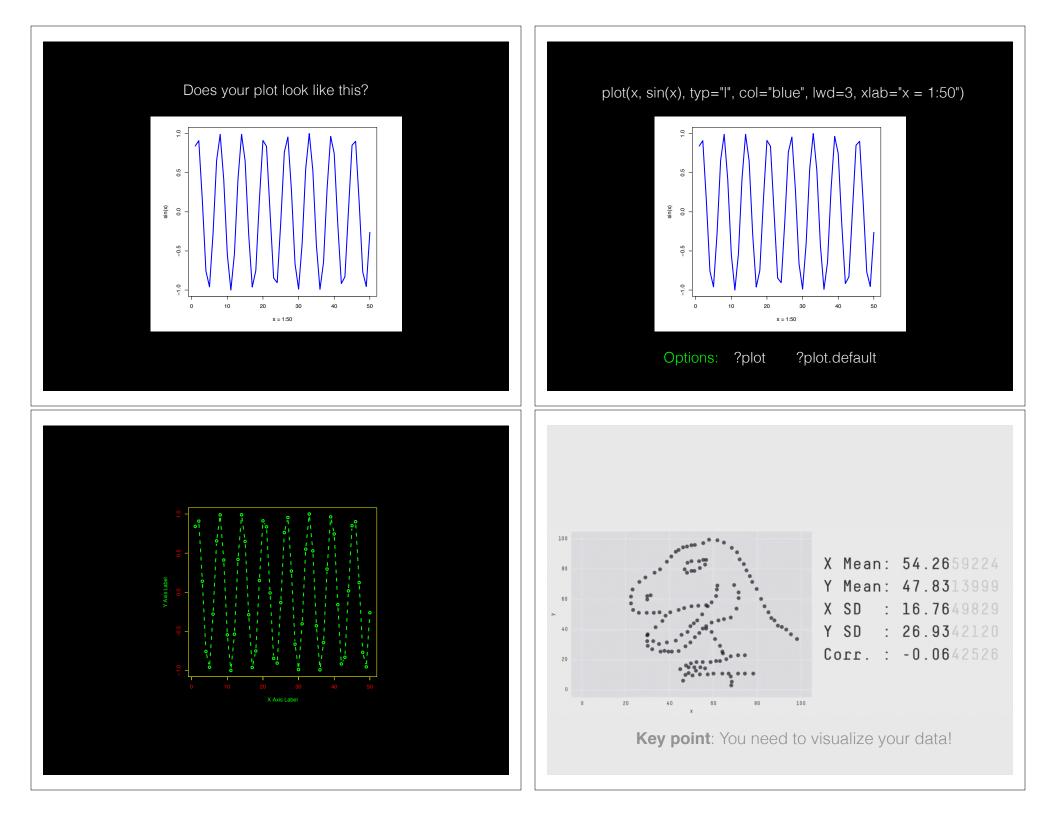
Lets get started...

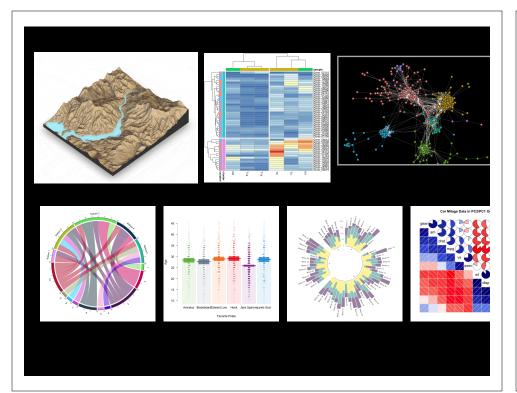

Tools > Global Options

• We will **NOT** save our workspace...

Tools > Global Options


• [**Optional**] Change to dark **Appearance** and increase font size, etc. ..




Lets get started...

