“UCSanDiego)-
/ﬂ%) q‘rantlal?)’brg/bggn213

http

http://thegrantlab.org/bggn213

Recap From Last [Iime:

Substitution matrices: Where our alignment match and mis-match
scores typically come from

Comparing methods: The trade-off between sensitivity, selectivity
and performance

Seqguence motifs and patterns: Finding functional cues from
conservation patterns

Seqguence profiles and position specific scoring matrices (PSSMs),
Building and searching with profiles, Their advantages and
limitations

PSI-BLAST algorithm: Application of iterative PSSM searching to
improve BLAST sensitivity

Hidden Markov models (HMMs): More versatile probabilistic model
for detection of remote similarities

Todays Menu

Time
| 9:00-9:15 AM
| 9:15-10:00 AM

10:00-10:40 AM
1:00 AM

ll 10:40-"

hitps://bloboot.

V. 11:00-17
11:20-17

20
45

P M

m\

Topics

and Motivation
Beginning Unix
Hands on session
Working with Unix
How to Get Working

Hands on session

ithub.lo/bgan213 t17/setu

https://bioboot.github.io/bggn213_f17/setup/

Setup Checklist

https://bioboot.github.io/bggn213 f17/setup/

v/ Mac: Terminal or PC: MoblXterm

v7 PC: MoblXterm CygUltils plugin (core UNIX tools)
v Downloaded our class specific jetstream keytile
(See email: This is required for connecting to

jetstream virtual machines with your terminal.)

v/ Example data downloaded: _bggn213_01_unix.zip

https://bioboot.github.io/bggn213_f17/class-material/bggn213_01_unix.zip
https://bioboot.github.io/bggn213_f17/setup/

|_ets get started...

(>~ Mon

rerminal

MaC Show Al
Terminal

2 adjective 1 of, forming, or s

M Terminal

Mi:beXlemn
Jann ey Mot
ot = : N
Nh A e ek g Neiny

[. rznsrctocenr

o Mougllern Prufessioal v3.6 -
(Nadx ntili=izs and X-tarvar o7 Gruflyqwin)

XLL Furaundang: s

»
v SO l-Agen s -

» AcTiva 55H TunaTs: G

> ArTIv: nereInns 1

» ' . 3

 Bnanicen

Mozl crguters

Xl display:

" ;% 4 e
i 1 1Y s D17 26 A7 3. 1)
CCPT wess ts [Lamws Loztessasl =) O a e r m

AT dcws Descioge

wazrs | N Toos

Wrrds el A
£y, Wik s havme

A

[L=g

SideNote: Terminal vs Shell

* Shell: A command-line interface that allows a user to
interact with the operating system by typing commands.

* Terminal [emulator]: A graphical interface to the shell
l.e. the window you get when you launch MobaXterm

® MobaXterm

Terminal Sessions View Xserver Tools Games Settings Macros Help

‘ogin: lue (et 14 15! Y7 cn ttyseld
‘}L €9 &‘3 i xS ‘?; t'_l ;f A S, N L"J L

Session Servers Tools Games Sessions View Split MultExec Tunneling Settings Help X server Exit

%) 2. home/mobaxterm Q

? MobaXterm Personal Edition v8.1 ?
(X server, SSH client and network tools)

-~
+

Your computer drives are acc9551ble through the /drives path
Your DISPLAY 1s set to 192 5

When using SSH, your remote DISPLAY is automatlcally forwarded
Each command status 1s specified by a special symbol (v or x)

Sessions

? Important:

This 1s MobaXterm Personal Edition. The Professional edition
allows you to customize MobaXterm for your company: you can add
your own logo, your parameters, your welcome message and generate
either an MSI installation package or a portable executable.

We can also modify Mobaxterm or develop the pluglns you need

For more information: http moba ek .ne ers

]
[=]
o
2
&

Macros

[2015-08-22 22:24.12 Ladillf
[jianghui.jika6] > [N

UNREGISTERED VERSION - Please support MobaXterm by subscribing to the professional edition here: http://mobaxterm.mobatek.net

o,
T
n

10

UcCti

d

o,

tr

In

I

Motivation

Why do we use Unix?

Modularity

Core programs are modular and work
well with others

Programmability

Best software development
environment

Infrastructure

Access to existing tools and cutting-
edge methods

Reliability

Unparalleled uptime and stability

Unix Philosophy

Encourages open standards

Modularity

Core programs are modular and work
well with others

Programmability

Best software development
environment

Infrastructure

Access to existing tools and cutting-
edge methods

Reliability

Unparalleled uptime and stability

Unix Philosophy

Encourages open standards

Modaularity

The Unix shell was designed to allow users to easily build

complex workflows by interfacing smaller modular
programs together.

An alternative approach is to write a single complex
program that takes raw data as input, and after hours of

data processing, outputs publication figures and a final
table of results.

