
BGGN 213
Introduction to UNIX

Barry Grant

http://thegrantlab.org/bggn213

http://thegrantlab.org/bggn213

Recap From Last Time:
• Substitution matrices: Where our alignment match and mis-match

scores typically come from

• Comparing methods: The trade-off between sensitivity, selectivity
and performance

• Sequence motifs and patterns: Finding functional cues from
conservation patterns

• Sequence profiles and position specific scoring matrices (PSSMs),
Building and searching with profiles, Their advantages and
limitations

• PSI-BLAST algorithm: Application of iterative PSSM searching to
improve BLAST sensitivity

• Hidden Markov models (HMMs): More versatile probabilistic model
for detection of remote similarities

Todays Menu

Time Topics

I 9:00-9:15 AM Setup and Motivation

II 9:15-10:00 AM Beginning Unix

 10:00-10:40 AM Hands on session

III 10:40-11:00 AM Working with Unix

IV 11:00-11:20 PM How to Get Working

 11:20-11:45 PM Hands on session

https://bioboot.github.io/bggn213_f17/setup/

https://bioboot.github.io/bggn213_f17/setup/

Setup Checklist

Mac: Terminal or PC: MoblXterm

PC: MoblXterm CygUtils plugin (core UNIX tools)

Downloaded our class specific jetstream keyfile
(See email: This is required for connecting to
jetstream virtual machines with your terminal.)

Example data downloaded: bggn213_01_unix.zip

https://bioboot.github.io/bggn213_f17/setup/

Problems?

https://bioboot.github.io/bggn213_f17/class-material/bggn213_01_unix.zip
https://bioboot.github.io/bggn213_f17/setup/

Lets get started…
Do it Yourself!

Mac
Terminal

PC
MobaXterm

SideNote: Terminal vs Shell
• Shell: A command-line interface that allows a user to

interact with the operating system by typing commands.
• Terminal [emulator]: A graphical interface to the shell

(i.e. the window you get when you launch MobaXterm).

Setting Up

• Mac users: open a Terminal
• Windows users: install MobaXterm and then open a

terminal

Shell prompt

Barry Grant

Introduction To

Shell

Motivation
Why do we use Unix?

Modularity Core programs are modular and work
well with others

Programmability Best software development
environment

Infrastructure Access to existing tools and cutting-
edge methods

Reliability Unparalleled uptime and stability

Unix Philosophy Encourages open standards

Modularity Core programs are modular and work
well with others

Programmability Best software development
environment

Infrastructure Access to existing tools and cutting-
edge methods

Reliability Unparalleled uptime and stability

Unix Philosophy Encourages open standards

Modularity
The Unix shell was designed to allow users to easily build
complex workflows by interfacing smaller modular
programs together.

An alternative approach is to write a single complex
program that takes raw data as input, and after hours of
data processing, outputs publication figures and a final
table of results.

All-in-one custom ‘Monster’ program

grepawk sort uniqwget plot

Which would you prefer and why?

Modular

Custom
vs

The ‘monster approach’ is customized to a particular project
but results in massive, fragile and difficult to modify (therefore
inflexible, untransferable, and error prone) code.

With modular workflows, it’s easier to:
• Spot errors and figure out where they’re occurring by

inspecting intermediate results.
• Experiment with alternative methods by swapping out

components.
• Tackle novel problems by remixing existing modular

tools. 

Advantages/Disadvantages

Unix ‘Philosophy’
“Write programs that do one
thing and do it well. Write
programs to work together and
that encourage open standards.
Write programs to handle text
streams, because that is a
universal interface.”

— Doug McIlory

Unix family tree [1969-2010]

Source: https://commons.wikimedia.org/wiki/File:Unix_history-simple.svg

LINUX

Mac
OS X

https://commons.wikimedia.org/wiki/File:Unix_history-simple.svg

Basics File Control
Viewing &

Editing
Files

Misc.
useful

Power
commands

Process
related

ls mv less chmod grep top

cd cp head echo find ps

pwd mkdir tail wc sed kill

man rm nano curl sudo Crl-c

ssh |
(pipe) touch source git Crl-z

scp >
(write to file) cat R bg

<
(read from file) tmux python fg

Basics File Control
Viewing &

Editing
Files

Misc.
useful

Power
commands

Process
related

ls mv less chmod grep top

cd cp head echo find ps

pwd mkdir tail wc sed kill

man rm nano curl sudo Crl-c

ssh |
(pipe) touch source git Crl-z

scp >
(write to file) cat R bg

<
(read from file) tmux python fg

Lets get started…
Do it Yourself!

