
BGGN 213
Unsupervised Learning

Lecture 9

Barry Grant

http://thegrantlab.org/bggn213

Today’s Menu
• Introduction to machine learning

• Unsupervised, supervised and reinforcement learning

• Clustering

• K-means clustering

• Hierarchical clustering

• Heatmap representations

• Dimensionality reduction, visualization and ‘structure’ analysis

• Principal Component Analysis (PCA)

• Hands-on application to cell classification

Types of machine learning
• Unsupervised learning

➡ Finding structure in unlabeled data

• Supervised learning
➡ Making predictions based on labeled data
➡ Predictions like regression or classification

• Reinforcement learning
➡ Making decisions based on past experience

Types of machine learning
• Unsupervised learning

➡ Finding structure in unlabeled data

• Supervised learning
➡ Making predictions based on labeled data
➡ Predictions like regression or classification

• Reinforcement learning
➡ Making decisions based on past experience

Today’s Menu
• Introduction to machine learning

• Unsupervised, supervised and reinforcement learning

• Clustering

• K-means clustering

• Hierarchical clustering

• Heatmap representations

• Dimensionality reduction, visualization and ‘structure’ analysis

• Principal Component Analysis (PCA)

• Hands-on application to cell classification

k-means clustering algorithm
• Breaks observations into k pre-defined number of clusters

• You define k the number of clusters!

k-means clustering algorithm
• Breaks observations into k pre-defined number of clusters

• You define k the number of clusters!
➡ Imagine you had data that you could plot along a line

and you knew you had to put them into k=3
“clusters” (e.g. data from three types of tumor cells)

k-means clustering algorithm
• Breaks observations into k pre-defined number of clusters

• You define k the number of clusters!
➡ Imagine you had data that you could plot along a line

and you knew you had to put them into k=3
“clusters” (e.g. data from three types of tumor cells)

Here your eyes can clearly see 3 natural groupings

k-means clustering algorithm
• Breaks observations into k pre-defined number of clusters

• You define k the number of clusters!
➡ Imagine you had data that you could plot along a line

and you knew you had to put them into k=3
“clusters” (e.g. data from three types of tumor cells)

Here your eyes can clearly see 3 natural groupings
How does k-means attempt to define this grouping?

Step 1.
Select k (the number of clusters)

Step 2.
Select k=3 distant data points at random
These are the initial clusters

Step 3.
Measure distance between the 1st point and the k=3 initial
clusters

Distance to
blue cluster

Distance to
orange cluster

Distance
to green
cluster

Step 4.
Assign the 1st point to the nearest cluster

Step 5.
Update cluster centers
Calculate the mean value for the blue cluster including the
new point

Step 6.
Assign next point to closest cluster
Use updated cluster centers for distance calculation

Step 7.
Update cluster centers and move to next point
Use updated cluster centers for distance calculation

Step 8.
Repeat for each point
Each time updating cluster centers

Hmm….
Here the k-means result does not look as
good as what we were able to do by eye!

k-means

By eye!

Step 9.
Assess the quality of the clustering by adding up the
variation within each cluster

The total variation within clusters

K-means keeps track of these clusters and their total variance and
then does the whole thing over again with different starting points

Step 10.
Repeat with different starting points
Back to the beginning and do all steps over again…

Pick new points as “initial” clusters

…Pick k=3 initial clusters and add the remaining points to
the cluster with the nearest mean, recalculating the mean
each time a new point is added…

…Pick k=3 initial clusters and add the remaining points to
the cluster with the nearest mean, recalculating the mean
each time a new point is added…

…Pick k=3 initial clusters and add the remaining points to
the cluster with the nearest mean, recalculating the mean
each time a new point is added…

…Pick k=3 initial clusters and add the remaining points to
the cluster with the nearest mean, recalculating the mean
each time a new point is added…

…Pick k=3 initial clusters and add the remaining points to
the cluster with the nearest mean, recalculating the mean
each time a new point is added…

