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NEXT UP:

» Overview of structural bioinformatics

* Major motivations, goals and challenges

» Fundamentals of protein structure
+ Composition, form, forces and dynamics

» Representing and interpreting protein
structure
* Modeling energy as a function of structure

» Example application areas
* Predicting functional dynamics & drug discovery

THE TRADITIONAL EMPIRICAL PATH TO
DRUG DISCOVERY

Compound library
(commercial, in-house,
synthetic, natural)\

High throughput screening

HTS)

Hit confirmation

Lead compounds

(e.g., UM K) N

Lead optimization
(Medicinal chemistry)

v

Animal and clinical€=——potent drug candidates
evaluation (NM Ky)

COMPUTER-AIDED LIGAND DESIGN

Aims to reduce number of compounds synthesized and assayed

Lower costs

Reduce chemical waste

Scoring

Visual
analysis

Facilitate faster progress

in vitro
assays




Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based

Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based

SCENARIO I:
RECEPTOR-BASED DRUG DISCOVERY

Structure of Targeted Protein Known: Structure-Based Drug Discovery

HIV Protease/KNI-272 complex

PROTEIN-LIGAND DOCKING

Structure-Based Ligand Design

Docking software
Search for structure of lowest energy Potential function
Energy as function of structure
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STRUCTURE-BASED VIRTUAL SCREENING

Compound 3D structure of target
database (crystallography, NMR,

bioinformatics
modeling)

Virtual screening
(e.g., computational
docking)

/ Candidate ligands

Ligand optimization

Med chem, Experimental assay
crystallography, modeling l,

Ligands —»  Drug
candidates

COMPOUND LIBRARIES

Commercial
(in-house pharma)

Government (NIH) Academia

FRAGMENTAL STRUCTURE-BASED
SCREENING

“Fragment” library 3D structure of target

Fragment docking
Compound design

Experimental assay and ligand optimization
Med chem, crystallography, modeling
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http://www.beilstein-institut.de/bozen2002/proceedings/Jhoti/jhoti.html

Multiple non active-site pockets identified

Small organic probe fragment affinities map multiple potential
binding sites across the structural ensemble.
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Ensemble docking & candidate inhibitor testing Proteins and Ligand are Flexible

Top hits from ensemble docking against distal pockets were tested for Protein
inhibitory effects on basal ERK activity in glioblastoma cell lines. e S
Ensemble computational docking Compound effect on U251 cell line ngand ________
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COMMON SIMPLIFICATIONS USED IN
PHYSICS-BASED DOCKING

Quantum effects approximated classically _
Two main approaches:

(1). Receptor/Target-Based
(2). Ligand/Drug-Based

Protein often held rigid
Configurational entropy neglected

Influence of water treated crudely




Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based

You can use the classroom computers or your own
laptops. If you are using your laptops then you will need
to install VMD and MGLTools

Scenario 2
Structure of Targeted Protein Unknown:
Ligand-Based Drug Discovery
e.g. MAP Kinase Inhibitors

Why Look for Another Ligand if You Already Have Some?
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LIGAND-BASED VIRTUAL SCREENING

Compound Library Known Ligands

N

Molecular similarity
Machine-learning
Etc.

v

Candidate ligands

Optimization l
Med chem, crystallography, Assay

modeling \ l

Actives — 3 Potent drug candidates

CHEMICAL SIMILARITY
LIGAND-BASED DRUG-DISCOVERY

Compounds
(available/synthesizable)

Different

Test experimentally

CHEMICAL FINGERPRINTS
BINARY STRUCTURE KEYS
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oh Hore Model Molecular Descriptors
,_harmacophore Woge's More abstract than chemical fingerprints
®dappuako (drug) + dopa (carry)

Physical descriptors

Bulk molecular weight
ulky -
charge PSS
A 3-point pharmacophore hydrophobe 9 ., ,ﬂ\/\% Kj
WS
S

dipole moment

number of H-bond donors/acceptors . ~F
number of rotatable bonds [\J * Rotatable bonds
hydrophobicity (log P and clogP)

Topological
branching index
measures of linearity vs interconnectedness

Etc. etc.
A High-Dimensional “Chemical Space” Approved drugs and clinical candidates
Each compound is at a point in an n-dimensional space .. )
Compounds with similar properties are near each other ° Catalogue approved drugs and clinical candidates from
FDA Orange Book, and USAN applications
ol ° * Small molecules and biotherapeutics

Descriptor 2

Point representing a
© compound in descriptor
space

Apply multivariate statistics and machine learning for descriptor-
selection. (e.g. partial least squares, support vector machines,
random forest, deep learning etc.)

