Please do your formal course evaluations!



PCA: The absolute basics

Bunch of “normal” cells




Bunch of “normal” cells

Even though they look the
same we suspect that there
are differences...



These might be
one cell type... -




These another
cell type...
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These might be
one cell type... -

O These might be a
. .“ ¢ third cell type...



Unfortunately we can’t observe
the differences visually



Unfortunately we can’t observe
the differences visually

So we sequence the mRNA in each
cell to identify which genes are
active and at what levels.



Here is the data...

Cell1 | Cell2 | Cell3 | Cell4
3 0.25 2.8 0.1
2.9 0.8 2.2 1.8
2.2 1 1.5 3.2
2 1.4 2 0.3
1.3 1.6 1.6 0
1.5 2 2.1 3
1.1 2.2 1.2 2.8
1 2.7 0.9 0.3
0.4 3 0.6 0.1




Each column shows how much each
gene is transcribed in each cell

Celll | Cell2 | Cell3 § Cell4

3 0.25 2.8

2.9 0.8 2.2

2.2 L 1.5

Here is the data... 2 1.4 2

1.3 1.6 1.6

1.5 P 2.1

1.1 2.2 1.2

1 2.7 0.9

0.4 3 0.6




For now lets consider
only two cells

Cell1 | Cell2
3 0.25
2.9 0.8
2.2 1
2 1.4
1.3 1.6
1.5 2
1.1 2.2
1 2.7
0.4 3




We have just 2 cells so we
can plot the measurements

Celll

for each gene

Cell2

Cell1 | Cell2
3 0.25
2.9 0.8
2.2 1
2 1.4
1.3 1.6
1.5 2
1.1 2.2
1 2.7
0.4 3




Celll

This gene (Gene1l) is highly
transcribed in Cell1 and
lowly transcribed in Cell2...

Cell2

Cell1 | Cell2
3 0.25
2.9 0.8
2.2 1
2 1.4
1.3 1.6
1.5 2
1.1 2.2
1 2.7
0.4 3




Celll

This gene (Gene9) is lowly
transcribed in Cell1 and
highly transcribed in Cell2...

Cell2

Cell1 | Cell2
3 0.25
2.9 0.8
2.2 1
2 1.4
1.3 1.6
1.5 2
1.1 2.2
1 2.7
0.4 3




In generel, Celll and Cell2 have
an inverse correlation.

This suggests that they may be
two different types of cells as
they are using different genes

Celll

Cell2

Cell1 | Cell2
Gene1 3 0.25
Gene2| 2.9 0.8
Gene3| 2.2 1
Gene4| 2 1.4
Gene5| 1.3 1.6
Gene6| 1.5 2
Gene7| 1.1 2.2
Gene8| 1 2.7
Gene9| 04 3




Now lets imagine
there are three cells

Cell1 | Cell2 | Cell3
3 0.25 2.8
2.9 0.8 2.2
2.2 1 1.5
2 1.4 2
1.3 1.6 1.6
1.5 2 2.1
1.1 2.2 1.2
1 2.7 0.9
0.4 3 0.6




We have already seen how we can
plot the first two cells to see how
® closely related they are

Celll

Cell2 § Cell3

2.8

2.2

Cell2 1

1.6

2.1

1.2

0.9

0.6




Now we can also compare
Cell1 to Cell3

Celll

Cell2 | Cell3

0.25

0.8

Cell2

1.4

1.6

Celll
O
2.2

2.7

Cell3



Cell1 and Cell3 are positively
correlated suggesting they are
doing similar things

Celll

Cell2 | Cell3

0.25

0.8

Cell2

1.4

1.6

Celll

2.2

2.7

Cell3



Celll Celld

We can also compare
Cell2 to CellS...

Cell

Cell2 Cell3 |Genetl 3

Gene2| 2.9

The inverse correlation suggests |@gene3| 2.2
that Cell2 is doing something
different from Cell3 Gene4d 2

Cell2

Cell3



Alternatively, we could try to
plot all 3 cells at once on a
3-dimensional graph.