…Pick k=3 initial clusters and add the remaining points to
the cluster with the nearest mean, recalculating the mean
each time a new point is added…

…Pick k=3 initial clusters and add the remaining points to
the cluster with the nearest mean, recalculating the mean
each time a new point is added…

…Pick k=3 initial clusters and add the remaining points to
the cluster with the nearest mean, recalculating the mean
each time a new point is added…

Now the data are all assigned to clusters, we again sum
the variation within each cluster

The total variation within clusters

Step 10.
Repeat again with different starting points

After several iterations k-means clustering knows it has the
best clustering so-far based on the smallest total variation
with clusters.

However, it does not know if it has found the best overall.
So it will perform several more iterations with different
starting points…

The total variation within clusters

Iteration 1

Iteration 2

Iteration 3

Iteration 4

The winner!

What if we have more
dimensions?

x

y

x

y

Just like before, we pick 3 random points…

x

y

…and use the Euclidean distance.
In 2 dimensions the Euclidean distance is the same as the
Pythagorean theorem

x
y

d = sqrt(x^2 + y^2)

d

x

y

…assign point to nearest cluster and update cluster
center

*

*

x

y

…and continue

*

x

y

…and continue

*

x

y

…and continue

*

x

y

…and continue

*

*

x

y

Again we have to use a number of different starting
conditions before deciding on a good clustering!

*

*

What if we have even more
dimensions?

Cell Samples

#1 #2 #3

Gene 1 12 6 -13

Gene 2 -7 13 10

Gene 3 8 6 -9

Gene 4 9 5 -11

Gene 5 -3 1 6

Gene 6 10 4 -8

What if we have even more
dimensions?

Cell Samples

#1 #2 #3

Gene 1 12 6 -13

Gene 2 -7 13 10

Gene 3 8 6 -9

Gene 4 9 5 -11

Gene 5 -3 1 6

Gene 6 10 4 -8

x y z

We could simply plot them
by relabeling the cell
samples as x, y, and z (i.e. a
3D plot)

What if we have even more
dimensions?

Cell Samples

#1 #2 #3

Gene 1 12 6 -13

Gene 2 -7 13 10

Gene 3 8 6 -9

Gene 4 9 5 -11

Gene 5 -3 1 6

Gene 6 10 4 -8

Cell1

Cell2

Cell3

x

y

z

x y z

Cell Samples

#1 #2 #3

Gene 1 12 6 -13

Gene 2 -7 13 10

Gene 3 8 6 -9

Gene 4 9 5 -11

Gene 5 -3 1 6

Gene 6 10 4 -8

Cell1

Cell2

Cell3

x

y

z

x y z

…and go through exactly the same procedure with initial
cluster assignment followed by distance calculation etc…

d = sqrt(x^2 + y^2 + z^2)

d

Cell Samples

#1 #2 #3

Gene 1 12 6 -13

Gene 2 -7 13 10

Gene 3 8 6 -9

Gene 4 9 5 -11

Gene 5 -3 1 6

Gene 6 10 4 -8

…and go through exactly the same procedure with initial
cluster assignment followed by distance calculation etc…

d = sqrt(x^2 + y^2 + z^2)

Of course we don’t actually
need to plot anything.

We can just calculate the
Euclidean distance along
any number of dimensions
and perform our k-means
clustering in the same way.

k-means in R

• Input x is a numeric matrix, or data.frame, with
one observation per row, one feature per column

• k-means has a random component

• Run algorithm multiple times to improve odds of
the best model

k-means algorithm with 3 centers, run 20 times
kmeans(x, centers= 3, nstart= 20)

●●●

●

●
●

●
●

●

●
●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●●●

●
●
●

● ●

●● ●
●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●●

●●

●
●●

●
● ●
●

●

● ●

●

●

●

●
●

●

●

−5 0 5 10

−6
−4

−2
0

2
4

6

x

y

●●●

●

●
●

●
●

●

●
●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●●●

●
●
●

● ●

●● ●
●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●●

●●

●
●●

●
● ●
●

●

● ●

●

●

●

●
●

●

●

−5 0 5 10
−6

−4
−2

0
2

4
6

x

y

Subgroup 1

Subgroup 2

Subgroup 3

3 Groups

Run k-means algorithm with 3 centers, run 20 times
kmeans(x, centers=3, nstart=20)

