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Background
• Himes et al. "RNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid 

Responsive Gene that Modulates Cytokine Function in Airway Smooth Muscle Cells." 
PLoS ONE. 2014 Jun 13;9(6):e99625. PMID: 24926665. 


• Glucocorticoids inhibit inflammatory processes, used to treat asthma because of anti-
inflammatory effects on airway smooth muscle (ASM) cells. 


• RNA-seq to profile gene expression changes in 4 ASM cell lines treated with 
dexamethasone (a common synthetic glucocorticoid).


• Used Tophat and Cufflinks and found many differentially expressed genes. Focus on 
CRISPLD2 that encodes a secreted protein involved in lung development 


• SNPs in CRISPLD2 in previous GWAS associated w/ inhaled corticosteroid resistance 
and bronchodilator response in asthma patients. 


• Confirmed the upregulated CRISPLD2 w/ qPCR and increased protein expression w/ 
Western blotting. 



Data pre-processing 
• Analyzing RNA-seq data starts with sequencing reads. 


• Many different approaches, see references on class website. 


• Our workflow (previously done): 


• Reads downloaded from GEO (GSE:GSE52778) 

• Quantify transcript abundance (kallisto).

• Summarize to gene-level abundance (txImport) 


• Our starting point is a count matrix: each cell indicates the 
number of reads originating from a particular gene (in rows) 
for each sample (in columns). 



Data structure: counts + metadata

gene ctrl_1 ctrl_2 exp_1 exp_1
geneA 10 11 56 45
geneB 0 0 128 54
geneC 42 41 59 41
geneD 103 122 1 23
geneE 10 23 14 56
geneF 0 1 2 0

… … … … …

id treatment sex ...
ctrl_1 control male ...
ctrl_2 control female ...
exp_1 treatment male ...
exp_2 treatment female ...

countData colData

Sample names:
ctrl_1, ctrl_2, exp_1, exp_2

First column of colData must match column names of countData (-1st)

countData is the count matrix  
(number of reads coming from 
each gene for each sample)

colData describes metadata 
about the columns of countData



Counting is (relatively) easy:



Hands-on time!
https://tinyurl.com/bggn213-class17

Do it Yourself!

https://tinyurl.com/bggn213-class17


Fold change (log ratios)
• To a statistician fold change is sometimes considered 

meaningless. Fold change can be large (e.g. >>two-fold up- 
or down-regulation) without being statistically significant 
(e.g. based on probability values from a t-test or ANOVA).


• To a biologist fold change is almost always considered 
important for two reasons. First, a very small but 
statistically significant fold change might not be relevant to 
a cell’s function. Second, it is of interest to know which 
genes are most dramatically regulated, as these are often 
thought to reflect changes in biologically meaningful 
transcripts and/or pathways.



Inferential statistics
• Inferential statistics are used to make inferences about a 

population from a sample. 


• Hypothesis testing is a common form of inferential statistics. A 
null hypothesis is stated, such as:


• “There is no difference in signal intensity for the gene 
expression measurements in normal and diseased samples.” 
The alternative hypothesis is that there is a difference. 


• We use a test statistic to decide whether to accept or reject the 
null hypothesis. For many applications, we set the significance 
level a to p < 0.05.



false discovery rate
• The false discovery rate (FDR) is a popular multiple corrections 

correction. A false positive (also called a type I error) is sometimes called 
a false discovery.


• The FDR equals the p value of the t-test times the number of genes 
measured (e.g. for 10,000 genes and a p value of 0.01, there are 100 
expected false positives).


• You can adjust the false discovery rate. For example:


• Would you report 100 regulated transcripts of which 10 are likely to be 
false positives, or 20 transcripts of which one is likely to be a false 
positive?



• You can adjust the false discovery rate. For example:


• Would you report 100 regulated transcripts of which 10 
are likely to be false positives, or 20 transcripts of which 
one is likely to be a false positive?

FDR # regulated 
transcripts

# false 
discoveries

0.1 100 10

0.05 45 3

0.01 20 1



Volcano plot: significantly 
regulated genes vs. fold change

• A volcano plot shows fold change (x-axis) versus p value 
from ANOVA (y-axis). Each point is the expression level of 
a transcript. Points high up on the y-axis (above the pale 
green horizontal line) are significantly regulated.



Principal Components 
Analysis (PCA)

• An exploratory technique used to reduce the 
dimensionality of the data set to 2D or 3D


• For a matrix of m genes x n samples, create a new 
covariance matrix of size n x n


• Thus transform some large number of variables into a 
smaller number of uncorrelated variables called principal 
components (PCs). 



PCA objectives
• to reduce dimensionality


• to determine the linear combination of variables


• to choose the most useful variables (features)


• to visualize multidimensional data


• to identify groups of objects (e.g. genes/samples)


• to identify outliers



Principal Components 
Analysis

• The first principal component (PC) follows a “best fit” 
through the data points. Other PCs must cross the origin 
of the plot, and must be orthogonal.



• Normalization is required to make comparisons 
in gene expression  
• Between 2+ genes in one sample 
• Between genes in 2+ samples  

• Genes will have more reads mapped in a sample 
with high coverage than one with low coverage  
• 2x depth ≈ 2x expression  

• Longer genes will have more reads mapped 
than shorter genes  
• 2x length ≈ 2x more reads

Normalization 



• N.B. Some tools for differential expression analysis such as edgeR 
and DESeq2 want raw read counts - i.e. non normalized input! 

• However, often for your manuscripts and reports you will want to 
report normalized counts - e.g. plots of Log(FoldChange) vs 
Transcripts Per Million (or TPM)   

• RPKM, FPKM and TPM all aim to normalize for sequencing depth 
and gene length. For the former:  

• Count up the total reads in a sample and divide that number 
by 1,000,000 – this is our “per million” scaling factor. 

• Divide the read counts by the “per million” scaling factor. 
This normalizes for sequencing depth, giving you reads per 
million (RPM) 

• Divide the RPM values by the length of the gene, in 
kilobases. This gives you RPKM.

Normalization: RPKM, FPKM and TPM



• FPKM was made for paired-end RNA-seq 

• With paired-end RNA-seq, two reads can 
correspond to a single fragment 

• The only difference between RPKM and 
FPKM is that FPKM takes into account that 
two reads can map to one fragment (and so 
it doesn’t count this fragment twice).



• TPM is very similar to RPKM and FPKM. The only difference 
is the order of operations. Here’s how you calculate TPM: 
• Divide the read counts by the length of each gene in 

kilobases. This gives you reads per kilobase (RPK). 
• Count up all the RPK values in a sample and divide this 

number by 1,000,000. This is your “per million” scaling 
factor. 

• Divide the RPK values by the “per million” scaling 
factor. This gives you TPM. 

• So you see, when calculating TPM, the only difference is 
that you normalize for gene length first, and then 
normalize for sequencing depth second. However, the 
effects of this difference are quite profound.



• When you use TPM, the sum of all TPMs in 
each sample are the same.  

• This makes it easier to compare the 
proportion of reads that mapped to a gene 
in each sample.  

• In contrast, with RPKM and FPKM, the sum 
of the normalized reads in each sample may 
be different, and this makes it harder to 
compare samples directly.