Do IT YOURSERT

~/Desktop/test/tmp - RStudio	
🔁 - 🐜 🖆 - 🔲 📄 🍌 Go to file/function 🛛 🔚 - Addins -	🟮 tmp 🗸
Console Terminal & Jobs X PAR 200.55 Vo. Beccari tan anti-strate Standard Ba	Environment History Connections
~/Desktop/test/tmp/ 🖈	🖌 💣 🖥 📓 Import Dataset - 🛛 🧉 📃 List - 🛛 😋 -
	Global Environment - Q
R version 3.6.0 (2019-04-26) "Planting of a Tree"	
Copyright (C) 2019 The R Foundation for Statistical Computi	ing
Platform: x86_64-apple-darwin15.6.0 (64-bit)	Environment is empty
R is free software and comes with ABSOLUTELY NO WARRANTY.	1
You are welcome to redistribute it under certain conditions	Files Dista Designed Hale Manual
Type 'license()' or 'licence()' for distribution details.	Files Plots Packages Help Viewer
Natural language support but running in an English local	A Name Size
	t
R is a collaborative project with many contributors.	📕 🔲 tmp.Rproj 205 B
Type 'contributors()' for more information and	
'citation()' on how to cite R or R packages in publications	5.
	. 🔰
Type 'demo()' for some demos, 'help()' for on-line help, or	
'help.start()' for an HTML browser interface to help.	
Type 'q()' to quit R	
► "Console"	
CUISULE	3

Error Messages

Sometimes the commands you enter will generate errors. Common beginner examples include:

• Incomplete brackets or quotes e.g.

((4+8)*20 <enter>

This eturns a + here, which means you need to enter the remaining bracket - R is waiting for you to finish your input. Press <ESC> to abandon this line if you don't want to fix it.

- Not separating arguments by commas *e.g.* plot(1:10 col="red")
- Typos including miss-spelling functions and using wrong type of brackets *e.g.*

exp{4}

Your turn!

Do IT YOURSEIR!

https://bioboot.github.io/bggn213_W20/class-material/lab-4-bggn213/

If you have done the introductory DataCamp course then feel free to jump to section #3 *Object Assignment*

Topics Covered:

Calling Functions Getting help in R Vectors and vectorization Workspace and working directory RStudio projects

Topics Covered:

Calling Functions Getting help in R Vectors and vectorization

Workspace and working directory RStudio projects

Vectors

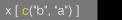
- Vectors are the most basic data structure in R
- All elements of a vector must be the same type

dbl_var <- c(1, 2.5, 4.5) log_var <- c(TRUE, FALSE, T, F) chr_var <- c("these are", "some", "strings")

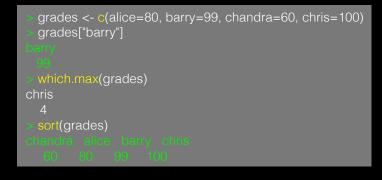
• When you attempt to combine different types they will be <u>coerced</u> to the most flexible type.

var <- c(1, "G", "4", 0.05, TRUE)

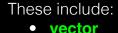
Names


- You can name a vector in several ways:
 - When creating it: x <- c(a = 1, b = 2, c = 3)

• By modifying an existing vector in place:


<- 1:3; names(x) <- c("a", "b", "c")

• You can then use the names to access a *subset* of vector elements:



Why is this useful?

• Because if you know the name (i.e. your label) then you don't have to remember which element of a vector the data you are after was stored in. Consider this *fictional* example:

R has many data structures

- data frame
- list
- matrix
- factors

_	

data.frame

- data.frame is the *de facto* data structure for most tabular data and what we use for statistics and plotting with ggplot2 - more on this later!
- Arguably the most important R data structure
- Data frames can have additional attributes such as rownames() and colnames(), which can be useful for annotating data, with things like subject_id or sample_id

data.frame continued.

• Created with the function data.frame()

dat <- data.frame(id = letters[1:10], x = 1:10, y = 11:20)

 Or more commonly when reading delimited files (*i.e.* importing data) with the functions read.csv(), read.table(), read_xlsx() etc...

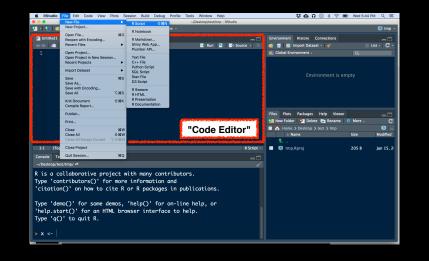
dep <- read.csv2("http://bio3d.uib.no/data/pdb_deposition2.csv")

Useful data.frame Functions

- head() -and tail() shows first 6 rows and last 6 rows respectively
- dim() returns the dimensions (i.e. number of rows and columns)
- nrow() and ncol() returns the number of rows and columns separately.
- rownames() and colnames() shows the names attribute for rows and columns
- str() returns the structure including name, type and preview of data in each column