Model selection
• Recall k-means has a random component

• Best outcome is based on total within cluster
sum of squares:
➡ For each cluster

• For each observation in the cluster
• Determine squared distance from

observation to cluster center
➡ Sum all of them together

Model selection

• Running algorithm multiple times (i.e. setting
nstart) helps find the global minimum total
within cluster sum of squares

• Increasing the default value of nstart is often
sensible

k-means algorithm with 5 centers, run 20 times
kmeans(x, centers=5, nstart=20)

Winner
has the
smallest

within
cluster

SS

Note. k-means will always give you the renumber of clusters you request!
(Here for example, k=2 may be better but we asked for k=3)

Determining number of clusters
Trial and error is not
the best approach

Systematically try a
range of different k
values and plot a
“scree plot”.

Here there is a large
reduction in SS with
k=2 but after that the
values do not go
down as quickly!

Scree plot

Number of clusters (k)

To
ta

l w
ith

in
 S

S

“Elbow”

Generate some example data for clustering
tmp <- c(rnorm(30,-3), rnorm(30,3))
x <- cbind(x=tmp, y=rev(tmp))

plot(x)

Your Turn!

Use the kmeans() function setting k to 2 and nstart=20

Inspect/print the results

Q. How many points are in each cluster?
Q. What ‘component’ of your result object details
 - cluster size?
 - cluster assignment/membership?
 - cluster center?

Plot x colored by the kmeans cluster assignment and
 add cluster centers as blue points

Today’s Menu
• Introduction to machine learning

• Unsupervised, supervised and reinforcement learning

• Clustering

• K-means clustering

• Hierarchical clustering

• Heatmap representations

• Dimensionality reduction, visualization and ‘structure’ analysis

• Principal Component Analysis (PCA)

• Hands-on application to cell classification

Hierarchical clustering

• Number of clusters is not known ahead of time

• Two kinds of hierarchical clustering:
➡ bottom-up
➡ top-down

Hierarchical clustering
Simple example:
5 clusters: Each point starts as it’s own “cluster”!

Hierarchical clustering
4 clusters

Hierarchical clustering
3 clusters

Hierarchical clustering
2 clusters

Hierarchical clustering
End: 1 cluster

Hierarchical clustering in R
First we need to calculate point (dis)similarity
as the Euclidean distance between observations
dist_matrix <- dist(x)

The hclust() function returns a hierarchical
clustering model
hc <- hclust(d = dist_matrix)

the print method is not so useful here
hc

Call:
hclust(d = dist_matrix)

Cluster method : complete
Distance : euclidean
Number of objects: 60

Create hierarchical cluster model: hc
hc <- hclust(dist(x))

We can plot the results as a dendrogram
plot(hc)

What do you notice?
Does the dendrogram
make sense based on
your knoweledge of x?

Interpreting results

20
7 16

8
2

12 30
4 10

25 27
6

19 1 28
23 3 21
17 24

5 18 9 15
29

11 22
26

13 14
41

45 54
53

59 31 49
51 57

34 36
55

42 33 60
38

40 58
37 44

43 56 46 52
32

39 50
35

47 48

0
2

4
6

8
10

12

Cluster Dendrogram

hclust (*, "complete")

H
ei

gh
t

Dendrogram
• Tree shaped structure used to interpret

hierarchical clustering models

H
ei

gh
t

Dendrogram
• Tree shaped structure used to interpret

hierarchical clustering models

H
ei

gh
t

Dendrogram
• Tree shaped structure used to interpret

hierarchical clustering models

H
ei

gh
t

Dendrogram
• Tree shaped structure used to interpret

hierarchical clustering models

H
ei

gh
t

Dendrogram
• Tree shaped structure used to interpret

hierarchical clustering models

H
ei

gh
t

Dendrogram
• Tree shaped structure used to interpret

hierarchical clustering models

H
ei

gh
t

Dendrogram plotting in R
Draws a dendrogram
plot(hc)