Which would you prefer and why?

Modular
VS

Custom

Advantages/Disadvantages

The 'monster approach’ is customized to a particular project
but results in massive, fragile and difficult to modity (therefore
inflexible, untransferable, and error prone) code.

With modular workflows, it's easier to:

e Spot errors and figure out where they're occurring by
inspecting intermediate results.

e Experiment with alternative methods by swapping out
components.

* [ackle novel problems by remixing existing modular
tools.

Unix ‘Philosophy

"Write programs that do one
thing and do it well. Write
programs to work fogether and
that encourage open standards.
Write programs to handle text \
streams, because that is a
universal interface.”

— Doug Mcllory

Unix family tree [1969-2010

1971w 1973

1979 o 1973

1

2000 o X007

20

2n

2010

211

2012 to 2013

Source: https://commons.wikimedia.or

FWEUnix

" Sysemm)

SyzemV

RlwoR2

7 SymemV
 R2

" SymemV
M

Unix'Ware
1xto2x

LR

UnixWare
Tx

. Open Source

Mxed/Shared Source

Qosed Source

HPUX
11U I1UYV3

10

2

201 o 204

X

2000 o 2007

2n

2n

210

2011

212w 213

https://commons.wikimedia.org/wiki/File:Unix_history-simple.svg

Viewing &

Basics | File Control | Editing Misc. power | Process
: useful |commands| related
Files
Is 1) less chmod grep top
cd cp head echo find ps
pwd mkdir tail wC sed kill
man rm nano curl sudo Cri-c
ssh .I touch source git Crl-z
....................... (pipe)
SC > cat R b
P | (writetofile) °
< tmux python fg

(read from file)

Is 111 less chmod grep top
cd cp head echo find ps
pwd mkdir tail wcC sed kill
man rm nano curl sudo Crl-c
ssh .I touch source git Crl-z
....................... (pipe)
sSC > cat R b
P | (wite tofile) ’
< tmux python]

(read from file)

|_ets get started...

(>~ Mon

rerminal

MaC Show Al
Terminal

2 adjective 1 of, forming, or s

M Terminal

Mi:beXlemn
Jann ey Mot
ot = : N
Nh A e ek g Neiny

[. rznsrctocenr

o Mougllern Prufessioal v3.6 -
(Nadx ntili=izs and X-tarvar o7 Gruflyqwin)

XLL Furaundang: s

»
v SO l-Agen s -

» AcTiva 55H TunaTs: G

> ArTIv: nereInns 1

» ' . 3

 Bnanicen

Mozl crguters

Xl display:

" ;% 4 e
i 1 1Y s D17 26 A7 3. 1)
CCPT wess ts [Lamws Loztessasl =) O a e r m

AT dcws Descioge

wazrs | N Toos

Wrrds el A
£y, Wik s havme

A

[L=g

Beginning Unix

Getting started with basic Unix commands

' Download the example data and mv to your Desktop .
‘ bggn213 01 _unix.zip

https://bioboot.github.io/bggn213_f17/class-material/bggn213_01_unix.zip

File System Structure

* Information in the file system is stored in files, which are stored in
directories (folders). Directories can also store other directories,
which forms a directory tree.

ESEaESE

jono ‘ mako
waork ‘ photos \

« The forward slash character / is used to represent the root
directory of the whole file system, and is also used to separate

directory names. E.g. /home/jono/work/bggn213_notes.txt

Basics: Using the filesystem

Is List files and directories

cd |Change directory (i.e. move to a different ‘folder’)

pwd |Print working directory (which folder are you in)

mkdir |MaKe a new DIRectories

cp |CoPy afile or directory to somewhere else

mv |MoVe a file or directory (basically rename)

rm |ReMove a file or directory

Side Note: File Paths

* An absolute path specities a location from the root of
the file system. E.g. /home/jono/work/bggn213_notes.txt

* Arelative path specifies a location starting from the
current location. E.g. ./bggn213_notes.txt

Single dot *." (for current directory)

Double dot '.." (for parent directory)

Tilda ‘~’ (for your home directory)

BEL)

Pressing the tab key can autocomplete names

FInding the Right Hammer
(man and apropos)

* You can access the manual (i.e. user
documentation) on a command with man, e.g:

> man pwd

* The man page is only helpful it you know the
name of the command you're looking for.
apropos will search the man pages for keywords.