Celll

Cell2

Cell1 | Cell2 | Cell3
3 0.25 2.8
2.9 0.8 2.2
2.2 1 1.5
2 1.4 2
1.3 1.6 1.6
1.5 2 2.1
1.1 2.2 1.2
1 2.7 0.9
0.4 3 0.6




But what if we have 4 or more Cells?

Celll | Cell2 | Cell3 | Cell4

3 0.25 2.8 0.1

2.9 0.8 2.2 1.8

2.2 L 1.5 3.2

1.3 1.6 1.6 0

1.5 2 2.1 3

1.1 2.2 1.2 2.8

0.4 3 0.6 0.1




Draw lots of 2 cell plots and try to
make sense of them all?

Celll | Cell2 | Cell3 | Cell4

Gene1 3 0.25 2.8 0.1

Gene2| 2.9 0.8 2.2 1.8

Gene3| 2.2 L 1.5 3.2

Gene4 2 1.4 2 0.3

Gene5| 1.3 1.6 1.6 0

Geneb| 1.5 2 2.1 3

Gene7| 1.1 2.2 1.2 2.8

Gene8 1 2.7 0.9 0.3

Gene9| 0.4 3 0.6 0.1




Or draw some crazy graph that has
an axis for each cell and makes or

brains hurt!
Celld
Cell4
‘ Cell6
Cell3
Cell2

Cell6

Cell1 | Cell2 | Cell3 | Cell4

Gene1 3 0.25 2.8 0.1
Gene2| 2.9 0.8 2.2 1.8
Gene3| 2.2 1 1.5 3.2
Gene4| 2 1.4 2 0.3
Gene5| 1.3 1.6 1.6 0

Gene6| 1.5 2 2.1 3

Gene7| 1.1 2.2 1.2 2.8
Gene8| 1 2.7 0.9 0.3
Gene9| 0.4 3 0.6 0.1




Cell3

Cell6

Cell2

Cell1 | Cell2 | Cell3 | Cell4
3 0.25 2.8 0.1
2.9 0.8 2.2 1.8
2.2 1 1.5 3.2
2 1.4 2 0.3
1.3 1.6 1.6 0
1.5 2 2.1 3
1.1 2.2 1.2 2.8
1 2.7 0.9 0.3
0.4 3 0.6 0.1




Enter Principal Component Analysis

PC2

(PCA)

PC1

Cell1 | Cell2 | Cell3 | Cell4
3 0.25 2.8 0.1
2.9 0.8 2.2 1.8
2.2 1 1.5 3.2
2 1.4 2 0.3
1.3 1.6 1.6 0
1.5 2 2.1 3
1.1 2.2 1.2 2.8
1 2.7 0.9 0.3
0.4 3 0.6 0.1




PCA converts the correlations (or
lack there of) among all cells into a
representation we can more readily

interpret (e.g. a 2D graph!)

PC2

PC1

Cell1 | Cell2 | Cell3 | Cell4

Gene1 3 0.25 2.8 0.1
Gene2| 2.9 0.8 2.2 1.8
Gene3| 2.2 1 1.5 3.2
Gene4| 2 1.4 2 0.3
Gene5| 1.3 1.6 1.6 0

Gene6| 1.5 2 2.1 3

Gene7| 1.1 2.2 1.2 2.8
Gene8| 1 2.7 0.9 0.3
Gene9| 0.4 3 0.6 0.1




Cells that are highly correlated

PC2

cluster together

PC1

Cell1 | Cell2 | Cell3 | Cell4

Gene1 3 0.25 2.8 0.1
Gene2| 2.9 0.8 2.2 1.8
Gene3| 2.2 1 1.5 3.2
Gene4| 2 1.4 2 0.3
Gene5| 1.3 1.6 1.6 0