He
ig

ht

0

2

4

6

Dendrogram plotting in R
Draws a dendrogram
plot(hc)
abline(h=6, col="red")

He
ig

ht

0

2

4

6

Dendrogram plotting in R
Draws a dendrogram
plot(hc)
abline(h=6, col="red")

H
ei

gh
t

0

2

4

6

Dendrogram plotting in R
Draws a dendrogram
plot(hc)
abline(h=6, col="red")
cutree(hc, h=6) # Cut by height h
[1] 1,1,1,2,2

H
ei

gh
t

0

2

4

6

1 2 211

Dendrogram plotting in R
Draws a dendrogram
plot(hc)
abline(h=6, col="red")
cutree(hc, k=2) # Cut into k grps
[1] 1,1,1,2,2

He
ig

ht

0

2

4

6

1 2 211

Linking clusters in
hierarchical clustering

• How is distance between clusters determined?

• There are four main methods to determine which cluster
should be linked:
➡ Complete: pairwise similarity between all observations

in cluster 1 and cluster 2, and uses largest of similarities
➡ Single: same as above but uses smallest of similarities
➡ Average: same as above but uses average of

similarities
➡ Centroid: finds centroid of cluster 1 and centroid of

cluster 2, and uses similarity between two centroids

Uses largest of all
pair-wise similarities

Uses smallest of all
pair-wise similarities

Uses average of all
pair-wise similarities

Linking methods: complete
and average

Linking method: single Linking method: centroid

Linkage in R
Using different hierarchical clustering methods
hc.complete <- hclust(d, method="complete")

hc.average <- hclust(d, method="average")

hc.single <- hclust(d, method="single")

Step 1. Generate some example data for clustering
x <- rbind(
 matrix(rnorm(100, mean=0, sd=0.3), ncol = 2), # c1
 matrix(rnorm(100, mean=1, sd=0.3), ncol = 2), # c2
 matrix(c(rnorm(50, mean=1, sd=0.3), # c3
 rnorm(50, mean=0, sd=0.3)), ncol = 2))
colnames(x) <- c("x", "y")

Step 2. Plot the data without clustering
plot(x)

Step 3. Generate colors for known clusters
(just so we can compare to hclust results)
col <- as.factor(rep(c("c1","c2","c3"), each=50))

plot(x, col=col)

Your Turn!

Q. Use the dist(), hclust(), plot() and cutree()
 functions to return 2 and 3 clusters
Q. How does this compare to your known 'col' groups?

Today’s Menu
• Introduction to machine learning

• Unsupervised, supervised and reinforcement learning

• Clustering

• K-means clustering

• Hierarchical clustering

• Heatmap representations

• Dimensionality reduction, visualization and ‘structure’ analysis

• Principal Component Analysis (PCA)

• Hands-on application to cell classification

PCA: The absolute basics

Bunch of “normal” cells

Bunch of “normal” cells

Even though they look the
same we suspect that there

are differences…

These might be
one cell type…

These might be
one cell type…

These another
cell type…

These might be
one cell type…

These another
cell type…

These might be a
third cell type…

Unfortunately we can’t observe
the differences visually

Unfortunately we can’t observe
the differences visually

So we sequence the mRNA in each
cell to identify which genes are

active and at what levels.

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Here is the data…

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Here is the data…

Each column shows how much each
gene is transcribed in each cell

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

For now lets consider
only two cells

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

We have just 2 cells so we
can plot the measurements

for each gene

Cell1

Cell2

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

This gene (Gene1) is highly
transcribed in Cell1 and

lowly transcribed in Cell2…

Cell1

Cell2

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Cell1

Cell2

This gene (Gene9) is lowly
transcribed in Cell1 and

highly transcribed in Cell2…

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

In generel, Cell1 and Cell2 have
an inverse correlation.