Mac
Terminal

PC
MobaXterm

Beginning Unix
Getting started with basic Unix commands

Download the example data and mv to your Desktop
bggn213_01_unix.zip

https://bioboot.github.io/bggn213_f17/class-material/bggn213_01_unix.zip

• Information in the file system is stored in files, which are stored in
directories (folders). Directories can also store other directories,
which forms a directory tree.  

• The forward slash character ‘/’ is used to represent the root
directory of the whole file system, and is also used to separate
directory names. E.g. /home/jono/work/bggn213_notes.txt

File System Structure

Basics: Using the filesystem

ls List files and directories

cd Change directory (i.e. move to a different ‘folder’)

pwd Print working directory (which folder are you in)

mkdir MaKe a new DIRectories

cp CoPy a file or directory to somewhere else

mv MoVe a file or directory (basically rename)

rm ReMove a file or directory

• An absolute path specifies a location from the root of
the file system. E.g. /home/jono/work/bggn213_notes.txt 

• A relative path specifies a location starting from the
current location. E.g. ../bggn213_notes.txt 

. Single dot ‘.’ (for current directory)

.. Double dot ’..’ (for parent directory)

~ Tilda ‘~’ (for your home directory)

[Tab] Pressing the tab key can autocomplete names

Side Note: File Paths

Finding the Right Hammer
(man and apropos)

• You can access the manual (i.e. user
documentation) on a command with man, e.g:

> man pwd

• The man page is only helpful if you know the
name of the command you’re looking for.
apropos will search the man pages for keywords.

> apropos "working directory"

Inspecting text files
• less - visualize a text file:

 ◦ use arrow keys

 ◦ page down/page up with “space”/“b” keys

 ◦ search by typing "/"

 ◦ quit by typing "q"

• Also see: head, tail, cat, more

Creating text files
Creating files can be done in a few ways:
• With a text editor (such as nano, emacs, or vi)
• With the touch command (> touch a_file)
• From the command line with cat or echo and

redirection (more on this later)

• nano is a simple text editor that is
recommended for first-time users. Other text
editors have more powerful features but also
steep learning curves

Creating and editing
text files with nano

In the terminal type:
> nano yourfilename.txt

• There are many other text file editors (e.g. vim,
emacs and sublime text, etc.)

Do it Yourself!

Connecting to remote
machines (with ssh)

• Most high-performance computing (HPC)
resources can only be accessed by ssh
(Secure SHell)

> ssh [user@host.address]

For example:
> ssh barry@bio3d.ucsd.edu
> ssh tb170077@IP_ADDRESS

mailto:barry@bio3d.ucsd.edu

Connecting to jetstream
(with ssh)

• First we have to login online and fire-up a new
“virtual machine”

• Full instructions here:
https://bioboot.github.io/bggn213_f17/jetstream/boot/

• We will go through this process in the last
section today!

https://bioboot.github.io/bggn213_f17/jetstream/boot/

Copying to and from remote
machines (scp)

• The scp (Secure CoPy) command can be used to
copy files and directories from one computer to
another.

> scp [file] [user@host]:[destination]
> scp localfile.txt bgrant@bigcomputer.net:/remotedir/.

mailto:bgrant@bigcomputer.net

Basics File Control
Viewing &

Editing
Files

Misc.
useful

Power
commands

Process
related

ls mv less chmod grep top

cd cp head echo find ps

pwd mkdir tail wc sed kill

man rm nano curl sudo Crl-c

ssh |
(pipe) touch source git Crl-z

scp >
(write to file) cat R bg

<
(read from file) tmux python fg

Process refers to a running instance of a program

top Provides a real-time view of all running processes

ps Report a snapshot of the current processes

kill Terminate a process (the “force quit” of the unix world)

Crl-c Stop a job

Crl-z Suspend a job

bg Resume a suspended job in the background

fg Resume a suspended job in the foreground

& Start a job in the background

Hands-on time
 Sections 1 to 3 of software carpentry UNIX lesson

https://swcarpentry.github.io/shell-novice/

Do it Yourself!