Gene6| 1.5 2 2.1 3

Gene7| 1.1 2.2 1.2 2.8
Gene8| 1 2.7 0.9 0.3
Gene9| 0.4 3 0.6 0.1




Cells that are highly correlated

PC2

cluster together

PC1

Cell1 | Cell2 | Cell3 | Cell4

Gene1 3 0.25 2.8 0.1
Gene2| 2.9 0.8 2.2 1.8
Gene3| 2.2 1 1.5 3.2
Gene4| 2 1.4 2 0.3
Gene5| 1.3 1.6 1.6 0

Gene6| 1.5 2 2.1 3

Gene7| 1.1 2.2 1.2 2.8
Gene8| 1 2.7 0.9 0.3
Gene9| 0.4 3 0.6 0.1




To make the clusters easier to see Celll | Cell2 | Cell3 | Cell4

we can color code them...
Gene1 3 0.25 2.8 0.1

Gene2| 2.9 0.8 2.2 1.8

Gene3| 2.2 L 1.5 3.2

PG2 Gene4 2 1.4 2 0.3

Gene5| 1.3 1.6 1.6 0

Gene6| 1.5 2 2.1 3

Gene7| 1.1 2.2 1.2 2.8

Gene8 1 2.7 0.9 0.3

PC1 Gene9| 0.4 3 06 | 0.1




Once we have identified the clusters
from our PCA results, we can go
back to or original cells...

v

PC1



Once we have identified the clusters
from our PCA results, we can go
back to or original cells...

v

...and see they represent three
different types of cells doing three
different things with their genes!

PC1



PC1

Some key points:

The PCs (i.e. new plot axis) are
ranked by their importance

So PC1 is more important than PC2
which in turn is more important than
PC3 etc.



PC1

Some key points:

The PCs (i.e. new plot axis) are
ranked by their importance

So PC1 is more important than PC2
which in turn is more important than
PC3 etc.

So the red and blue cluster are more
dissimilar than the yellow and
clusters



Some key points:

The PCs (i.e. new plot axis) are
ranked by their importance

So PC1 is more important than PC2
which in turn is more important than
PC3 etc.

So the red and blue cluster are more
dissimilar than the yellow and
clusters

The PCs (i.e. new plot axis) are
ranked by the amount of variance in
the original data (i.e. gene expression
values) that they “capture”

PC1 (44%)



Some key points:

The PCs (i.e. new plot axis) are
ranked by their importance

So PC1 is more important than PC2
which in turn is more important than
PC3 etc.

So the red and blue cluster are more
dissimilar than the yellow and
clusters

The PCs (i.e. new plot axis) are
ranked by the amount of variance in
the original data (i.e. gene expression
values) that they “capture”

PC1 (44%)

In this example PC1 ‘captures’ 4x
more of the original variance than
PC2 (44/11 = 4)



 \We actually get two main things out of a typical PCA

* The new axis (called PCs or Eigenvectors) and

* Eigenvalues that detail the amount of variance captured by
each PC

1. PCA plot (or score plot) 2. Eigenvalue plot (or scree plot)
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PC1 (91%) Principal Component




e Another cool thing we can get out of PCA is a quantitive

report on how the original variables contributed to each
PC

e |n other words, which were the most important genes
that lead to the observed clustering in PC-space

e These are often called the loadings and we can plot
them to see which are the most important genes for the

observed separation as well as outputting ranked lists
of genes that act to discriminate the samples




Hands-on time!

http://setosa.io/ev/principal-component-analysis/


http://setosa.io/ev/principal-component-analysis/

Outline: How to do PCA In R

e How to use the prcomp() function to do PCA.
e How to draw and interpret PCA plots

e How to determine how much variation each principal
component accounts for and the the “intrinsic
dimensionality” useful for further analysis

e How to examine the loadings (or loading scores) to
determine what variables have the largest effect on the
graph and are thus important for discriminating samples.



e First lets generate some example data to work with.

## Initialize a blank 100 row by 10 column matrix
mydata <- matrix(nrow=100, ncol=10)




e First lets generate some example data to work with.