This suggests that they may be
two different types of cells as
they are using different genes

Cell1

Cell2

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Now lets imagine
there are three cells

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

We have already seen how we can
plot the first two cells to see how

closely related they are
Cell1

Cell2

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Now we can also compare
Cell1 to Cell3

Cell1

Cell3

Cell1

Cell2

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Cell1 and Cell3 are positively
correlated suggesting they are

doing similar things

Cell1

Cell3

Cell1

Cell2

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

We can also compare
Cell2 to Cell3…

Cell2

Cell3

Cell1

Cell2 Cell3

The inverse correlation suggests
that Cell2 is doing something

different from Cell3

Cell1

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Cell1

Cell2

Cell3

Alternatively, we could try to
plot all 3 cells at once on a

3-dimensional graph.

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

But what if we have 4 or more Cells?

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Draw lots of 2 cell plots and try to
make sense of them all?

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Or draw some crazy graph that has
an axis for each cell and makes or

brains hurt!

Cell1

Cell2

Cell3

Cell4
Cell6

Cell6

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Cell1

Cell2

Cell3

Cell4
Cell6

Cell6

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Enter Principal Component Analysis
(PCA)

PC2

PC1

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

PCA converts the correlations (or
lack there of) among all cells into a
representation we can more readily

interpret (e.g. a 2D graph!)

PC2

PC1

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Cells that are highly correlated
cluster together

PC2

PC1

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Cells that are highly correlated
cluster together

PC2

PC1

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

To make the clusters easier to see
we can color code them…

PC2

PC1

Once we have identified the clusters
from our PCA results, we can go

back to or original cells…

PC2

PC1

Once we have identified the clusters
from our PCA results, we can go

back to or original cells…

PC2

PC1

…and see they represent three
different types of cells doing three
different things with their genes!

Some key points:

The PCs (i.e. new plot axis) are
ranked by their importance

So PC1 is more important than PC2
which in turn is more important than

PC3 etc.
PC2

PC1

Some key points:

The PCs (i.e. new plot axis) are
ranked by their importance

So PC1 is more important than PC2
which in turn is more important than

PC3 etc.

So the red and blue cluster are more
dissimilar than the yellow and blue

clusters

PC2

PC1

Some key points:

The PCs (i.e. new plot axis) are
ranked by their importance

So PC1 is more important than PC2
which in turn is more important than

PC3 etc.

So the red and blue cluster are more
dissimilar than the yellow and blue

clusters

The PCs (i.e. new plot axis) are
ranked by the amount of variance in

the original data (i.e. gene expression
values) that they “capture”

PC2
(11%)

PC1 (44%)

Some key points:

The PCs (i.e. new plot axis) are
ranked by their importance

So PC1 is more important than PC2
which in turn is more important than

PC3 etc.

So the red and blue cluster are more
dissimilar than the yellow and blue

clusters

The PCs (i.e. new plot axis) are
ranked by the amount of variance in

the original data (i.e. gene expression
values) that they “capture”

In this example PC1 ‘captures’ 4x
more of the original variance than

PC2 (44/11 = 4)

PC2
(11%)

PC1 (44%)

• We actually get two main things out of a typical PCA

• The new axis (called PCs or Eigenvectors) and

• Eigenvalues that detail the amount of variance captured by
each PC

Scree Plot

Principal Component

Pe
rc

en
t V

ar
ia

tio
n

0
20

40
60

80

●

●

●
●

●

●

●

●

●

●

−10 −5 0 5 10

−2
−1

0
1

2
3

PC1 (91%)

PC
2

(2
.8

%
)

wt2

wt5 ko3

ko1

PC1

1. PCA plot (or score plot) 2. Eigenvalue plot (or scree plot)

• Another cool thing we can get out of PCA is a quantitive
report on how the original variables contributed to each
PC

• In other words, which were the most important genes
that lead to the observed clustering in PC-space

• These are often called the loadings and we can plot
them to see which are the most important genes for the
observed separation as well as outputting ranked lists
of genes that act to discriminate the samples

 gene64 gene39
0.1047968 0.1047629

 gene7 gene65
-0.1047629 -0.1047443

Bonus: PC Loadings

Hands-on time!
https://bioboot.github.io/bggn213_W20/class-material/pca/

Do it Yourself! Outline: How to do PCA in R

• How to use the prcomp() function to do PCA.