EMBL-EBI




Drug properties

Black-Box Warning
Availability Type

Parenteral

Chirality

synthetic
small molecule

prescription
. . . only
racemic
mixture
chirally
pure

Drug Type
(@) || Rule of Five
. First in Class

O

over-
he-counter

natural product-
derived

°

inorganic discontinued

Ingredient-related Product-related

(USANSs, candidates
and approved drugs)

(approved drugs only)

antibody

enzyme

peptide/
protein

oligonucleotide

oligosaccharide

EMBL-EBI

LIPINSKI'S RULE OF FIVE

Lipinski’s rule of five states that, in general, an orally active drug
has no more than one violation of the following criteria:

Not more than 5 hydrogen bond donors (nitrogen or oxygen
atoms with one or more hydrogen atoms)

Not more than |0 hydrogen bond acceptors (nitrogen or
oxygen atoms)

A molecular mass less than 500 daltons

An octanol-water partition coefficient log P not greater than 5

Rules for drug discovery success

* Set of approved drugs or medicinal chemistry compounds
and their targets can be used to derive rules for drug
discovery success (or failure):

What features make a successful drug target?

What features make a protein druggable by small
molecules?

What features of a compound contribute to good oral
bioavailability?

What chemical groups may be associated with toxicity?

Druggability prediction
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Examples
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ARTICLES

The genome of the blood fluke Schistosoma
mansoni
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Quantifying the chemical beauty of drugs
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Abstract
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D isakey when selecting ds during the early stages of drug
discovery. However, evaluation of drug-likeness in absolute terms does not reflect adequately the
whole spectrum of compound quality. More worryingly, widely used rules may inadvertently foster
undesirable molecular property inflation as they permit the encroachment of rule-compliant
‘compounds towards their boundaries. We propose a measure of drug-likeness based on the concept
of y estimate of (QED). The empirical rationale of QED
reflects the underlying distribution of molecular properties. QED is intuitive, transparent,

to implement in many practical settings and allows compounds to be ranked by their

organs. Our analysis h i targets. The deficits in

the
may be active. The i i to develop much
necded new i is Important and

relative merit. We extended the utiity of QED by applying it to the problem of molecular target
druggability assessment by prioritizing a large set of published bioactive compounds. The measure
may also capture the abstract notion of aesthetics in medicinal chemistry.

Subject terms: Pharmacology - Theoretical chemistry
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Target prediction models

* Active compounds from ChEMBL can be used to train
target prediction models
* Variety of methods used
Multi-Category Naive Bayesian Classifier (e.g., ChEMBL)
Chemical similarity between ligand sets (e.g., SEA)
3D similarity between ligands (e.g., SwissTargetPrediction)

Protein and ligand descriptors (e.g., Proteochemometric models)

* Open source tools available for many methods
E.g., Scikit-learn with RDKit

Examples at: https://github.com/chembl/mychembl/blob/master/ipython_notebooks

Examples
GPLOS |one

Mycobacterial Dihydrofolate Reductase
Inhibitors Identified Using Chemogenomic
Methods and In Vitro Validation

ARTICLE

cob10.3030/maure11159

Large-scale prediction and testing of
drug activity on side-effect targets

cany L. Jenkins
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CAUTIONARY NOTES

» “Everything should be made as simple as it can be but not
simpler”
A model is never perfect. A model that is not quantitatively
accurate in every respect does not preclude one from
establishing results relevant to our understanding of biomolecules
as long as the biophysics of the model are properly understood
and explored.

* Calibration of the parameters is an ongoing and imperfect
process
Questions and hypotheses should always be designed such that
they do not depend crucially on the precise numbers used for the
various parameters.

» A computational model is rarely universally right or wrong
A model may be accurate in some regards, inaccurate in others.
These subtleties can only be uncovered by comparing to all
available experimental data.




SUMMARY NEXT UP:

Structural bioinformatics is computer aided structural biology » Overview of structural bioinformatics

+ Major motivations, goals and challenges
Described major motivations, goals and challenges of structural

bioinformatics » Fundamentals of protein structure

+ Composition, form, forces and dynamics
Reviewed the fundamentals of protein structure

» Representing and interpreting protein

Introduced both physics and knowledge based modeling structure

approaches for describing the structure, energetics and

* Modeling energy as a function of structure
dynamics of proteins computationally

» Example application areas

Introduced both structure and ligand based bioinformatics Predicting functional dynamics & drug discovery
Y Trunccional dynamics

approaches for drug discovery and design

MOLECULAR DYNAMICS SIMULATION
PREDICTING FUNCTIONAL DYNAMICS

* Proteins are intrinsically flexible molecules with
internal motions that are often intimately coupled to
their biochemical function

— E.g. ligand and substrate binding, conformational
activation, allosteric regulation, etc.

