
BGGN 213

Hands-on Lab Session

Class 06

Barry Grant

http://thegrantlab.org/bggn213

http://thegrantlab.org/bggn213

function()

• Covered the When, Why, What and How of writing your own
R functions.

…

Video Recap:

➡ When: When you find yourself doing the same thing 3 or
more times with repetitive code consider writing a
function.

 …

Video Recap:
• Covered the When, Why, What and How of writing your own

R functions.

https://www.biostat.wisc.edu/~kbroman/presentations/graphs2017.pdf

➡ Why:

1. Makes the purpose of the code more clear

2. Reduces mistakes from copy/paste

3. Makes updating your code easer

4. Reduces code duplication and facilitates re-use.

 …

Video Recap:
• Covered the When, Why, What and How of writing your own

R functions.

https://www.biostat.wisc.edu/~kbroman/presentations/graphs2017.pdf

• Covered the When, Why, What and How of writing your own
R functions.

➡ What: A function is defined with:

1. A user selected name,

2. A comma separated set of input arguments, and

3. Regular R code for the function body

fname <- function(arg1, arg2) { paste(arg1,arg2) }

Name Input arguments Function body
…

Video Recap:

1 2 3

➡ How: Follow a step-by-step procedure to go from working
code snippet to refined and tested function.

1. Start with a simple problem and write a working snippet of
code.

2. Rewrite for clarity and to reduce duplication

3. Then, and only then, turn into an initial function

4. Test on small well defined input

5. Report on potential problem by failing early and loudly!

Video Recap:

Your turn...
• Write a function grade() to determine an overall

grade from a vector of student homework
assignment scores dropping the lowest single
alignment score.

student 1
c(100, 100, 100, 100, 100, 100, 100, 90)

student 2
c(100, NA, 90, 90, 90, 90, 97, 80)

Lab session!

Your turn...
• Write a function grade() to determine an overall

grade from a vector of student homework
assignment scores dropping the lowest single
alignment score.

student 1
c(100, 100, 100, 100, 100, 100, 100, 90)

student 2
c(100, NA, 90, 90, 90, 90, 97, 80)

now grade all students in an example class
url <- "https://tinyurl.com/gradeinput"

Lab session!

Create a new Project for class06

N.B. Open a new Rmarkdown document

(Our goal is to make a PDF report with notes and plots)

Lab session!

File > New File > Rmarkdown

File > New File > Rmarkdown

Lab sheet

And some homework….

Can you improve this analysis code?

library(bio3d)

s1 <- read.pdb("4AKE") # kinase with drug

s2 <- read.pdb("1AKE") # kinase no drug

s3 <- read.pdb("1E4Y") # kinase with drug

s1.chainA <- trim.pdb(s1, chain="A", elety="CA")

s2.chainA <- trim.pdb(s2, chain="A", elety="CA")

s3.chainA <- trim.pdb(s1, chain="A", elety="CA")

s1.b <- s1.chainA$atom$b

s2.b <- s2.chainA$atom$b

s3.b <- s3.chainA$atom$b

plotb3(s1.b, sse=s1.chainA, typ="l", ylab="Bfactor")

plotb3(s2.b, sse=s2.chainA, typ="l", ylab="Bfactor")

plotb3(s3.b, sse=s3.chainA, typ="l", ylab="Bfactor")

Do it Yourself!

Suggested steps for writing
your functions

1. Start with a simple problem and get a working snippet of code

2. Rewrite to use temporary variables (e.g. x, y, df, m etc.)

3. Rewrite for clarity and to reduce calculation duplication

4. Turn into an initial function with clear useful names

5. Test on small well defined input and (subsets of) real input

6. Report on potential problem by failing early and loudly!

7. Refine and polish

Side-Note: What makes a
good function?

• Correct

• Understandable (remember that functions are for humans
and computers)

• Correct + Understandable = Obviously correct

• Use sensible names throughout. What does this code do?

• Good names make code understandable with minimal
context. You should strive for self-explanatory names

baz <- foo(df, v=0)

df2 < replace_missing(df, value=0)

➡ How: Follow a step-by-step procedure to go from working
code snippet to refined and tested function.

1. Start with a simple problem and write a working snippet of
code.

2. Rewrite for clarity and to reduce duplication

3. Then, and only then, turn into an initial function

4. Test on small well defined input

5. Report on potential problem by failing early and loudly!

…

Recap From Last Time:

1. Start with a simple problem and write a working snippet of
code.

Build that skateboard
before you build the
car.

A limited but
functional thing is very
useful and keeps the
spirits high.

[Image credit: Spotify development team]

Recap…

Suggested steps for writing
your functions

1. Start with a simple problem and get a working snippet of code

2. Rewrite to use temporary variables (e.g. x, y, df, m etc.)

3. Rewrite for clarity and to reduce calculation duplication

4. Turn into an initial function with clear useful names

5. Test on small well defined input and (subsets of) real input

6. Report on potential problem by failing early and loudly!

7. Refine and polish

BGGN 213

Hands-on Lab Session

Class 06

Barry Grant

http://thegrantlab.org/bggn213

http://thegrantlab.org/bggn213