• How to draw and interpret PCA plots

• How to determine how much variation each principal
component accounts for and the the “intrinsic
dimensionality” useful for further analysis

• How to examine the loadings (or loading scores) to
determine what variables have the largest effect on the
graph and are thus important for discriminating samples.

• First lets read our example data to work with.

You can also download this file from the class website!
mydata <- read.csv("https://tinyurl.com/expression-CSV",
 row.names=1)

head(mydata)

 wt1 wt2 wt3 wt4 wt5 ko1 ko2 ko3 ko4 ko5
gene1 147 171 160 175 187 63 57 58 55 59
gene2 151 134 148 126 134 838 831 894 847 830
gene3 702 672 653 681 701 593 579 644 596 610
gene4 319 297 310 296 304 754 807 734 750 774
gene5 168 147 162 142 152 787 811 814 869 784

• NOTE: the samples are columns, and the genes are rows!

• Now we have our data we call prcomp() to do PCA

• NOTE: prcomp() expects the samples to be rows and
genes to be columns so we need to first transpose the
matrix with the t() function!

lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)

• Now we have our data we call prcomp() to do PCA

• NOTE: prcomp() expects the samples to be rows and
genes to be columns so we need to first transpose the
matrix with the t() function!

lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)

See what is returned by the prcomp() function
attributes(pca)

$names
#[1] "sdev" "rotation" "center" "scale" "x"

$class
#[1] "prcomp"

• The returned pca$x here contains the principal
components (PCs) for drawing our first graph.

• Here we will take the first two columns in pca$x
(corresponding to PC1 and PC2) to draw a 2-D plot

lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)

See what is returned by the prcomp() function
attributes(pca)

$names
#[1] "sdev" "rotation" "center" "scale" "x"

$class
#[1] "prcomp"

• The returned pca$x here contains the principal
components (PCs) for drawing our first graph.

• Here we will take the first two columns in pca$x

(corresponding to PC1 and PC2) to draw a 2-D plot

lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)

A basic PC1 vs PC2 2-D plot
plot(pca$x[,1], pca$x[,2])

• The returned pca$x here contains the principal
components (PCs) for drawing our first graph.

• Here we will take the first two columns in pca$x
(corresponding to PC1 and PC2) to draw a 2-D plot

lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)

A basic PC1 vs PC2 2-D plot
plot(pca$x[,1], pca$x[,2])

●

●

●
●

●

●

●

●

●

●

−10 −5 0 5 10

−2
−1

0
1

2
3

pca$x[, 1]

pc
a$

x[
, 2

]

• Looks interesting with a nice separation of samples into
two groups of 5 samples each

• Now we can use the square of pca$sdev , which

stands for “standard deviation”, to calculate how much
variation in the original data each PC accounts for

lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)

A basic PC1 vs PC2 2-D plot
plot(pca$x[,1], pca$x[,2])

Variance captured per PC
pca.var <- pca$sdev^2

●

●

●
●

●

●

●

●

●

●

−10 −5 0 5 10

−2
−1

0
1

2
3

pca$x[, 1]

pc
a$

x[
, 2

]

• Looks interesting with a nice separation of samples into
two groups of 5 samples each

• Now we can use the square of pca$sdev , which

stands for “standard deviation”, to calculate how much
variation in the original data each PC accounts for

lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)

A basic PC1 vs PC2 2-D plot
plot(pca$x[,1], pca$x[,2])

