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Today’s Menu
• Introduction to machine learning

• Unsupervised, supervised and reinforcement learning


• Clustering

• K-means clustering

• Hierarchical clustering 

• Heatmap representations


• Dimensionality reduction, visualization and ‘structure’ analysis 

• Principal Component Analysis (PCA)


• Hands-on application to cell classification 
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➡ Finding structure in unlabeled data  

• Supervised learning 
➡ Making predictions based on labeled data  
➡ Predictions like regression or classification 

• Reinforcement learning 
➡ Making decisions based on past experience  
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k-means clustering algorithm 
• Breaks observations into k pre-defined number of clusters  

• You define k the number of clusters! 
➡ Imagine you had data that you could plot along a line 

and you knew you had to put them into k=3 
“clusters” (e.g. data from three types of tumor cells) 

Here your eyes can clearly see 3 natural groupings 
How does k-means attempt to define this grouping? 

Step 1. 
Select k  (the number of clusters)

Step 2. 
Select k=3 distant data points at random 
These are the initial clusters 

Step 3. 
Measure distance between the 1st point and the k=3 initial 
clusters 

Distance to 
blue cluster

Distance to 
orange cluster

Distance 
to green 
cluster



Step 4. 
Assign the 1st point to the nearest cluster 

Step 5. 
Update cluster centers 
Calculate the mean value for the blue cluster including the 
new point

Step 6. 
Assign next point to closest cluster 
Use updated cluster centers for distance calculation

Step 7. 
Update cluster centers and move to next point 
Use updated cluster centers for distance calculation



Step 8. 
Repeat for each point 
Each time updating cluster centers

Hmm….  
Here the k-means result does not look as 
good as what we were able to do by eye!

k-means

By eye!

Step 9. 
Assess the quality of the clustering by adding up the 
variation within each cluster

The total variation within clusters

K-means keeps track of these clusters and their total variance and 
then does the whole thing over again with different starting points

Step 10. 
Repeat with different starting points 
Back to the beginning and do all steps over again…

Pick new points as “initial” clusters
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Now the data are all assigned to clusters, we again sum 
the variation within each cluster

The total variation within clusters

Step 10. 
Repeat again with different starting points 

After several iterations k-means clustering knows it has the 
best clustering so-far based on the smallest total variation 
with clusters. 

However, it does not know if it has found the best overall. 
So it will perform several more iterations with different 
starting points…

The total variation within clusters

Iteration 1

Iteration 2

Iteration 3

Iteration 4

The winner!

What if we have more 
dimensions?

x

y



x

y

Just like before, we pick 3 random points…

x

y

…and use the Euclidean distance.  
In 2 dimensions the Euclidean distance is the same as the 
Pythagorean theorem 

x
y

d = sqrt(x^2 + y^2)

d

x

y

…assign point to nearest cluster and update cluster 
center

*

*

x

y

…and continue

*



x

y

…and continue

*

x

y

…and continue

*

x

y

…and continue

*

*

x

y

Again we have to use a number of different starting 
conditions before deciding on a good clustering!

*

*



What if we have even more 
dimensions?

Cell Samples

#1 #2 #3

Gene 1 12 6 -13

Gene 2 -7 13 10

Gene 3 8 6 -9

Gene 4 9 5 -11

Gene 5 -3 1 6

Gene 6 10 4 -8
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dimensions?

Cell Samples

#1 #2 #3

Gene 1 12 6 -13

Gene 2 -7 13 10

Gene 3 8 6 -9

Gene 4 9 5 -11

Gene 5 -3 1 6

Gene 6 10 4 -8

x y z

We could simply plot them 
by relabeling the cell 
samples as x, y, and z (i.e. a 
3D plot)

What if we have even more 
dimensions?