~20 mins

https://swcarpentry.github.io/shell-novice/

Working with Unix
How do we actually use Unix?

Basics File Control
Viewing &

Editing
Files

Misc.
useful

Power
commands

Process
related

ls mv less chmod grep top

cd cp head echo find ps

pwd mkdir tail wc sed kill

man rm nano curl sudo Crl-c

ssh |
(pipe) touch source git Crl-z

>
(write to file) cat R bg

<
(read from file) python fg

Combining Utilities with
Redirection (>, <) and Pipes (|)

• The power of the shell lies in the ability to
combine simple utilities (i.e. commands) into
more complex algorithms very quickly.

• A key element of this is the ability to send the
output from one command into a file or to pass it
directly to another program.

• This is the job of >, < and |

Side-Note: Standard Input and
Standard Output streams

Two very important concepts that unpin Unix
workflows:

• Standard Output (stdout) - default destination of
a program's output. It is generally the terminal
screen.

• Standard Input (stdin) - default source of a
program's input. It is generally the command
line.

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

Do it Yourself!

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

 > ls /usr/bin | less # sdout piped to less (no file created)

>
|

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

 > ls /usr/bin | less # sdout piped to less (no file created)

> ls -l /usr/bin # extra optional input argument “-l”

-arg

>
|

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

 > ls /usr/bin | less # sdout piped to less (no file created)

> ls /nodirexists/ # stderr to screen

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

 > ls /usr/bin | less # sdout piped to less (no file created)

> ls /nodirexists/ > binlist.txt # stderr to screen

Do it Yourself!

Output redirection and piping

> ls /usr/bin # stdin is “/usr/bin”; stdout to screen

> ls /usr/bin > binlist.txt # stdout redirected to file

 > ls /usr/bin | less # sdout piped to less (no file created)

> ls /nodirexists/ 2> binlist.txt # stderr to file

>
|

2>

Do it Yourself!

Output redirection summary
<

<<
>
>>
2>
2>>

-arg

||

ls -l

ls -l > list_of_files

ls -l | grep partial_name > list_of_files

We have piped (|) the stdout of one command
into the stdin of another command!

ls -l /usr/bin/ | grep “tree” > list_of_files

grep: prints lines containing a string.
Also searches for strings in text files.

Do it Yourself!

Basics File Control
Viewing &

Editing
Files

Misc.
useful

Power
commands

Process
related

ls mv less chmod grep top

cd cp head echo find ps

pwd mkdir tail wc sed kill

man rm nano curl sudo Crl-c

ssh |
(pipe) touch source git Crl-z

>
(write to file) cat R bg

<
(read from file) python fg

Side-Note: grep ‘power command’

• grep - prints lines containing a string pattern. Also searches
for strings in text files, e.g.

 > grep --color "GESGKS" sequences/data/seqdump.fasta

REVKLLLLGAGESGKSTIVKQMKIIHEAGYSEEECKQYK

• grep is a ‘power tool’ that is often used with pipes as it
accepts regular expressions as input (e.g. “G..GK[ST]”)
and has lots of useful options - see the man page for details.

Do it Yourself!

grep example using
regular expressions

• Suppose a program that you are working with complains that
your input sequence file contains non-nucleotide characters.
You can eye-ball your file or …

> grep -v "^>" seqdump.fasta | grep --color "[^ATGC]"

Do it Yourself!

Exercises:
(1). Use “man grep” to find out what

the -v argument option is doing!

(2). How could we also show line number
for each match along with the output?

(tip you can grep the output of
“man grep” for ‘line number’)

• Suppose a program that you are working with complains that
your input sequence file contains non-nucleotide characters.
You can eye-ball your file or …

> grep -v "^>" seqdump.fasta | grep --color -n "[^ATGC]"

• First we remove (with -v option) lines that start with a “>”
character (these are sequence identifiers).