Precent variance is often more informative to look at
pca.var <- pca$sdev^2
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)

• Looks interesting with a nice separation of samples into
two groups of 5 samples each

• Now we can use the square of pca$sdev , which

stands for “standard deviation”, to calculate how much
variation in the original data each PC accounts for

lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)

A basic PC1 vs PC2 2-D plot
plot(pca$x[,1], pca$x[,2])

Precent variance is often more informative to look at
pca.var <- pca$sdev^2
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)

pca.var.per

 [1] 91.0 2.8 1.9 1.3 0.8 0.7 0.6 0.5 0.3 0.0

• Looks interesting with a nice separation of samples into
two groups of 5 samples each

• Now we can use the square of pca$sdev , which

stands for “standard deviation”, to calculate how much
variation in the original data each PC accounts for

pca.var <- pca$sdev^2
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)

barplot(pca.var.per, main="Scree Plot",
 xlab="Principal Component", ylab="Percent Variation")

• From the “scree plot” it is clear that PC1 accounts for
almost all of the variation in the data!

pca.var <- pca$sdev^2
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)

barplot(pca.var.per, main="Scree Plot",
 xlab="Principal Component", ylab="Percent Variation")

Scree Plot

Principal Component

Pe
rc

en
t V

ar
ia

tio
n

0
20

40
60

80

• Which means there are big differences between these two
groups that are separated along the PC1 axis…

pca.var <- pca$sdev^2
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)

barplot(pca.var.per, main="Scree Plot",
 xlab="Principal Component", ylab="Percent Variation")

Scree Plot

Principal Component

Pe
rc

en
t V

ar
ia

tio
n

0
20

40
60

80

●

●

●
●

●

●

●

●

●

●

−10 −5 0 5 10

−2
−1

0
1

2
3

pca$x[, 1]

pc
a$

x[
, 2

]

• Lets make our plot a bit more useful…
A vector of colors for wt and ko samples
colvec <- as.factor(substr(colnames(mydata), 1, 2))

plot(pca$x[,1], pca$x[,2], col=colvec, pch=16,
 xlab=paste0("PC1 (", pca.var.per[1], "%)"),
 ylab=paste0("PC2 (", pca.var.per[2], "%)"))

●

●

●
●

●

●

●

●

●

●

−10 −5 0 5 10

−2
−1

0
1

2
3

PC1 (91%)

PC
2

(2
.8

%
)

• And add some labels…

plot(pca$x[,1], pca$x[,2], col=colvec, pch=16,
 xlab=paste0("PC1 (", pca.var.per[1], "%)"),
 ylab=paste0("PC2 (", pca.var.per[2], "%)"))

IN THE CONSOLE! Click to identify which sample is which
identify(pca$x[,1], pca$x[,2], labels=colnames(mydata))

Press ESC to exit…

●

●

●
●

●

●

●

●

●

●

−10 −5 0 5 10

−2
−1

0
1

2
3

PC1 (91%)

PC
2

(2
.8

%
)

wt2

wt5 ko3

ko1

Your turn!

Do it Yourself!

Perform a PCA on the UK foods dataset

Input: read, View/head,
PCA: prcomp,
Plots: PCA plot
 scree plot,
 loadings plot.

https://bioboot.github.io/bggn213_W20/class-material/lab-8-bggn213.html

[Muddy Point Feedback Link]

Main PCA objectives include:

• To reduce dimensionality

• To visualize multidimensional data

• To choose the most useful variables (features)

• To identify groupings of objects (e.g. genes/samples)

• To identify outliers

Reference Slides

• Finally, lets look at how to use the loading scores to
determine which genes have the largest effect on where
samples are plotted in the PCA plot

• The prcomp() function calls loading scores $rotation

Lets focus on PC1 as it accounts for > 90% of variance
loading_scores <- pca$rotation[,1]

• Finally, lets look at how to use the loading scores to
determine which genes have the largest effect on where
samples are plotted in the PCA plot