Cell Samples

#1 #2 #3
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Gene 5 -3 1 6
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Cell1

Cell2

Cell3

x

y

z

x y z

…and go through exactly the same procedure with initial 
cluster assignment followed by distance calculation etc…

d = sqrt(x^2 + y^2 + z^2)

d



Cell Samples

#1 #2 #3

Gene 1 12 6 -13

Gene 2 -7 13 10

Gene 3 8 6 -9

Gene 4 9 5 -11

Gene 5 -3 1 6

Gene 6 10 4 -8

…and go through exactly the same procedure with initial 
cluster assignment followed by distance calculation etc…

d = sqrt(x^2 + y^2 + z^2)

Of course we don’t actually 
need to plot anything.  

We can just calculate the 
Euclidean distance along 
any number of dimensions 
and perform our k-means 
clustering in the same way.

k-means in R 

• Input x is a numeric matrix, or data.frame, with 
one observation per row, one feature per column  

• k-means has a random component  

• Run algorithm multiple times to improve odds of 
the best model 

# k-means algorithm with 3 centers, run 20 times
kmeans(x, centers= 3, nstart= 20)
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# Run k-means algorithm with 3 centers, run 20 times
kmeans(x, centers=3, nstart=20)



Model selection 
• Recall k-means has a random component 

• Best outcome is based on total within cluster 
sum of squares:  
➡ For each cluster 

• For each observation in the cluster  
• Determine squared distance from 

observation to cluster center  
➡ Sum all of them together 

Model selection 

• Running algorithm multiple times (i.e. setting 
nstart) helps find the global minimum total 
within cluster sum of squares  

• Increasing the default value of nstart is often 
sensible

# k-means algorithm with 5 centers, run 20 times
kmeans(x, centers=5, nstart=20)

Winner 
has the 
smallest 

within 
cluster 

SS



Note. k-means will always give you the renumber of clusters you request! 
(Here for example, k=2 may be better but we asked for k=3)

Determining number of clusters 
Trial and error is not 
the best approach   

Systematically try a 
range of different k 
values and plot a 
“scree plot”. 

Here there is a large 
reduction in SS with 
k=2 but after that the 
values do not go 
down as quickly!

Scree plot

Number of clusters (k)

To
ta

l w
ith

in
 S

S

“Elbow”

# Generate some example data for clustering
tmp <- c(rnorm(30,-3), rnorm(30,3))
x <- cbind(x=tmp, y=rev(tmp))

plot(x)

Your Turn!

Use the kmeans() function setting k to 2 and nstart=20 

Inspect/print the results 

Q. How many points are in each cluster?
Q. What ‘component’ of your result object details 
      - cluster size?
      - cluster assignment/membership? 
      - cluster center?

Plot x colored by the kmeans cluster assignment and 
      add cluster centers as blue points

Today’s Menu
• Introduction to machine learning

• Unsupervised, supervised and reinforcement learning


• Clustering

• K-means clustering

• Hierarchical clustering 

• Heatmap representations


• Dimensionality reduction, visualization and ‘structure’ analysis 

• Principal Component Analysis (PCA)


• Hands-on application to cell classification 



Hierarchical clustering 

• Number of clusters is not known ahead of time 

• Two kinds of hierarchical clustering:  
➡ bottom-up  
➡ top-down 

Hierarchical clustering  
Simple example: 
5 clusters: Each point starts as it’s own “cluster”!

Hierarchical clustering  
4 clusters

Hierarchical clustering  
3 clusters



Hierarchical clustering  
2 clusters

Hierarchical clustering  
End: 1 cluster

Hierarchical clustering in R 
# First we need to calculate point (dis)similarity
#   as the Euclidean distance between observations 
dist_matrix <- dist(x) 

# The hclust() function returns a hierarchical 
#  clustering model
hc <- hclust(d = dist_matrix)

# the print method is not so useful here 
hc  

Call:
hclust(d = dist_matrix)

Cluster method   : complete 
Distance         : euclidean 
Number of objects: 60 

# Create hierarchical cluster model: hc
hc <- hclust(dist(x))
 

# We can plot the results as a dendrogram
plot(hc)

# What do you notice?
# Does the dendrogram
# make sense based on 
# your knoweledge of x?

 

Interpreting results 
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Dendrogram 
• Tree shaped structure used to interpret 
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Dendrogram plotting in R 
# Draws a dendrogram
plot(hc)
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Dendrogram plotting in R 
# Draws a dendrogram
plot(hc)
abline(h=6, col="red")
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Dendrogram plotting in R 
# Draws a dendrogram
plot(hc)
abline(h=6, col="red")
cutree(hc, h=6) # Cut by height h
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Dendrogram plotting in R 
# Draws a dendrogram
plot(hc)
abline(h=6, col="red")
cutree(hc, k=2 ) # Cut into k grps
[1] 1,1,1,2,2
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Linking clusters in 
hierarchical clustering 

• How is distance between clusters determined?  