• Next we find characters that are not A, T, C or G. To do this we
use ^ symbols second meaning: match anything but the
pattern in square brackets. We also print line number (with -n
option) and color output (with --color option).

grep example using
regular expressions

Do it Yourself!

Key Point: Pipes and redirects
avoid unnecessary i/o

• Disc i/o is often a bottleneck in data processing!

• Pipes prevent unnecessary disc i/o operations by
connecting the stdout of one process to the stdin of
another (these are frequently called “streams”)

> program1 input.txt 2> program1.stderr | \
program2 2> program2.stderr > results.txt

• Pipes and redirects allow us to build solutions from
modular parts that work with stdin and stdout
streams.

Unix ‘Philosophy’ Revisited

“Write programs that do one
thing and do it well. Write
programs to work together and
that encourage open standards.
Write programs to handle text
streams, because that is a
universal interface.”

— Doug McIlory

Pipes provide speed, flexibility and
sometimes simplicity…

• In 1986 “Communications of the ACM magazine” asked famous
computer scientist Donald Knuth to write a simple program to
count and print the k most common words in a file alongside their
counts, in descending order.

• Kunth wrote a literate programming solution that was 7 pages
long, and also highly customized to this problem (e.g. Kunth
implemented a custom data structure for counting English words).

• Doug McIlroy replied with one line:

> cat input.txt | tr A-Z a-z | sort | uniq -c | sort -rn | sed 10q

Key Point:

You can chain any number of programs
together to achieve your goal!

This allows you to build up fairly complex
workflows within one command-line.

Hands-on time
 Section 4 of software carpentry UNIX lesson

https://swcarpentry.github.io/shell-novice/

Do it Yourself!

~15 mins

https://swcarpentry.github.io/shell-novice/

Shell scripting

#!/bin/bash
This is a very simple hello world script.
echo "Hello, world!”

Exercise:
• Create a "Hello world"-like script using command line tools

and execute it.

• Copy and alter your script to redirect output to a file using
> along with a list of files in your home directory.

• Alter your script to use >> instead of >. What effect does
this have on its behavior?

Do it Yourself!

Variables in shell scripts

#!/bin/bash
Another simple hello world script
message='Hello World!'
echo $message

• “message” - is a variable to which the string 'Hello
World!' is assigned

• echo - prints to screen the contents of the variable
"$message"

Do it Yourself!

Side-Note: Environment Variables

$PATH ‘special’
environment variable

• What is the output of this command?

> echo $PATH

• Note the structure: <path1>:<path2>:<path3>

• PATH is an environmental variable which Bash
uses to search for commands typed on the
command line without a full path.

• Exercise: Use the command env to discover more.

Summary
• Built-in unix shell commands allow for easy data

manipulation (e.g. sort, grep, etc.)

• Commands can be easily combined to generate
flexible solutions to data manipulation tasks.

• The unix shell allows users to automate repetitive
tasks through the use of shell scripts that promote
reproducibility and easy troubleshooting

• Introduced the 21 key unix commands that you will
use during ~95% of your future unix work…

Basics File Control
Viewing &

Editing
Files

Misc.
useful

Power
commands

Process
related

ls mv less chmod grep top

cd cp head echo find ps

pwd mkdir tail wc sed kill

man rm nano curl sudo Crl-c

ssh |
(pipe) touch source git Crl-z

>
(write to file) cat R bg

<
(read from file) python fg

How to Get Working
1) Connecting to jetstream

2) Best practices for organizing your
computational biology projects

Read: Noble PLoS Comp Biol (2009)
 - “A Quick Guide to Organizing Computational Biology Projects"

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000424

All files and directories used in your project should live in a single
project directory.

• Use sub-directories to divide your project into sub-projects.
• Do not use spaces in file and directory names!

Document your methods and workflows with plain text README files
• Also document the origin of all data in your project directory
• Also document the versions of the software that you ran and the

options you used.
• Consider using Markdown for your documentation.

Use version control and backup to multiple destinations!

Be reproducible:
http://ropensci.github.io/reproducibility-guide/sections/introduction/

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000424
http://ropensci.github.io/reproducibility-guide/sections/introduction/

