STATISTICAL CONCEPTS FOR BIOLOGISTS

BGGN 213: FOUNDATIONS OF BIOINFORMATICS UNIVERSITY OF CALIFORNIA, SAN DIEGO ILEENA MITRA

FALL 2017

"Data don't make any sense, we will have to resort to statistics."

OVERVIEW

- I. Data summary statistics
- 2. Inferential statistics
- 3. Significance testing
- 4. Two sample T-test
- 5. Power analysis
- 6. Chi-square Test
- 7. Multiple testing correction

- 8. Correlation
- 9. Simple linear regression

DATA SUMMARY STATISTICS

- Sample mean = \bar{x}
 - mean(data)
 - summary(data) results in minimum, Ist quantile, median, mean, 3rd quantile, and max values
- Sample standard deviation = s

S

$$=\sqrt{\frac{\sum_{i=1}^{N}(x_{i}-\bar{x})^{2}}{N-1}}$$

sd(data)

INFERENTIAL STATISTICS

Inferential statistics methods are used to make a generalization, estimate, prediction or decision about a population based on a sample.

- Hypothesis Testing
- Confidence Intervals
- Compare distributions
- Comparison of means
- Regression Analysis / Linear Regression

LET'S TRY THIS OUT IN R!

SIGNIFICANCETESTING

- The general idea of **hypothesis testing** involves:
 - Making an initial assumption (null hypothesis).
 - Collecting evidence (data).
 - Based on the available evidence (data), deciding whether to reject or not reject the initial assumption.
- The null hypothesis (H₀) is the default hypothesis that there is no significant difference between specified populations, any observed difference being due to sampling or experimental error.
 - A null hypothesis is stated, such as: "There is no difference in signal intensity for the gene expression measurements in normal and diseased samples." The alternative hypothesis is that there is a difference.

HYPOTHESIS TESTING PROCEDURE

State hypothesis (H_0 and H_A)

Set a significance level (α)

Determine appropriate statistical test based on assumptions met.

Perform calculations (R or other statistical software)

Draw conclusion and determine statistical significance (p-value < α)

DETERMINING SIGNIFICANCE

- We use a test statistic to decide whether to accept or reject the null hypothesis. For many applications, we set the significance level to α = 0.05.
- We reject the null hypothesis and determine our results are statistically significant if the p-value is less than or equal to a predefined significance threshold.
- The p-value is the probability of obtaining a result (a test statistic) that is at least as extreme as the one observed, assuming that the null hypothesis is true.

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

TWO SAMPLET-TEST

- Two Sample T-test: Used to determine if two population means are equal.
 - **Null Hypothesis**: The two population means are equal.
 - Alternative Hypothesis: The two population means are not equal.
- T-test test statistic:

$$t = \frac{\overline{X_{1} - \overline{X_{2}}}}{\sqrt{\frac{s_{1}^{2}}{N_{1}} + \frac{s_{2}^{2}}{N_{2}}}}$$

t.test(x, y)

POWER ANALYSIS

- The following **four quantities** have an intimate relationship:
 - sample size
 - effect size
 - significance level (α)
 - power
- Given any three, we can determine the fourth.
- **Power** is the fraction of true positives that will be detected. It is a value between 0 and 1. The larger the sample size, the larger the power.
- R packages pwr or power.t.test(n=10, delta=1, sig.level=0.05)

CHI-SQUARETEST

- Chi-Square Test of Independence: Used test the independence of two categorical variables.
 - Null Hypothesis: The two categorical variables are independent.
 - Alternative Hypothesis: The two categorical variables are dependent.
- Chi-square test statistic:

$$\chi^{2} = \sum_{i=1}^{g} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

chisq.test(data)

CORRELATION

- Correlation (r) describes the strength of association between two quantitative variables (x and y).
- r can range from -1 (a perfect negative correlation) to 1 (a perfect positive correlation), or can be 0 in the case of no correlation.

cor(x, y)

- Test correlation p value: What is the probability that random chance resulted in a correlation coefficient as far from zero as the one observed?
- cor.test(x, y)

SIMPLE LINEAR REGRESSION

- Linear regression indicates the relationship between one quantitative response variable (y) and one predictor variable (x).
- $Im(formula = y \sim x)$
- Linear least squares method: The basic idea of this method is to find a straight line that best represents the trend indicated by the data, such that a roughly equal proportion of data points is observed above and below the line.

HEIGHT PLOTTED AGAINST BODY MASS

COMMON STATISTICAL TESTS

Type of Test:	Use:
Correlational	These tests look for an association between variables
Pearson correlation	Tests for the strength of the association between two continuous variables
Spearman correlation	Tests for the strength of the association between two ordinal variables (does not rely on the
	assumption of normal distributed data)
Chi-square	Tests for the strength of the association between two categorical variables
Comparison of Means:	look for the difference between the means of variables
Paired T-test	Tests for difference between two related variables
Independent T-test	Tests for difference between two independent variables
ANOVA	Tests the difference between group means after any other variance in the outcome variable is
	accounted for
Regression:	assess if change in one variable predicts change in another variable
Simple regression	Tests how change in the predictor variable predicts the level of change in the outcome variable
Multiple regression	Tests how change in the combination of two or more predictor variables predict the level of
	change in the outcome variable
Non-parametric:	are used when the data does not meet assumptions required for parametric tests
Wilcoxon rank-sum test	Tests for difference between two independent variables - takes into account magnitude and
	direction of difference
Wilcoxon sign-rank test	Tests for difference between two related variables - takes into account magnitude and direction of
	difference
C'au taat	
C ¹	Tests if two related variables are different – ignores magnitude of change, only takes into account
Sign test	Tests if two related variables are different – ignores magnitude of change, only takes into account direction

https://cyfar.org/typesstatistical-tests

MULTIPLE TESTING

- The **multiple testing issue** is when a large number of statistical tests are performed simultaneously on the dataset, and therefore, a number of false positive results will occur by random chance.
- **Bonferroni correction:** The simplest and most conservative approach, which sets a more stringent significance threshold for the entire set of comparisons by taking the initial significance threshold (α) an dividing by the number of tests performed (n).

α/n

- False discovery rate correction: A more complicated and less stringent method, which controls the probability of *at least one* "false discovery".
- p.adjust(data_pvals, method = p.adjust.methods)
- p.adjust.methods are one of c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none")

FOLLOW UP

- Introduction to Data: <u>https://www.datacamp.com/courses/introduction-to-data</u>
- Correlation and Regression https://www.datacamp.com/courses/correlation-and-regression
- Statistical Modeling in R (Part I) https://www.datacamp.com/courses/statistical-modeling-in-r-part-l
- Statistical Modeling in R (Part 2) https://www.datacamp.com/courses/statistical-modeling-in-r-part-2
- Data Visualization with ggplot2 (Part 2) https://www.datacamp.com/courses/data-visualization-with-ggplot2-2