• There are four main methods to determine which cluster 
should be linked:  
➡ Complete: pairwise similarity between all observations 

in cluster 1 and cluster 2, and uses largest of similarities  
➡ Single: same as above but uses smallest of similarities 
➡ Average: same as above but uses average of 

similarities  
➡ Centroid: finds centroid of cluster 1 and centroid of 

cluster 2, and uses similarity between two centroids 



Uses largest of all 
pair-wise similarities

Uses smallest of all 
pair-wise similarities

Uses average of all 
pair-wise similarities

Linking methods: complete 
and average 

Linking method: single Linking method: centroid  



Linkage in R 
# Using different hierarchical clustering methods
hc.complete <- hclust(d, method="complete")

hc.average  <- hclust(d, method="average")

hc.single   <- hclust(d, method="single")

# Step 1. Generate some example data for clustering
x <- rbind(
  matrix(rnorm(100, mean=0,  sd=0.3), ncol = 2),  # c1
  matrix(rnorm(100, mean=1,  sd=0.3), ncol = 2),  # c2
  matrix(c(rnorm(50, mean=1, sd=0.3),             # c3
           rnorm(50, mean=0, sd=0.3)), ncol = 2))
colnames(x) <- c("x", "y")

# Step 2. Plot the data without clustering
plot(x)

# Step 3. Generate colors for known clusters 
#         (just so we can compare to hclust results)
col <- as.factor( rep(c("c1","c2","c3"), each=50) ) 

plot(x, col=col)

Your Turn!

Q. Use the dist(), hclust(), plot() and cutree()
      functions to return 2 and 3 clusters 
Q. How does this compare to your known 'col' groups?

Today’s Menu
• Introduction to machine learning

• Unsupervised, supervised and reinforcement learning


• Clustering

• K-means clustering

• Hierarchical clustering 

• Heatmap representations


• Dimensionality reduction, visualization and ‘structure’ analysis 

• Principal Component Analysis (PCA)


• Hands-on application to cell classification 

PCA: The absolute basics

Bunch of “normal” cells



Bunch of “normal” cells

Even though they look the 
same we suspect that there 

are differences…

These might be 
one cell type…

These might be 
one cell type…

These another 
cell type…

These might be 
one cell type…

These another 
cell type…

These might be a 
third cell type…



Unfortunately we can’t observe 
the differences visually 

Unfortunately we can’t observe 
the differences visually 

So we sequence the mRNA in each 
cell to identify which genes are 

active and at what levels.

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Here is the data…

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Here is the data…

Each column shows how much each 
gene is transcribed in each cell



Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

For now lets consider 
only two cells

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

We have just 2 cells so we 
can plot the measurements 

for each gene

Cell1

Cell2

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

This gene (Gene1) is highly 
transcribed in Cell1 and 

lowly transcribed in Cell2…

Cell1

Cell2

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Cell1

Cell2

This gene (Gene9) is lowly 
transcribed in Cell1 and 

highly transcribed in Cell2…



Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

In generel, Cell1 and Cell2 have 
an inverse correlation. 

