BGGN 213

Unsupervised Learning II

 Lecture 10 Barly Grant gGCSanDiego
http://thegrantlab.org/bggn213

Recap of Lecture 8

- Introduction to machine learning
- Unsupervised, supervised and reinforcement learning
- Clustering
- K-means clustering
- Hierarchical clustering
- Dimensionality reduction, visualization and 'structure' analysis
- Principal Component Analysis (PCA)
[Muddy Point Feedback Link]

A long time ago in a galaxy far,
far away....

David Robinson
@drob

Every linear algebra class

Me: What are eigenvectors

Teacher: You can think of them as an ndimensional kernel subspace

Me: No I can't
3:08 PM - 28 Mar 2016

PCA: Principal Component Analysis

PCA projects the features onto the principal components.
The motivation is to reduce the features dimensionality while only losing a small amount of information.

PCA: Principal Component Analysis

PCA projects the features onto the principal components.
The motivation is to reduce the features dimensionality while only losing a small amount of information.

Principal components are new low dimensional axis (or surfaces) closest to the observations

PCA: Principal Component Analysis

Principal components are new low dimensional axis (or surfaces) closest to the observations

PCA: Principal Component Analysis

Principal components are new low dimensional axis (or surfaces) closest to the observations

PCA: Principal Component Analysis

The data have maximum variance along PC1 (then PC2 etc.) which makes the first few PCs useful for visualizing our data and as a basis for further analysis

Recap: PCA objectives

- To reduce dimensionality
- To visualize multidimensional data
- To choose the most useful variables (features)
- To identify groupings of objects (e.g. genes/samples)
- To identify outliers

Practical PCA issue: Scaling

> data(mtcars) > head(mtcars)												
	mpg	cyl	disp	hp	drat	w	qsec	c vs		gear	arb	
Mazda RX4	21.0	6	160	110	3.902	2.620	16.46	6	1	4	4	
Mazda RX4 Wag	21.0	6	160	110	3.902	2.875	17.02	2	1	4	4	
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1	
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	4	0	3	1	
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	2	0	3	2	
Valiant	18.1	6	225	105	2.76	3.460	20.22	21	0	3	1	
\# Means and standard deviations vary a lot												
> round (colMeans(mtcars), 2)												
20.096 .19230	7214	46.69		. 60	3.22	17.		0.44		0.41	3.69	2.81
> round(apply(mtcars, 2, sd), 2)												
6.031 .79123	946	68.56		. 53	0.98			0.50		0.50	0.74	1.62

Practical PCA issue: Scaling

prcomp(x, scale=FALSE)

prcomp(x, scale=TRUE)

Your turn!

Unsupervised Learning Mini-Project Sections 1 \& 2 only please

Input: read, View/head, PCA: prcomp, Cluster: kmeans, hclust Compare: plot, table, etc.

Reference Slides

This PCA plot shows clusters of cell types.

This graph was drawn from single-cell RNA-seq.
There were about 10,000 transcribed genes in each cell.

Pollen et al. Nature Biotechnology 2014

This PCA plot shows clusters of cell types.

Each dot represents a single-cell and its transcription profile The general idea is that cells with similar transcription should cluster.

Pollen et al. Nature Biotechnology 2014

This PCA plot shows clusters of cell types.

How does transcription from 10,000 genes get compressed to a single dot on a graph?

What does PCA aim to do?

- PCA takes a dataset with a lot of dimensions (i.e. lots of cells) and flattens it to 2 or 3 dimensions so we can look at it.
- It tries to find a meaningful way to flatten the data by focusing on the things that are different between cells. (much, much more on this later)

A PCA example

Again, we'll start with just two cells Here's the data:

Gene	Cell1 reads	Cell2 reads
a	10	8
b	0	2
c	14	10
d	33	45
e	50	42
f	80	72
g	95	90
h	44	50
i	60	50
\ldots (etc)	\ldots (etc)	\ldots (etc)

Here is a 2-D plot of the data from 2 cells.

Generally speaking, the dots are spread out along a diagonal line.

Generally speaking, the dots are spread out along a diagonal line.

Another way to think about this is that the maximum variation in the data is between the two endpoints of this line.

Cell 2
Read Counts

Cell 1
Read Counts

Generally speaking, the dots are also spread out a little above and below the first line.