Key Points

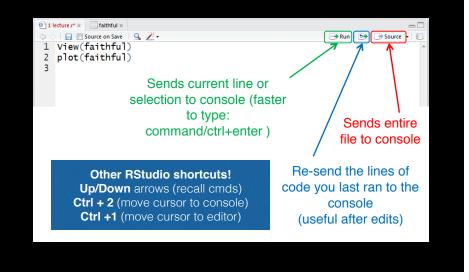
- R's basic data types are **logical**, **character**, **numeric**, integer and complex.
- R's basic data structures include **vectors**, lists, **data frames**, matrices and factors.
- Objects may have attributes, such as name, dimension, and class.


Topics Covered:

Calling Functions Getting help in R Vectors and vectorization Workspace and working directory RStudio projects

Topics Covered:

Calling Functions Getting help in R Vectors and vectorization Workspace and working directory RStudio projects


Side-note: Use the code editor for R scripts

R scripts

- A simple text file with your R commands (*e.g.* lecture7.r) that contains your R code for one complete analysis
- Scientific method: complete record of your analysis
- **Reproducible**: rerunning your code is easy for you or someone else
- In RStudio, select code and type <ctrl+enter> to run the code in the R console
- Key point: Save your R script!

Side-note: RStudio shortcuts

Rscript: Third way to use R

> Rscript --vanilla my_analysis.R
or within R: source(my_analysis.R)

R workspaces

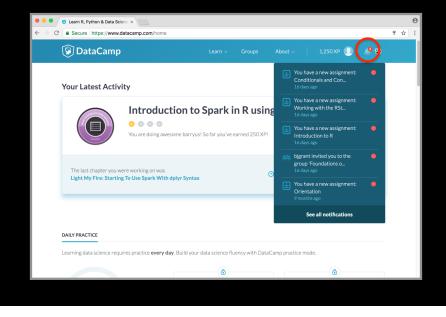
- When you close RStudio, SAVE YOUR .R SCRIPT
- You can also save data and variables in an R workspace, but this is generally not recommended
- · Exception: working with an enormous dataset
- Better to start with a clean, empty workspace so that past analyses don't interfere with current analyses
- rm(list = ls()) clears out your workspace or use the broom icon
- You should be able to reproduce everything from your R script, so save your R script, don't save your workspace!

RStudio Projects

We will use a new RStudio project for each new class going forward.

File > New Project > New Directory > New Project...

• These projects will help keep us **organized** and divide our work into multiple contexts, each with their own working directory, workspace, history, and source documents.


Learning Resources

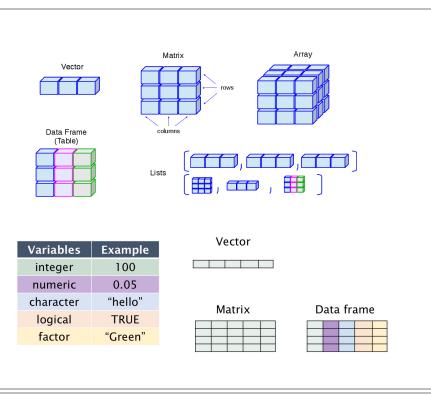
- TryR. An excellent interactive online R tutorial for beginners.
 < <u>http://tryr.codeschool.com/</u> >
- RStudio. A well designed reference card for RStudio.
 < <u>https://help.github.com/categories/bootcamp/</u> >
- DataCamp. Online tutorials using R in your browser.
 < <u>https://www.datacamp.com/</u> >
- **R for Data Science**. A new O'Reilly book that will teach you how to do data science with R, by Garrett Grolemund and Hadley Wickham.
 - < http://r4ds.had.co.nz/ >

Learning Resources

- TryR. An excellent interactive online R tutorial for beginners.
 < <u>http://tryr.codeschool.com/</u> >
- RStudio. A well designed reference card for RStudio.
 < <u>https://help.github.com/categories/bootcamp/</u> >
- DataCamp. Online tutorials using R in your browser.
 < <u>https://www.datacamp.com/</u> >
- R for Data Science. A new O'Reilly book that will teach you how to do data science with R, by Garrett Grolemund and Hadley Wickham.
 < http://r4ds.had.co.nz/ >

< <u>https://www.datacamp.com/</u> >

Key Points


- R's basic data types are **logical**, **character**, **numeric**, integer and complex.
- R's basic data structures include **vectors**, lists, **data frames**, matrices and factors.
- Objects may have attributes, such as name, dimension, and class.
- DataCamp, StackOverflow and help() are your friends.