This suggests that they may be 
two different types of cells as 
they are using different genes  

Cell1

Cell2

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Now lets imagine 
there are three cells

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

We have already seen how we can 
plot the first two cells to see how 

closely related they are 
Cell1

Cell2

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Now we can also compare  
Cell1 to Cell3

Cell1

Cell3

Cell1

Cell2



Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Cell1 and Cell3 are positively 
correlated suggesting they are 

doing similar things

Cell1

Cell3

Cell1

Cell2

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

We can also compare  
Cell2 to Cell3… 

Cell2

Cell3

Cell1

Cell2 Cell3

The inverse correlation suggests 
that Cell2 is doing something 

different from Cell3 

Cell1

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Cell1

Cell2

Cell3

Alternatively, we could try to 
plot all 3 cells at once on a  

3-dimensional graph.

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

But what if we have 4 or more Cells? 



Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Draw lots of 2 cell plots and try to 
make sense of them all?

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Or draw some crazy graph that has 
an axis for each cell and makes or 

brains hurt!

Cell1

Cell2

Cell3

Cell4
Cell6

Cell6

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Cell1

Cell2

Cell3

Cell4
Cell6

Cell6

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Enter Principal Component Analysis 
(PCA)

PC2

PC1



Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

PCA converts the correlations (or 
lack there of) among all cells into a 
representation we can more readily 

interpret (e.g. a 2D graph!)

PC2

PC1

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Cells that are highly correlated 
cluster together 

PC2

PC1

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

Cells that are highly correlated 
cluster together 

PC2

PC1

Cell1 Cell2 Cell3 Cell4 …

Gene1 3 0.25 2.8 0.1 …

Gene2 2.9 0.8 2.2 1.8 …

Gene3 2.2 1 1.5 3.2 …

Gene4 2 1.4 2 0.3 …

Gene5 1.3 1.6 1.6 0 …

Gene6 1.5 2 2.1 3 …

Gene7 1.1 2.2 1.2 2.8 …

Gene8 1 2.7 0.9 0.3 …

Gene9 0.4 3 0.6 0.1 …

To make the clusters easier to see 
we can color code them…

PC2

PC1



Once we have identified the clusters  
from our PCA results, we can go 

back to or original cells…

PC2

PC1

Once we have identified the clusters  
from our PCA results, we can go 

back to or original cells…

PC2

PC1

…and see they represent three 
different types of cells doing three 
different things with their genes!

Some key points: 

The PCs (i.e. new plot axis) are 
ranked by their importance  

So PC1 is more important than PC2 
which in turn is more important than 

PC3 etc.
PC2

PC1

Some key points: 

The PCs (i.e. new plot axis) are 
ranked by their importance  

So PC1 is more important than PC2 
which in turn is more important than 

PC3 etc. 

So the red and blue cluster are more 
dissimilar than the yellow and blue 

clusters

PC2 

PC1



Some key points: 

The PCs (i.e. new plot axis) are 
ranked by their importance  

So PC1 is more important than PC2 
which in turn is more important than 

PC3 etc. 

So the red and blue cluster are more 
dissimilar than the yellow and blue 

clusters 

The PCs (i.e. new plot axis) are 
ranked by the amount of variance in 

the original data (i.e. gene expression 
values) that they “capture”  

PC2  
(11%)

PC1 (44%)

Some key points: 

The PCs (i.e. new plot axis) are 
ranked by their importance  

So PC1 is more important than PC2 
which in turn is more important than 

PC3 etc. 

So the red and blue cluster are more 
dissimilar than the yellow and blue 

clusters 

The PCs (i.e. new plot axis) are 
ranked by the amount of variance in 

the original data (i.e. gene expression 
values) that they “capture”   

In this example PC1 ‘captures’ 4x 
more of the original variance than 

PC2 (44/11 = 4)

PC2  
(11%)

PC1 (44%)

• We actually get two main things out of a typical PCA


• The new axis (called PCs or Eigenvectors) and


• Eigenvalues that detail the amount of variance captured by 
each PC  

Scree Plot
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1. PCA plot (or score plot) 2. Eigenvalue plot (or scree plot)

• Another cool thing we can get out of PCA is a quantitive 
report on how the original variables contributed to each 
PC


• In other words, which were the most important genes 
that lead to the observed clustering in PC-space 


• These are often called the loadings and we can plot 
them to see which are the most important genes for the 
observed separation as well as outputting ranked lists 
of genes that act to discriminate the samples

   gene64     gene39 
0.1047968  0.1047629

    gene7     gene65
-0.1047629 -0.1047443

Bonus: PC Loadings



Hands-on time!
https://bioboot.github.io/bggn213_W20/class-material/pca/

Do it Yourself! Outline: How to do PCA in R

• How to use the prcomp() function to do PCA.


