

TODAYS MENU:

- What is a Genome?
 - Genome sequencing and the Human genome project
- What can we do with a Genome?
 - Comparative genomics
- Modern Genome Sequencing
 - Ist, 2nd and 3rd generation sequencing
- Workflow for NGS
 - RNA-Sequencing and discovering variation

Start a jetstream galaxy instance!

http://tinyurl.com/bggn213-L15

🔍 🔍 🛒 Galaxy	×	6			
← → ♂ ④ 149.165.169.1	86	Q 🕁 i			
Apps M Gmail 🔟 Seminars	Atmosphere 🗅 BGON 213 - An intr				
🖸 Galaxy Analyze Data Workflow Stared Data - Visualization - Help - Uter - 🔠 Using 12.3 MB					
icols	Bowtie2 - map reads against reference genome (Galaxy Version 2.2.6.2) • Opti	History C O 🗆			
search tools	Is this single or paired library	search datasets			
et Data	Single-end	Unnamed history			
mi Data	FASTQ file	22 shown, 2 <u>pereted</u> , 3 <u>httppen</u>			
at Manipulation	D 🕲 D 4: HC00109_2.faxiq	• 12.32 MB			
ter and Sort	Must be of duatype "fastqsanger"	25: stsep-count on data a / x			
in, Subtract and Group	Write unaligned reads (in fastq format) to separate file(s)	18 and data 17 (no featu			
invert Formats	Yes No	112			
tract Features	un/un-conc, into origgersun parameter for single read) andun-conc for paintd reads	24: Miseq-count on data			
nch Sequences	Yes No	The Collinson data 18 January			
atistics	al/al-conc; This triggersal parameter for single reads andal-conc for paired reads	and data 16: Skipped Tra			
aph/Display Data	Will you select a reference genome from your history or use a built-in index?	nscripts			
STA manipulation	Use a built-in penome index	Z1:Cufflinks on data 18 ⊕			
5: QC and manipulation	Built-ins were indexed using default options. See "Indexes" section of help below	and data 16: assembled transcripts			
S: DeegTools	Select reference genome				
S: Mapeing	Baboon (Paple anubis): papitam1	and data 16: transcript e			
reference sequence	If your genome of interest is not listed, contact the Galaxy team	xpression			
Man with Bowtie for Illumina	Set read groups information?	19: Cufflinks on data 18 @ / ×			
Man with RWA for Illumina	Do not set	 and data 16: gene expre ssion 			
Man with Bills for SOLID	Specifying read group information can greatly simplify your dowistream analyses by allowing combining multiple datasets.	\$75 lines			
Map will provide policy	Serect analysis mode	format: tabular, database: hg19			
against higs, nt, and wgs	1: Detaut setting only	cuffinka v2.2.1			
databases	Do you wan to use presets?	cuflinks -qno-update-cleck -l			
Parse blast XML output	No, just use defaults Other function function	6 -C /opt/galaxy/galaxy-			
Map with BWA-MEM - map	O very tast mo-to-end (very-tast	app/database/datasets/000/dataset_4			
medium and long reads (> 100 bp) against reference genome	OSensitive ind-to-end (sensitive)	apc/database/datasets/000/dataset_4			
Man with PAUL - man short reads	O Very sensitive end-to-end (very-sensitive)				
(< 100 pp) against reference	Overy fast local (very-fast-local)				
genome	C Sensitive local (sensitive-local)	tradking id class code nearest ref.id			
Bowtie2 - map reads against	O Very sensitive local (very-sensitive-local)	2201			
The second generation	Allow selecting among several preset parameter settings. Choosing between these will result in dramatic changes in runtime. See help below to	CA8255			
Sci. ANA ADAI(313	understand effects of these presets.	ANNTA .			

Population Scale Analysis

We can now begin to assess genetic differences on a very large scale, both as naturally occurring variation in human and non-human populations as well somatically within tumors

"Variety's the very spice of life"

-William Cowper, 1785

"Variation is the spice of life"

-Kruglyak & Nickerson, 2001

- While the sequencing of the human genome was a great milestone, the DNA from a single person is not representative of the millions of potential differences that can occur between individuals
- These unknown genetic variants could be the cause of many phenotypes such as differing morphology, susceptibility to disease, or be completely benign.