> apropos ‘'working directory’

Inspecting text files

* less - visualize a text file:
O Use arrow keys
o page down/page up with “space”/“b” keys
o search by typing /"

o quit by typing "'q"

e Also see: head, tail, cat, more

Creating text files

Creating files can be done in a few ways:
« With a text editor (such as nano, emacs, or Vi)
* With the touch command (> touch a_file)

e From the command line with cat or echo and
redirection (more on this later)

 nano is a simple text editor that Is
recommended for first-time users. Other text
editors have more powerful features but also
steep learning curves

Creating and editing
text files with nano

In the terminal type:
> nano yourfilename.txt

el Get. Il=1p

el WriteOQut MK =ead TMile
oW Fxit

gy Justify & Whcre Is
g Cut 'l'ext e CCur Fos
gl UnCut Txt g To Spcll

k A - Press Control

 There are many other text file editors (e.g. vim,
emacs and sublime text, etc.)

il Frav Page

A Ncxt Pagc

Connecting to remote
machines (with ssh)

* Most high-performance computing (HPC)
resources can only be accessed by ssh
(Secure SHell)

> ssh [user@host.address]

For example:
N barry@bio3d.ucsd.edu

> 5SS
> 5SS

N th170077@IP A

D

D

:{

RSN

mailto:barry@bio3d.ucsd.edu

Connecting to jetstream
(with ssh)

* First we have to login online and fire-up a new
“virtual machine”

* Full instructions here:
https://bioboot.github.io/bggn213 f17/jetstream/boot/

* We will go through this process in the last
section today!

https://bioboot.github.io/bggn213_f17/jetstream/boot/

Copying to and from remote
machines (scp)

* The scp (Secure CoPy) command can be used to
copy files and directories from one computer to
another.

> scp [file] [user@host]:[destination]
> scp localtile.txt bgrant@bigcomputer.net:/remotedir/.

mailto:bgrant@bigcomputer.net

s mv less chmod grep § top
cd cp head echo find § ps
pwd mkdir tail we sed § kil |
man rm nano curl sudo & Crl-c
ssh ! touch source git . Crl-z
....................... (pipe) :
SC > cat R b |
P | (writetofile) y °
< §
tmux python ¢

(read from file)

Process refers to a running instance of a program

top |Provides a real-time view of all running processes

ps |Report a snapshot of the current processes

kill |Terminate a process (the “force quit” of the unix world)

Crl-c |Stop a job

Crl-z |Suspend a job

bg |Resume a suspended job in the background

fg |Resume a suspended job in the foreground

& |Start a job in the background

Secti
ht

Hands-on time

ons 1 to 3 of software carpe

ps://swcarpentry.github.io/s

ntry UNIX lesson

nell-novice/

~20 Mins

https://swcarpentry.github.io/shell-novice/

Working with Unix

How do we actually use Unix?

Is 111, less chmod grep top
cd cp head echo find ps
pwd mkdir tail wcC sed kill
man rm nano curl sudo Crl-c
ssh touch source git Crl-z
cat R bg
python]

(read from file)

Combining Ultilities with
Redirection (>, <) and Pipes (l)
* The power of the shell lies in the ability to

combine simple utilities (i.e. commands) into
more complex algorithms very quickly.

* A key element of this is the ability to send the
output from one command into a file or to pass it
directly to another program.

* Thisis the job of >, < and |

Side-Note: Standard Input and
Standard Output streams

Two very important concepts that unpin Unix
workflows:

e Standard Output (stdout) - default destination of

a program's output. It is generally the terminal
screen.

o Standard Input (stdin) - default source of a

program's input. It is generally the commana
ine.

Qutput redirection and piping

> |s /usr/bin # stdin is “/usr/bin”; stdout to screen

Output redirection and piping

> |s /usr/bin # stdin is “/usr/bin”; stdout to screen
> |s /usr/bin > binlist.txt # stdout redirected to file

> |s /usr/bin | less # sdout piped to less (no file created)

Output redirection and piping

-arg

> |s /usr/bin # stdin is “/usr/bin”; stdout to screen
> |s /usr/bin > binlist.txt # stdout redirected to file
> |s /usr/bin | less # sdout piped to less (no file created)

> |s -l Jusr/bin # extra optional input argument “-|’

Qutput redirection and piping

stderr

> |s /usr/bin # stdin is “/usr/bin”; stdout to screen
> |s /usr/bin > binlist.txt # stdout redirected to file
> |s /usr/bin | less # sdout piped to less (no file created)

> |s /nodirexists/ # stderr to screen

Qutput redirection and piping

stderr

> |s /usr/bin # stdin is “/usr/bin”; stdout to screen
> |s /usr/bin > binlist.txt # stdout redirected to file
> |s /usr/bin | less # sdout piped to less (no file created)

> |s /nodirexists/ > binlist.txt # siderr 1o screen

Qutput redirection and piping

stderr

2>

> |s /usr/bin # stdin is “/usr/bin”; stdout to screen
> |s /usr/bin > binlist.txt # stdout redirected to file
> |s /usr/bin | less # sdout piped to less (no file created)

> |s /nodirexists/ 2> binlist.txt # stderr to file

Qutput redirection summary

I I
<

<<

arg SR

>>

stderr 2>
2>>

i @

S -

IS -| > list of files

list of files

s -l | grep partial_name > list_of_files

list of files

partial name

“fﬁ

We have piped (|) the stdout of one command
INnto the stdin of another command!