• How to draw and interpret PCA plots


• How to determine how much variation each principal 
component accounts for and the the “intrinsic 
dimensionality” useful for further analysis


• How to examine the loadings (or loading scores) to 
determine what variables have the largest effect on the 
graph and are thus important for discriminating samples.

• First lets read our example data to work with. 

## You can also download this file from the class website! 
mydata <- read.csv("https://tinyurl.com/expression-CSV", 
                   row.names=1) 

head(mydata) 

      wt1 wt2 wt3 wt4 wt5 ko1 ko2 ko3 ko4 ko5
gene1 147 171 160 175 187  63  57  58  55  59
gene2 151 134 148 126 134 838 831 894 847 830
gene3 702 672 653 681 701 593 579 644 596 610
gene4 319 297 310 296 304 754 807 734 750 774
gene5 168 147 162 142 152 787 811 814 869 784

• NOTE: the samples are columns, and the genes are rows!

• Now we have our data we call prcomp() to do PCA


• NOTE: prcomp() expects the samples to be rows and 
genes to be columns so we need to first transpose the 
matrix with the t() function!

## lets do PCA 
pca <- prcomp(t(mydata), scale=TRUE) 



• Now we have our data we call prcomp() to do PCA


• NOTE: prcomp() expects the samples to be rows and 
genes to be columns so we need to first transpose the 
matrix with the t() function!

## lets do PCA 
pca <- prcomp(t(mydata), scale=TRUE) 

## See what is returned by the prcomp() function 
attributes(pca) 

# $names 
#[1] "sdev"     "rotation" "center"   "scale"    "x" 
# 
# $class 
#[1] "prcomp"

• The returned pca$x here contains the principal 
components (PCs) for drawing our first graph.


• Here we will take the first two columns in pca$x 
(corresponding to PC1 and PC2) to draw a 2-D plot

## lets do PCA 
pca <- prcomp(t(mydata), scale=TRUE) 

## See what is returned by the prcomp() function 
attributes(pca) 

# $names 
#[1] "sdev"     "rotation" "center"   "scale"    "x" 
# 
# $class 
#[1] "prcomp"

• The returned pca$x here contains the principal 
components (PCs) for drawing our first graph.

• Here we will take the first two columns in pca$x 

(corresponding to PC1 and PC2) to draw a 2-D plot

## lets do PCA 
pca <- prcomp(t(mydata), scale=TRUE) 

## A basic PC1 vs PC2 2-D plot 
plot(pca$x[,1], pca$x[,2]) 

• The returned pca$x here contains the principal 
components (PCs) for drawing our first graph.


• Here we will take the first two columns in pca$x 
(corresponding to PC1 and PC2) to draw a 2-D plot

## lets do PCA 
pca <- prcomp(t(mydata), scale=TRUE) 

## A basic PC1 vs PC2 2-D plot 
plot(pca$x[,1], pca$x[,2]) 
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• Looks interesting with a nice separation of samples into 
two groups of 5 samples each

• Now we can use the square of pca$sdev , which 

stands for “standard deviation”, to calculate how much 
variation in the original data each PC accounts for

## lets do PCA 
pca <- prcomp(t(mydata), scale=TRUE) 

## A basic PC1 vs PC2 2-D plot 
plot(pca$x[,1], pca$x[,2]) 

## Variance captured per PC  
pca.var <- pca$sdev^2 
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• Looks interesting with a nice separation of samples into 
two groups of 5 samples each

• Now we can use the square of pca$sdev , which 

stands for “standard deviation”, to calculate how much 
variation in the original data each PC accounts for