Germline Variation

- Mutations in the germline are passed along to offspring and are present in the DNA over every cell
- In animals, these typically occur in meiosis during gamete differentiation

Somatic Variation

- Mutations in non-germline cells that are not passed along to offspring
- Can occur during mitosis or from the environment itself
- Are an integral part in tumor progression and evolution

Mutation vs Polymorphism

- A mutation must persist to some extent within a population to be considered polymorphic
 - >1% frequency is often used
- Germline mutations that are not polymorphic are considered rare variants

"From the standpoint of the neutral theory, the rare variant alleles are simply those alleles whose frequencies within a species happen to be in a low-frequency range (0,q), whereas polymorphic alleles are those whose frequencies happen to be in the higher-frequency range (q, 1-q), where I arbitrarily take q = 0.01. Both represent a phase of molecular evolution."

-Motoo Kimura

M (1983) Mol. Biol. Evol., 1(1), pp. 84-9

Types of Genomic Variation

- Single Nucleotide Polymorphisms (SNPs) - mutations of one nucleotide to another
- AATCTGAGGCAT AATCTCAGGCAT

AATCTGAAGGCAT

AGGCAT

• Insertion/Deletion Polymorphisms (INDELs) - small mutations removing or adding one or more nucleotides at a particular locus

(SVs) - medium to large sized rearrangements of chromosomal

Structural Variation

DNA

AATCI

Differences Between Individuals

The average number of genetic differences in the germline between two random humans can be broken down as follows:

- 3,600,000 single nucleotide differences
- 344,000 small insertion and deletions
- 1,000 larger deletion and duplications

Numbers change depending on ancestry!

Discovering Variation: SNPs and INDELs

- Small variants require the use of sequence data to initially be discovered
- Most approaches align sequences to a reference genome to identify differing positions
- The amount of DNA sequenced is proportional to the number of times a region is covered by a sequence read
 - More sequence coverage equates to more support for a candidate variant site

Discovering Variation: SNPs and INDELs

Genotyping Small Variants

- Once discovered, oligonucleotide probes can be generated with each individual allele of a variant of interest
- A large number can then be assessed simultaneously on microarrays to detect which combination of alleles is present in a sample

<complex-block>

Discovering Variation: SVs

- Structural variants can be discovered by both sequence and microarray approaches
- Microarrays can only detect genomic imbalances, specifically copy number variants (CNVs)
- Sequence based approaches can, in principle, identify all types of structural rearrangements

Impact of Genetic Variation

There are numerous ways genetic variation can exhibit functional effects

Variant Annotation

- Variants are annotated based on their potential functional impact
- For variants falling inside genes, there are a number of software packages that can be used to quickly determine which may have a functional role (missense/ nonsense mutations, splice site disruption, etc)
- A few examples are:
 - ANNOVAR (http://www.openbioinformatics.org/annovar/)
 - VAAST (http://www.yandell-lab.org/software/vaast.html)
 - VEP (<u>http://http://grch37.ensembl.org/Homo_sapiens/Tools/</u> VEP)
 - SeattleSeq (<u>http://snp.gs.washington.edu/</u> <u>SeattleSeqAnnotation134/</u>)
 - snpEff (<u>http://snpeff.sourceforge.net/</u>)

ct	High
n_deleted ne_shift ze_acceptor ze_donor t_tloss _gain _joss _synonymous_start sscript_codon_change	

GEMINI, http://gemini.readthedocs.org

Variation and Gene Expression

- Expression quantitative trait loci (eQTLs) are regions of the genome that are associated with expression levels of genes
- These regions can be nearby (cis) or far away (trans) from the genes that they affect
- Genetic variants in eQTL regions are typically responsible through changes to regulatory elements

Geuvadis Consortium

Variant Annotation Classes

Additional Reference Slides on FASTQ format, ASCII Encoded Base Qualities, FastQC, Alignment and SAM/BAM formats

More fu

ASCII Encoded Base Qualities

@NS500177:196:HFTTTAFXX:1:11101:10916:1458 2:N:0:CGCGGCTG
ACACGACGATGAGGTGACAGTCACGGAGGATAAGATCAATGCCCTCATTAAAGCAGCCGGTGTAA

AAAAAEEEEEEEEE//AEEEAEEEEEEEEEEE/EE/<<<EE/AAEEAEE///EEEEAEEAEA<

- Each sequence base has a corresponding numeric quality score encoded by a single ASCII character typically on the 4th line (see ④ above)
- ASCII characters represent integers between 0 and 127
- Printable ASCII characters range from 33 to 126
- Unfortunately there are 3 quality score formats that you may come across...