## Initialize a blank 100 row by 10 column matrix
mydata <- matrix(nrow=100, ncol=10)

## Lets label the rows genel, gene2 etc. to genell0
rownames (mydata) <- paste("gene", 1:100, sep="")




e First lets generate some example data to work with.

## Initialize a blank 100 row by 10 column matrix
mydata <- matrix(nrow=100, ncol=10)

## Lets label the rows genel, gene2 etc. to genell0
rownames (mydata) <- paste("gene", 1:100, sep="")

## Lets label the first 5 columns wtl, wt2, wt3, wtd and wth
i and the last 5 kol, ko2 etc. to ko5 (for "knock-out")
colnames (mydata) <- c( paste("wt", 1:5, sep=""),

paste ("ko", 1:5, sep="") )




e First lets generate some example data to work with.

## Initialize a blank 100 row by 10 column matrix
mydata <- matrix(nrow=100, ncol=10)

## Lets label the rows genel, gene2 etc. to genell0
rownames (mydata) <- paste("gene", 1:100, sep="")

## Lets label the first 5 columns wtl, wt2, wt3, wtd and wth
i and the last 5 kol, ko2 etc. to ko5 (for "knock-out")
colnames (mydata) <- c( paste("wt", 1:5, sep=""),

paste ("ko", 1:5, sep="") )

## Fill in some fake read counts

for(i1 in l:nrow(mydata)) {
wt.values <- rpois (b, lambda=sample (x=10:1000, size=1))
ko.values <- rpois (b, lambda=sample (x=10:1000, size=1))

mydatal[i,] <- c(wt.values, ko.values)

}

head (mydata)




* NOTE: the samples are columns, and the genes are rows!

mydata <- matrix(nrow=100, ncol=10)
rownames (mydata) <- paste("gene", 1:100, sep="")

colnames (mydata) <- c¢( paste("wt", sep=""),
paste ("ko", sep="") )

for (i in l:nrow(mydata)) {
wt.values <- rpois (b, lambda=sample (x=10:1000, size=1))
ko.values <- rpois (b, lambda=sample (x=10:1000, size=1))

mydatal[i,] <- c(wt.values, ko.values)

}

head (mydata)

wtl wt2 wt3 wtd wt5
genel 147 171 160 175 187
gene2 151 134 148 126 134
gene3 702 672 653 681 701
gened 319 297 310 296 304




e Now we have our data we call prcomp() to do PCA

e NOTE: prcomp() expects the samples to be rows and
genes to be columns so we need to first transpose the
matrix with the t() function!

## lets do PCA
pca <- prcomp (t (mydata), scale=TRUE)




e Now we have our data we call prcomp() to do PCA

e NOTE: prcomp() expects the samples to be rows and
genes to be columns so we need to first transpose the
matrix with the t() function!

## lets do PCA
pca <- prcomp (t (mydata), scale=TRUE)

## See what 1s returned by the prcomp() function
attributes (pca)

¥ Snames

#[1] "sdev" "rotation" "center" "scale"
il

# Sclass

#[(1] "prcomp"




e The returned pca$x here contains the principal
components (PCs) for drawing our first graph.

e Here we will take the first two columns in pca$x
(corresponding to PC1 and PC2) to draw a 2-D plot

## lets do PCA
pca <- prcomp (t (mydata), scale=TRUE)

## See what 1s returned by the prcomp() function
attributes (pca)

¥ Snames

#[1] "sdev" "rotation" "center" "scale"
il

# Sclass

#[(1] "prcomp"




e The returned pca$x here contains the principal
components (PCs) for drawing our first graph.

e Here we will take the first two columns in pca$x
(corresponding to PC1 and PC2) to draw a 2-D plot

## lets do PCA
pca <- prcomp (t (mydata), scale=TRUE)

## A basic PCl vs PC2 2-D plot
plot (pca$x[,1], pcasSx[,2])




e The returned pca$x here contains the principal
components (PCs) for drawing our first graph.