## lets do PCA 
pca <- prcomp(t(mydata), scale=TRUE) 

## A basic PC1 vs PC2 2-D plot 
plot(pca$x[,1], pca$x[,2]) 

## Precent variance is often more informative to look at  
pca.var <- pca$sdev^2 
pca.var.per <- round(pca.var/sum(pca.var)*100, 1) 
  

• Looks interesting with a nice separation of samples into 
two groups of 5 samples each

• Now we can use the square of pca$sdev , which 

stands for “standard deviation”, to calculate how much 
variation in the original data each PC accounts for

## lets do PCA 
pca <- prcomp(t(mydata), scale=TRUE) 

## A basic PC1 vs PC2 2-D plot 
plot(pca$x[,1], pca$x[,2]) 

## Precent variance is often more informative to look at  
pca.var <- pca$sdev^2 
pca.var.per <- round(pca.var/sum(pca.var)*100, 1) 
  
pca.var.per 

 [1] 91.0  2.8  1.9  1.3  0.8  0.7  0.6  0.5  0.3  0.0

• Looks interesting with a nice separation of samples into 
two groups of 5 samples each

• Now we can use the square of pca$sdev , which 

stands for “standard deviation”, to calculate how much 
variation in the original data each PC accounts for

pca.var <- pca$sdev^2 
pca.var.per <- round(pca.var/sum(pca.var)*100, 1) 
  
barplot(pca.var.per, main="Scree Plot",  
        xlab="Principal Component", ylab="Percent Variation") 



• From the “scree plot” it is clear that PC1 accounts for 
almost all of the variation in the data!

pca.var <- pca$sdev^2 
pca.var.per <- round(pca.var/sum(pca.var)*100, 1) 
  
barplot(pca.var.per, main="Scree Plot",  
        xlab="Principal Component", ylab="Percent Variation") 
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• Which means there are big differences between these two 
groups that are separated along the PC1 axis…

pca.var <- pca$sdev^2 
pca.var.per <- round(pca.var/sum(pca.var)*100, 1) 
  
barplot(pca.var.per, main="Scree Plot",  
        xlab="Principal Component", ylab="Percent Variation") 

Scree Plot

Principal Component

Pe
rc

en
t V

ar
ia

tio
n

0
20

40
60

80

●

●

●
●

●

●

●

●

●

●

−10 −5 0 5 10

−2
−1

0
1

2
3

pca$x[, 1]

pc
a$

x[
, 2

]

• Lets make our plot a bit more useful…
## A vector of colors for wt and ko samples 
colvec <- as.factor( substr( colnames(mydata), 1, 2) ) 

plot(pca$x[,1], pca$x[,2], col=colvec, pch=16, 
     xlab=paste0("PC1 (", pca.var.per[1], "%)"), 
     ylab=paste0("PC2 (", pca.var.per[2], "%)")) 
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• And add some labels…

plot(pca$x[,1], pca$x[,2], col=colvec, pch=16, 
     xlab=paste0("PC1 (", pca.var.per[1], "%)"), 
     ylab=paste0("PC2 (", pca.var.per[2], "%)")) 

## IN THE CONSOLE! Click to identify which sample is which 
identify(pca$x[,1], pca$x[,2], labels=colnames(mydata)) 

## Press ESC to exit… 
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Your turn!

Do it Yourself!

Perform a PCA on the UK foods dataset

  
Input:  read, View/head,  
PCA:   prcomp,  
Plots:  PCA plot  
            scree plot,  
            loadings plot.

https://bioboot.github.io/bggn213_W20/class-material/lab-8-bggn213.html

[Muddy Point Feedback Link]

Main PCA objectives include: 

• To reduce dimensionality


• To visualize multidimensional data


• To choose the most useful variables (features)


• To identify groupings of objects (e.g. genes/samples)


• To identify outliers

Reference Slides

• Finally, lets look at how to use the loading scores to 
determine which genes have the largest effect on where 
samples are plotted in the PCA plot


• The prcomp() function calls loading scores $rotation 

## Lets focus on PC1 as it accounts for > 90% of variance  
loading_scores <- pca$rotation[,1] 



• Finally, lets look at how to use the loading scores to 
determine which genes have the largest effect on where 
samples are plotted in the PCA plot