Raw data usually in **FASTQ format**

@NS500177:196:HFTTTAFXX:1:11101:10916:1458 2:N:0:CGCGGCTG
ACACGACGATGAGGTGACAGTCACGGAGGATAAGATCAATGCCCTCATTAAAGCAGCCGGTGTAA

Each sequencing "read" consists of 4 lines of data :

- 1 The first line (which always starts with '@') is a unique ID for the sequence that follows
- ² The second line contains the bases called for the sequenced fragment
- The third line is always a "+" character

+

The forth line contains the quality scores for each base in the sequenced fragment (these are ASCII encoded...)

Interpreting Base Qualities in R

	ASCII Range	Offset	Score Range		
Sanger, Illumina (Ver > 1.8)	33-126	33	0-93		
Solexa, Ilumina (Ver < 1.3)	59-126	64	5-62		
Illumina (Ver 1.3 -1.7)	64-126	64	0-62		

<pre>> library(seqinr) > library(gtools) > phred <- asc(s2c("DDDDCDEDCDDDDBBDDDCC@")) - 33 > phred ## D D D D C D E D C D D D D B B D D D C C @ ## 35 35 35 34 35 36 35 34 35 35 35 35 33 33 35 35 35 34 34 31</pre>
> prob <- 10**(-phred/10)

FastQC Report

FASTQC

FASTQC is one approach which provides a visual interpretation of the raw sequence reads

<u>http://www.bioinformatics.babraham.ac.uk/projects/fastqc/</u>

Sequence Alignment

- Once sequence quality has been assessed, the next step is to align the sequence to a reference genome
- There are *many* distinct tools for doing this; which one you choose is often a reflection of your specific experiment and personal preference

BWA Bowtie SOAP2 Novoalign mr/mrsFast Eland Blat	BarraCUDA CASHx GSNAP Mosiak Stampy SHRiMP SeqMap	RMAP SSAHA etc
Bfast	SLIDER	

SAM Format

- <u>Sequence Alignment/Map</u> (SAM) format is the almost-universal sequence alignment format for NGS
 - binary version is BAM
- It consists of a header section (lines start with '@') and an alignment section
- The official specification can be found here:
 - http://samtools.sourceforge.net/SAM1.pdf

Example SAM File

SAM Utilities

 <u>Samtools</u> is a common toolkit for analyzing and manipulating files in SAM/ BAM format

- http://samtools.sourceforge.net/

• <u>**Picard</u>** is a another set of utilities that can used to manipulate and modify SAM files</u>

- http://picard.sourceforge.net/

• These can be used for viewing, parsing, sorting, and filtering SAM files as well as adding new information (e.g. Read Groups)

Genome Analysis Toolkit (GATK)

- Developed in part to aid in the analysis of 1000 Genomes Project data
- Includes many tools for manipulating, filtering, and utilizing next generation sequence data
- http://www.broadinstitute.org/gatk/

Hands-on worksheet: <u>http://tinyurl.com/bggn213-L15</u>

"Benchtop" Sequencers

- Lower cost, lower throughput alternative for smaller scale projects
- Currently three significant platforms
 - Roche 454 GS Junior
 - Life Technology Ion Torrent
 - Personal Genome Machine (PGM)
 - Proton
 - Illumina MiSeq

Platform	List price	Approximate cost per run	Minimum throughput (read length)	Run time	Cost/Mb	Mb/h
454 GS Junior Ion Torrent PGM	\$108,000	\$1,100	35 Mb (400 bases)	<mark>8</mark> h	\$31	4.4
(314 chip)	\$80,490 ^{a,b}	\$225°	10 Mb (100 bases)	3 h	\$22.5	3.3
(316 chip)		\$425	100 Mb ^d (100 bases)	3 h	\$4.25	33.3
(318 chip)		\$625	1,000 Mb (100 bases)	3 h	\$0.63	333.3
MiSeq	\$125,000	\$750	1,500 Mb (2 × 150 bases)	27 h	\$0.5	55.5
				Loman, NJ (2012), Nat. Biotech., 5, pp. 434-439		