e Here we will take the first two columns in pca$x
(corresponding to PC1 and PC2) to draw a 2-D plot

## lets do PCA
pca <- prcomp (t (mydata), scale=TRUE)

## A basic PCl vs PC2 2-D plot ®
plot (pca$x[,1], pcasSx[,2])




e | ooks interesting with a nice separation of samples into
two groups of 5 samples each

e Now we can use the square of pca$sdev , which
stands for “standard deviation”, to calculate how much
variation in the original data each PC accounts for

## lets do PCA
pca <- prcomp (t (mydata), scale=TRUE)

## A basic PCl vs PC2 2-D plot ®
plot (pca$x[,1], pcasSx[,2])

## Variance captured per PC
pca.var <- pca$sdev”"?2




e | ooks interesting with a nice separation of samples into
two groups of 5 samples each

e Now we can use the square of pca$sdev , which
stands for “standard deviation”, to calculate how much
variation in the original data each PC accounts for

## lets do PCA
pca <- prcomp (t (mydata), scale=TRUE)

## A basic PCl vs PC2 2-D plot
plot (pca$x[,1], pcasSx[,2])

## Precent variance is often more informative to look at

pca.var <- pca$sdev”"?2
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)




e | ooks interesting with a nice separation of samples into
two groups of 5 samples each

e Now we can use the square of pca$sdev , which
stands for “standard deviation”, to calculate how much
variation in the original data each PC accounts for

## lets do PCA
pca <- prcomp (t (mydata), scale=TRUE)

## A basic PCl vs PC2 2-D plot
plot (pca$x[,1], pcasSx[,2])

## Precent variance is often more informative to look at

pca.var <- pca$sdev”"?2
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)

pca.var.per

(1] 91.0 2.8 1.9 1.3 0.8 0.7 0.6 0.5 0.3 0.0




e | ooks interesting with a nice separation of samples into
two groups of 5 samples each

e Now we can use the square of pca$sdev , which
stands for “standard deviation”, to calculate how much
variation in the original data each PC accounts for

pca.var <- pcaS$sdev”2
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)

barplot (pca.var.per, main="Scree Plot",
xlab="Principal Component", ylab="Percent Variation")




* From the “scree plot” it is clear that PC1 accounts for
almost all of the variation in the data!

pca.var <- pcaS$sdev”2
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)

barplot (pca.var.per, main="Scree Plot",
xlab="Principal Component", ylab="Percent Variation")

Scree Plot
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e Which means there are big differences between these two
groups that are separated along the PC1 axis...

pca.var <- pcaS$sdev”2
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)

barplot (pca.var.per, main="Scree Plot",
xlab="Principal Component", ylab="Percent Variation")

Scree Plot
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e | ets make our plot a bit more useful...

## A vector of colors for wt and ko samples
colvec <- colnames (mydata)

colvecl[grep ("wt", colvec)] <- "red"
colvec[grep ("ko", colvec)] <- "blue"

plot (pca$x[,1], pcasSx[,2], col=colvec, pch=lo,
xlab=pastel0 ("PCl1 (", pca.var.perl[l], "3)"),
ylab=pasteO ("PC2 (", pca.var.perl[2], "%)"))

PC1 (91%)




e And add some labels...

plot (pca$x[,1], pcasSx[,2], col=colvec, pch=lo,
xlab=pastelO ("PCl1 (", pca.var.perl[l], "3%)"),
ylab=pasteO ("PC2 (", pca.var.perl[2], "%)"))

## Click to identify which sample is which
identify(pcas$Sx|[,1], pcas$x[,2], labels=colnames (mydata))

## Press ESC to exit..

PC1 (91%)




e Finally, lets look at how to use the loading scores to
determine which genes have the largest effect on where
samples are plotted in the PCA plot

e The prcomp() function calls loading scores $rotation

## Lets focus on PCl as 1t accounts for > 90% of variance
loading scores <- pcaSrotation[,1]




e Finally, lets look at how to use the loading scores to
determine which genes have the largest effect on where
samples are plotted in the PCA plot

e The prcomp() function calls loading scores $rotation

## Lets focus on PCl as 1t accounts for > 90% of variance
loading scores <- pcaSrotation[,1]

summary (loading scores)
Min. 1st OQu. Median Mean 3rd Qu. Max.
-0.104763 -0.104276 -0.008784 -0.005656 0.103920 0.104797