• The prcomp() function calls loading scores $rotation 

## Lets focus on PC1 as it accounts for > 90% of variance  
loading_scores <- pca$rotation[,1] 

summary(loading_scores) 
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-0.104763 -0.104276 -0.068784 -0.005656  0.103926  0.104797 

## We are interested in the magnitudes of both plus  
##   and minus contributing genes 
gene_scores <- abs(loading_scores) 

• Finally, lets look at how to use the loading scores to 
determine which genes have the largest effect on where 
samples are plotted in the PCA plot


• The prcomp() function calls loading scores $rotation 

loading_scores <- pca$rotation[,1] 

gene_scores <- abs(loading_scores)  

## Sort by magnitudes from high to low 
gene_score_ranked <- sort(gene_scores, decreasing=TRUE) 

• Finally, lets look at how to use the loading scores to 
determine which genes have the largest effect on where 
samples are plotted in the PCA plot


• The prcomp() function calls loading scores $rotation 

loading_scores <- pca$rotation[,1] 

gene_scores <- abs(loading_scores)  

## Sort by magnitudes from high to low 
gene_score_ranked <- sort(gene_scores, decreasing=TRUE) 

## Find the names of the top 5 genes 
top_5_genes <- names(gene_score_ranked[1:5]) 

• Finally, lets look at how to use the loading scores to 
determine which genes have the largest effect on where 
samples are plotted in the PCA plot


• The prcomp() function calls loading scores $rotation 

loading_scores <- pca$rotation[,1] 

gene_scores <- abs(loading_scores)  

## Sort by magnitudes from high to low 
gene_score_ranked <- sort(gene_scores, decreasing=TRUE) 

## Find the names of the top 5 genes 
top_5_genes <- names(gene_score_ranked[1:5]) 

## Show the scores (with +/- sign)  
pca$rotation[top_5_genes,1]



• Here we see genes with the largest positive loading 
scores that effectively ‘push’ the “ko” samples to the right 
positive side of the plot.


• And the genes with high negative scores that push “wt” 
samples to the left side of the plot.

loading_scores <- pca$rotation[,1] 

gene_scores <- abs(loading_scores)  

## Sort by magnitudes from high to low 
gene_score_ranked <- sort(gene_scores, decreasing=TRUE) 

## Find the names of the top 5 genes 
top_5_genes <- names(gene_score_ranked[1:5]) 

## Show the scores (with +/- sign)  
pca$rotation[top_5_genes,1]

   gene64     gene39      gene7     gene60     gene65
 0.1047968  0.1047629 -0.1047629  0.1047601  -0.1047443

• Here we see genes with the largest positive loading 
scores that effectively ‘push’ the “ko” samples to the right 
positive side of the plot.


• And the genes with high negative scores that push “wt” 
samples to the left side of the plot.

pca$rotation[top_5_genes,1]
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0.1047968  0.1047629

     gene7     gene65
-0.1047629 -0.1047443

PCA Summary
• PCA is classic “multivariate statistical technique” used to reduce the 

dimensionality of a complex data set to a more manageable number 
(typically 2D or 3D)


• For a matrix of m genes x n samples, we mean center (i.e. subtract the 
sample mean from each sample column), optionally rescale the values 
for each sample column, then calculate a new covariance matrix of size 
n x n


• We finally diagonalize the covariance matrix to yield our n Eigenvectors 
(called principal components or PCs) and n Eigenvalues. 


• The top PCs (with largest Eigenvalues) retain the essential features of 
the original data and represent a useful subspace for further analysis 
(e.g. visualization, clustering, feature extraction, outlier detection etc…) 

Practical issues with PCA 

• Scaling the data  

• Missing values: 



Scaling Scaling 
prcomp(x, center=TRUE, scale=FALSE)
prcomp(x, center=TRUE, scale=TRUE)

Practical issues with PCA 

• Scaling the data  

• Missing values:  
➡ Drop observations with missing values 
➡ Impute / estimate missing values 