Final Knowledge Check!

- What is R and why should we use it?
- Familiarity with R's basic syntax.
- Familiarity with major R data structures namely *vectors* and *data.frames* (with more on *lists* and *matrices* next day).
- Understand the basics of using functions (arguments, vectorizion and re-cycling).
- Be able to use R to read and parse comma-separated (.csv) formatted files ready for subsequent analysis.
- Appreciate how you can use R scripts to aid with reproducibility.

Please complete: Muddy point assessment

Reference Slides:

Help from within R

- Getting help for a function
- > help("log")
- > ?log
- · Searching across packages
- > help.search("logarithm")
- Finding all functions of a particular type

> apropos("log")

- [7] "SSlogis" "as.data.frame.logical" "as.logical" "as.logical.factor" "dlogis" "is.logical"
- [13] "log" "log10" "log1p" "log2" "logLik" "logb"
- [19] "logical" "loglin" "plogis" "print.logLik" "glogis" "rlogis"

R: Logarithms and Exponentials
Find in Top

R Documentation

Logarithms and Exponentials

log computes logarithms, by default natural logarithms, log10 computes common (i.e., base 10) logarithms, and log2 computes binary (i.e., base 2) logarithms. The general form log (x, z)base) computes logarithms with base base.

 $\log \lg(x)$ computes $\log(1+x)$ accurately also for |x| << 1 (and less accurately when x is approximately -1).

exp computes the exponential function

expm1 (x) computes exp(x) - 1 accurately also for |x| << 1. Usage How to use the function

log(x, base = exp(1))logb(x, base = exp(1)) log10(x) 10g2 (x)

log1p(x)

exp(x) expml(x)

log {base}

Arguments What does the function need

× a numeric or complex vector. base a positive or complex number; the base with respect to which logarithms are computed Defaults to e=exp(1).

Details

All except logb are generic functions: methods can be defined for them individually or via the Math group generic

log10 and log2 are only convenience wrappers, but logs to bases 10 and 2 (whether computed via 1 g or the wrappers) will be computed more efficiently and accurately where supported by the OS. Methods can be set for them individually (and otherwise methods for log will be used).

Loop is a wrapper for Loo for compatibility with S. If (S3 or S4) methods are set for Loo they will be dispatched. Do not set S4 methods on logb itself

All except log are primitive functions

?loa

R: Logarithms and Exponentials -Value What does the function return

Description What the function does in general terms Avector of the same length as x containing the transformed values. log (0) gives -Inf, and log (x) for negative values of x is NaN. exp (-Inf) is 0.

> For complex inputs to the log functions, the value is a complex number with imaginary part in the range [-pi, pi]: which end of the range is used might be platform-specific.

S4 methods

exp, expm1, log, log10, log2 and log1p are S4 generic and are members of the Math group generic

Note that this means that the S4 generic for log has a signature with only one argument, x, but that base can be passed to methods (but will not be used for method selection). On the other hand, if you only set a method for the Math group generic then base argument of log will be ignored for your class.

Source

login and expmi may be taken from the operating system, but if not available there are sed on the Fortran subroutine dlnrel by W. Fullerton of Los Alamos Scientific Laboratory (see http://www.netlib.org/slatec/fnlib/dlnrel.f and (for small x) a single Newton step for the solution of log1p(y) = x respectively.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole. (for log, log10 and exp.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (for 100b)

See Also Discover other related functions Trig, sqrt, Arithmetic

[Examples] Sample code showing how it works log(exp(3)) log10(1e7) # = 1

x <= 100=(1+2*1.9) cbind(x, log(1+x), loglp(x), exp(x)-1, expml(x))

[Package base version 3.0.1 Index]

Optional Exercise

Use R to do the following. Create a new script to save your work and code up the following four equations:

1 + 2(3 + 4)

In(4³+3²⁺¹)

 $\sqrt{(4+3)(2+1)}$