## We are interested in the magnitudes of both plus
## and minus contributing genes
gene scores <- abs(loading scores)




e Finally, lets look at how to use the loading scores to
determine which genes have the largest effect on where
samples are plotted in the PCA plot

e The prcomp() function calls loading scores $rotation

loading scores <- pcaSrotation[,1]

gene scores <- abs(loading scores)

## Sort by magnitudes from high to low
gene score ranked <- sort (gene scores, decreasing=TRUE)




e Finally, lets look at how to use the loading scores to
determine which genes have the largest effect on where
samples are plotted in the PCA plot

e The prcomp() function calls loading scores $rotation

loading scores <- pcaSrotation[,1]

gene scores <- abs(loading scores)

## Sort by magnitudes from high to low
gene score ranked <- sort (gene scores, decreasing=TRUE)

## Find the names of the top 5 genes
top 5 genes <- names (gene score ranked[1:5])




e Finally, lets look at how to use the loading scores to
determine which genes have the largest effect on where
samples are plotted in the PCA plot

e The prcomp() function calls loading scores $rotation

loading scores <- pcaSrotation[,1]

gene scores <- abs(loading scores)

## Sort by magnitudes from high to low
gene score ranked <- sort (gene scores, decreasing=TRUE)

## Find the names of the top 5 genes
top 5 genes <- names (gene score ranked[1:5])

## Show the scores (with +/- sign)
pcaSrotation[top 5 genes, 1]




e Here we see genes with the largest positive loading
scores that effectively ‘push’ the “ko” samples to the right
positive side of the plot.

e And the genes with high negative scores that push “wt”
samples to the left side of the plot.

loading scores <- pcaSrotation[,1]

gene scores <- abs(loading scores)

## Sort by magnitudes from high to low
gene score ranked <- sort (gene scores, decreasing=TRUE)

## Find the names of the top 5 genes
top 5 genes <- names (gene score ranked[1:5])

## Show the scores (with +/- sign)
pcaSrotation[top 5 genes, 1]




e Here we see genes with the largest positive loading
scores that effectively ‘push’ the “ko” samples to the right
positive side of the plot.

e And the genes with high negative scores that push “wt”
samples to the left side of the plot.

pcaSrotation[top 5 genes, 1]

PC1 (91%)




PCA Recap

PCA is classic “multivariate statistical technique” used to reduce the
dimensionality of a complex data set to a more manageable number
(typically 2D or 3D)

For a matrix of m genes x n samples, we mean center (i.e. subtract the
sample mean from each sample column), optionally rescale the values
for each sample column, then calculate a new covariance matrix of size
nxn

We finally diagonalize the covariance matrix to yield our n Eigenvectors
(called principal components or PCs) and n Eigenvalues.

The top PCs (with largest Eigenvalues) retain the essential features of
the original data and represent a useful subspace for further analysis
(e.g. visualization, clustering, feature extraction, outlier detection etc...)



PCA objectives in a nutshell

e to reduce dimensionality

e to visualize multidimensional data

e to choose the most useful variables (features)

e to identify groupings of objects (e.g. genes/samples)

e to identify outliers



Your turn!

Perform a PCA on the UK foods dataset

UK foods.csv

Input: read, View/head,
PCA: prcomp,
Plots: PCA plot
scree plot,
loadings plot.



https://bioboot.github.io/bggn213_f17/class-material/UK_foods.csv

https://bioboot.qgithub.io/bggn213 f17/class-material/lUK food pca/



https://bioboot.github.io/bggn213_f17/class-material/UK_food_pca/

Please do your formal class evaluations!