• The prcomp() function calls loading scores $rotation

Lets focus on PC1 as it accounts for > 90% of variance
loading_scores <- pca$rotation[,1]

summary(loading_scores)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.104763 -0.104276 -0.068784 -0.005656 0.103926 0.104797

We are interested in the magnitudes of both plus
and minus contributing genes
gene_scores <- abs(loading_scores)

• Finally, lets look at how to use the loading scores to
determine which genes have the largest effect on where
samples are plotted in the PCA plot

• The prcomp() function calls loading scores $rotation

loading_scores <- pca$rotation[,1]

gene_scores <- abs(loading_scores)

Sort by magnitudes from high to low
gene_score_ranked <- sort(gene_scores, decreasing=TRUE)

• Finally, lets look at how to use the loading scores to
determine which genes have the largest effect on where
samples are plotted in the PCA plot

• The prcomp() function calls loading scores $rotation

loading_scores <- pca$rotation[,1]

gene_scores <- abs(loading_scores)

Sort by magnitudes from high to low
gene_score_ranked <- sort(gene_scores, decreasing=TRUE)

Find the names of the top 5 genes
top_5_genes <- names(gene_score_ranked[1:5])

• Finally, lets look at how to use the loading scores to
determine which genes have the largest effect on where
samples are plotted in the PCA plot

• The prcomp() function calls loading scores $rotation

loading_scores <- pca$rotation[,1]

gene_scores <- abs(loading_scores)

Sort by magnitudes from high to low
gene_score_ranked <- sort(gene_scores, decreasing=TRUE)

Find the names of the top 5 genes
top_5_genes <- names(gene_score_ranked[1:5])

Show the scores (with +/- sign)
pca$rotation[top_5_genes,1]

• Here we see genes with the largest positive loading
scores that effectively ‘push’ the “ko” samples to the right
positive side of the plot.

• And the genes with high negative scores that push “wt”
samples to the left side of the plot.

loading_scores <- pca$rotation[,1]

gene_scores <- abs(loading_scores)

Sort by magnitudes from high to low
gene_score_ranked <- sort(gene_scores, decreasing=TRUE)

Find the names of the top 5 genes
top_5_genes <- names(gene_score_ranked[1:5])

Show the scores (with +/- sign)
pca$rotation[top_5_genes,1]

 gene64 gene39 gene7 gene60 gene65
 0.1047968 0.1047629 -0.1047629 0.1047601 -0.1047443

• Here we see genes with the largest positive loading
scores that effectively ‘push’ the “ko” samples to the right
positive side of the plot.

• And the genes with high negative scores that push “wt”
samples to the left side of the plot.

pca$rotation[top_5_genes,1]

●

●

●
●

●

●

●

●

●

●

−10 −5 0 5 10

−2
−1

0
1

2
3

PC1 (91%)

PC
2

(2
.8

%
)

wt2

wt5 ko3

ko1 gene64 gene39
0.1047968 0.1047629

 gene7 gene65
-0.1047629 -0.1047443

PCA Summary
• PCA is classic “multivariate statistical technique” used to reduce the

dimensionality of a complex data set to a more manageable number
(typically 2D or 3D)

• For a matrix of m genes x n samples, we mean center (i.e. subtract the
sample mean from each sample column), optionally rescale the values
for each sample column, then calculate a new covariance matrix of size
n x n

• We finally diagonalize the covariance matrix to yield our n Eigenvectors
(called principal components or PCs) and n Eigenvalues.

• The top PCs (with largest Eigenvalues) retain the essential features of
the original data and represent a useful subspace for further analysis
(e.g. visualization, clustering, feature extraction, outlier detection etc…)

Practical issues with PCA

• Scaling the data

• Missing values:

Scaling Scaling
prcomp(x, center=TRUE, scale=FALSE)
prcomp(x, center=TRUE, scale=TRUE)

Practical issues with PCA

• Scaling the data

• Missing values:
➡ Drop observations with missing values
➡ Impute / estimate missing values