Generally speaking, the dots are also spread out a little above and below the first line.

Another way to think about this is that the $2^{\text {nd }}$

Cell 2
Read Counts

If we rotate the whole graph, the two lines that we drew make new X and Y axes.

If we rotate the whole graph, the two lines that we drew make new X and Y axes.

This makes the left/right, above/below variation easier to see.

If we rotate the whole graph, the two lines that we drew make new X and Y axes.

This makes the left/right, above/below variation easier to see.

1) The data varies a lot left and right

If we rotate the whole graph, the two lines that we drew make new X and Y axes.

This makes the left/right, above/below variation easier to see.

1) The data varies a lot left and right
2) The data varies a little up and down

If we rotate the whole graph, the two lines that we drew make new X and Y axes.

This makes the left/right, above/below variation easier to see.

1) The data varies a lot left and right

2) The data varies a little up and down

Note: All of the points can be drawn in terms of left/right + up/down, just like any other 2-D graph.

That is to say, we do not need another line to describe "diagonal" variation - we've already captured the two directions that can have variation.

These two "new" (or "rotated") axes that describe the variation in the data are "Principal Components" (PCs)

These two "new" axes that describe the variation in the data are "Principal Components" (PCs)

PC1 (the first principal component) is the axis that spans the most variation.

These two "new" axes that describe the variation in the data are "Principal Components" (PCs)

PC1 (the first principal component) is the axis that spans the most variation.

PC2 is the axis that spans the second most

General ideas so far...

- For each gene, we plotted a point based on how many reads were from each cell.

General ideas so far...

- For each gene, we plotted a point based on how many reads were from each cell.

- PC1 captures the direction where most of the variation is.

General ideas so far...

- For each gene, we plotted a point based on how many reads were from each cell.

- PC1 captures the direction where most of the variation is.
- PC2 captures the direction with the $2^{\text {nd }}$ most variation.

For now, let's focus on PC1

The length and direction of PC1 is mostly determined by the circled genes.

The length and direction of PC1 is mostly determined by the circled genes.

We can score genes based on
The length and direction of PC1 is mostly determined by the circled genes. how much they influence PC1.

The length and direction of PC1 is mostly determined by the circled genes.

We can score genes based on how much they influence PC1.

Gene	Influence on PC1
a	high
b	low
c	low
d	low
e	high
f	high
..	...

The length and direction of PC1 is mostly determined by the circled genes.

Some genes have more influence on PC1 than others.

Gene	Influence on PC1
a	high
b	low
c	low
d	low
e	high
f	high
...	...

The length and direction of PC1 is mostly determined by the circled genes.

Some genes have more influence on PC1 than others.

Gene	Influence on PC1	In numbers
a	high	10
b	low	0.5
c	low	0.2
d	low	-0.2
e	high	13
f	high	-14
..	\ldots	

Genes with little influence on PC1 get values close to zero, and genes with more influence get numbers further from zero.

Genes that influence PC2

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
c	high	8
d	high	-12
e	low	0.2
f	low	-0.1
..	...	

Our two PCs

PC1		
Gene	Influence on PC1	In numbers
a	high	10
b	low	0.5
c	low	0.2
d	low	-0.2
e	high	13
f	high	-14
\ldots	...	

PC2		
Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
c	high	8
d	high	-12
e	low	0.2
f	low	-0.1
\ldots	\ldots	

Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

PC1		
Gene	Influence on PC1	In numbers
a	high	10
b	low	0.5
c	low	0.2
d	low	-0.2
e	high	13
f	high	-14
\ldots	...	

PC2		
Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
c	high	8
d	high	-12
e	low	0.2
f	low	-0.1
\ldots	\ldots	

Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

The original read counts			PC1			PC2		
Gene	Cell1	Cell2	Gene	Influence	In	Gene	Influence	In
a	10	8						numbers
b	0	2	a	high	10	a	medium	3
			b	low	0.5	b	high	10
c	14	10	C	low	0.2	C	high	8
d	33	45	d	low	-0.2	d	high	-12
e	50	42	e	high	13	e	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90	
h	44	50						
i	60	50						
etc	etc	etc						

Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

The original read counts

Gene	Cell1	Cell2
a	10	8
b	0	2
c	14	10
d	33	45
e	50	42
f	80	72
g	95	90
h	44	50
i	60	50
etc	etc	etc

PC2

Gene	Influence on PC1	In numbers	Gene	Influence on PC2	In numbers
a	high	10	a	medium	3
b	low	0.5	b	high	10
c	low	0.2	c	high	8
		-0.2	d	high	-12
	high	13	e	low	0.2
		-14	f	low	-0.1
		-	\ldots	...	