» Use force-field to find

Potential energy between
all atom pairs

* Thus knowledge of dynamics can provide a deeper

understanding of the mapping of structure to
function

* Move atoms to next state

* Repeat to generate

— Molecular dynamics (MD) and normal mode analysis trajectory
(NMA) are two major methods for predicting and '

characterizing molecular motions and their properties

McCammon, Gelin & Karplus, Nature (1977)
[ See: https://www.youtube.com/watch?v=ui1ZysMFcKk |




» Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

5B e

» Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

5B e

» At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

Nucleic motion described classically

ﬁ{ = —V",E(ﬁ)

d
dt?
‘ Empirical force field

ER =¥ BB+ ¥ ER®

{ 2
bonded non - bonded

m;

» Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

5B e

» At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

Nucleic motion described classically

d* i

m;

dt
‘ Empirical force field
BR)= ¥ ER+ ¥ LR

bonded non  bonded

» Use the forces to calculate velocities and move atoms to new positions
(by integrating numerically via the “leapfrog” scheme)
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BASIC ANATOMY OF A MD SIMULATION

» Divide time into discrete (~1fs) time steps (At)
(for integrating equations of motion, see below)

5B e

» At each time step calculate pair-wise atomic forces (F(1))
(by evaluating force-field gradient)

Nucleic motion described classically
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MD Prediction of Functional Motions
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Simulations Identify Key Residues
Mediating Dynamic Activation
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EXAMPLE APPLICATION OF
MOLECULAR SIMULATIONS TO GPCRS

Binding/ w

Y [ G protein

Activation ")) couplin
> )\ P g.

G protein

PROTEINS JUMP BETWEEN MANY, HIERARCHICALLY
ORDERED “CONFORMATIONAL SUBSTATES”

. partial unfolding,
O\ N
. -8 37| larger structural
collective motions 1S *| rearangements

localized
motions

;
I

Conformational Coordinafe

Awug

H. Frauenfelder et al., Science 229 (1985) 337




Improve this slide

MOLECULAR DYNAMICS IS VERY |

Example: F;-ATPase in water (183,674 atoms) for 1 nanosecond:
=> 106 integration steps
=> 8.4 * 10" floating point operations/step
[n(n-1)/2 interactions]

Total: 8.4 * 1017 flop
(on a 100 Gflop/s cpu:  ca 25 years!)

.. but performance has been improved by use of:

multiple time stepping ca. 2.5years
fast multipole methods ca. 1 year
parallel computers ca. 5days
modern GPUs ca. 1day
(Anton supercomputer ca. minutes)

COARSE GRAINING: NORMAL MODE ANALYSIS
(NMA)

* MD is still time-consuming for large systems

* Elastic network model NMA (ENM-NMA) is an example
of a lower resolution approach that finishes in seconds
even for large systems.
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NMA models the protein as a network of elastic strings

Proteinase K

Hand on time!

n213_fi17/lectures/#12

Focus on section 4 exploring PCA and NMA apps




A s i INFORMING SYSTEMS BIOLOGY?

DNA

llan Samish et al. Bioinformatics 2015;31:146-150

Key forces affecting structure: Key forces affecting structure:
Hydrogen-  Hydrogen- A B
* H-bonding bond donor  bond acceptor * H-bonding AE= T2 6
» Van der Waals o pre— N - Van der Waals  Repuision
* Electrostatics — s 0 * Electrostatics AR ]
* Hydrophobicity O—H------- N * Hydrophobicity , ion W
s 0
- d—

0 A 26A<d<3.1A

D—H 150° < © < 180°

—d— 3A<d<4A




Key forces affecting structure:

* H-bonding o nM
« Van der Waals ‘C’a: :/N‘

* Electrostatics
* Hydrophobicity

carboxyl group and amino group

(some time called IONIC BONDs or SALT

BRIDGES)
Coulomb’s law E = Energy
q q k = constant
d é E = K9,4, D = Dielectric constant (vacuum = 1; H,O = 80)
—r g T Dr g & g, = electronic charges (Coulombs)

r = distance (A)

Key forces affecting structure:

* H-bonding

* Van der Waals
* Electrostatics

* Hydrophobicity

The force that causes hydrophobic molecules or nonpolar portions of
molecules to aggregate together rather than to dissolve in water is called
Hydrophobicity (Greek, “water fearing”). This is not a separate bonding
force; rather, it is the result of the energy required to insert a nonpolar
molecule into water.

SUMMARY

Structural bioinformatics is computer aided structural biology

Described major motivations, goals and challenges of structural
bioinformatics

Reviewed the fundamentals of protein structure

Introduced both physics and knowledge based modeling
approaches for describing the structure, energetics and
dynamics of proteins computationally

Introduced both structure and ligand based bioinformatics
approaches for drug discovery and design