Cell1 PC1 score $=($ read count * influence $)+\ldots$ for all genes

Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

The original read counts	PC1	PC2		
Gene Cell1 Cell2 a 10 8	Gene Influence on PC1 In numbers	Gene	Influence on PC2	In numbers
0	a high 10	a	medium	3
14	b low 0.5	b	high	10
14	low 0.2	C	high	8
d $33 \quad 45$	low -0.2	d	high	-12
e 5042	e high 13	e	low	0.2
8072	f high -14	f	low	-0.1
9590		
4450	Cell1 PC1 score $=(10 * 10)+\ldots$			
6050				
etc etc etc				

Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

The original read counts	PC1	PC2		
Gene Cell1 Cell2 	Gene Influence In on PC1 numbers	Gene	Influence on PC2	In numbers
a ${ }^{\text {b }}$	$\begin{array}{lll}\text { a } & \text { high } & 10\end{array}$	a	medium	3
$\text { b } \quad 0 \quad 2$	b low 0.5	b	high	10
14	c low 0.f	C	high	8
d $33 \quad 45$	d low -0.2	d	high	-12
e 5042	e high	e	low	0.2
$80 \quad 72$	f high -14	f	low	-0.1
g 9590	\ldots	
4450	-			
6050	-			
etc etc etc	Cell1 PC1 score $=(10 * 10)+(0$.5) + ..		

Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

The original read counts

Gene	Cell1	Cell2	Gene	Influence on PC1	In numbers
a	10	8			
b	0	2	a	high	10
c	14	10	b	low	0.5
d	33	45	c	low	0.2
e	50	42	low	-0.2	
f	80	72	e	high	13
g	95	90	high	-14	

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
c	high	8
d	high	-12
e	low	0.2
f	low	-0.1
..	\ldots	

Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

The original read counts		
Gene	Cell1	Cell2
a	10	8
b	0	2
c	14	10
d	33	45
e	50	42
f	80	72
g	95	90
h	44	50
i	60	50
etc	etc	etc

	PC1			PC2	
Gene	Influence on PC1	In numbers	Gene	Influence on PC2	In numbers
a	high	10	a	medium	3
b	low	0.5	b	high	10
c	low	0.2	c	high	8
d	low	-0.2	d	high	-12
e	high	13	e	low	0.2
f	high	-14	f	low	-0.1
...	...		\ldots	...	
Cell1 PC1 score $=(10 * 10)+(0 * 0.5)+\ldots$ etc... $=12$					
Cell1 PC2 score $=(10 * 3)+(0 * 10)+\ldots$ etc... $=6$					

Cell1 PC1 score $=(10 * 10)+(0 * 0.5)+\ldots$ etc... $=12$
Cell1 PC2 score $=(10$ * 3$)+(0$ * 10 $)+\ldots$ etc... $=6$

Now calculate scores for Cell2

Now calculate scores for Cell2
Cell2 PC1 score $=(8 * 10)+(2 * 0.5)+\ldots$ etc... $=2$
Cell2 PC2 score $=(8$ * 3$)+(2$ * 10 $)+\quad .$. etc... $=8$

If we sequenced a third cell, and its transcription was similar to cell 1, it would get scores similar to cell 1's.

If we sequenced a third cell, and its transcription was similar to cell 1, it would get scores similar to cell 1's.

Hooray! We know how they plotted all of the cells!!!

Back to lab
 Focus on Section 3 to 6...

Unsupervised Learning Mini-Project

Input: read, View/head,
PCA: prcomp,
Cluster: kmeans, hclust
Compare: plot, table, etc.
[Muddy Point Assessment]

BONUS: Predictive Modeling with PCA Components

We can use our PCA and clustering models to predict the potential malignancy of new samples:

```
## Predicting Malignancy Of New samples
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
plot(wisc.pr$x[,1:2], col= (diagnosis+1))
points(npc[,1], npc[,2], col="blue", pch=16)
```

[Muddy Point Assessment]