s -l /usr/bin/ | grep “tree” > list_of_files

4

list of files

partial name

|| $

grep: prints lines containing a string.
Also searches for strings in text files.

wC

man rm nano curl Crl-c
=h | (ope) fouch | source | ot | O
__________ (it to fe) . " e
< python]

(read from file)

Side-Note: grep ‘power command

* grep - prints lines containing a string pattern. Also searches
for strings in text files, e.q.

grep --color "GESGKS" sequences/data/seqdump.fasta

REVKLLLLGA TIVKQMKIIHEAGYSEEECKQYK

e grep is a ‘power tool’ that is often used with pipes as it
accepts regular expressions as input (e.g. “G..GK[ST]”)
and has lots of useful options - see the man page for details.

grep example using
regular expressions

e Suppose a program that you are working with complains that
your input sequence file contains non-nucleotide characters.
You can eye-ball your file or ...

grep -v "A>" seqdump.fasta | grep --color "[*ATGC]"

EXxercises:

(1). Use “man grep” to find out what
the -v argument option is doing!

(2). How could we also show line number
for each match along with the output?

(tip you can grep the output of
“man grep” for ‘line number’)

grep example using
regular expressions

e Suppose a program that you are working with complains that
your input sequence file contains non-nucleotide characters.
You can eye-ball your file or ...

grep -v "A>" seqdump.fasta | grep --color -n "[AATGC]"

e First we remove (with =v option) lines that start with a “>”
character (these are sequence identifiers).

* Next we find characters that are not A, T, C or G. To do this we
use A symbols second meaning: match anything but the
pattern in square brackets. We also print line number (with =n
option) and color output (with ==color option).

Key Point: Pipes and redirects
avoid unnecessary i/o

* Disc i/o is often a bottleneck in data processing!

* Pipes prevent unnecessary disc i/o operations by
connecting the stdout of one process to the stdin of
another (these are frequently called “streams”)

> program1 input.txt 2> program1.stderr | \
program?2 2> program?2.stderr > results.txt

* Pipes and redirects allow us to build solutions from
modular parts that work with stdin and stdout

streams.

Unix ‘Philosophy’ Revisiteo

"Write programs that do one
thing and do it well. Write
programs to work together and
that encourage open standards. &
Write programs to handle text |
streams, because that is a
universal interface.”

— Doug Mcllory

Pipes provide speed, flexibility and
sometimes simplicity...

* In 1986 “Communications of the ACM magazine” asked famous
computer scientist Donald Knuth to write a simple program to
count and print the k most common words in a file alongside their
counts, in descending order.

* Kunth wrote a literate programming solution that was 7 pages
long, and also highly customized to this problem (e.g. Kunth
implemented a custom data structure for counting English words).

* Doug Mcllroy replied with one line:

> cat input.txt | tr A-Z a-z | sort| unig-c| sort-rn| sed 109

Key Point:

You can chain any number of programs
together to achieve your goal!

This allows you to build up fairly complex
workflows within one command-line.

Hands-on time

Section 4 of software carpentry UNIX lesson
https://swcarpentry.github.io/shell-novice/

~15 Mmins

https://swcarpentry.github.io/shell-novice/

Shell scripting

#!/bin/bash
This is a very simple hello world script.
echo "Hello, world!”

Exercise:
e Create a "Hello world"-like script using command line tools
and execute It.

o Copy and alter your script to redirect output to a file using
> along with a list of files in your home directory.

o Alter your script to use >> instead of >. What effect does
this have on its behavior?

Variables in shell scripts

#!/bin/bash
Another simple hello world script
message='Hello World!"

echo Smessage

* ‘'message’ - is a variable to which the string 'Hello
World!" Is assigned

* echo - prints to screen the contents of the variable
"$message”

Side-Note: Environment Variables

Environment
Variables

$PATH ‘special’
environment variable

What is the output of this command?

> echo $PATH

Note the structure: <path1>:<path2>:.<path3>

PATH is an environmental variable which Bash
uses to search for commands typed on the
command line without a full path.

Exercise: Use the command env to discover more.

summary

Built-in unix shell commands allow for easy data
manipulation (e.g. sort, grep, etc.)

Commands can be easily combined to generate
flexible solutions to data manipulation tasks.

The unix shell allows users to automate repetitive
tasks through the use of shell scripts that promote
reproducibility and easy troubleshooting

Introduced the 21 key unix commands that you will
use during ~95% of your future unix work...

Is 111, less chmod grep top
cd cp head echo find ps
pwd mkdir tail wcC sed kill
man rm nano curl sudo Crl-c
= (p':oe> fouch | souree o o
__________ (it to fe) . " 0
< python]

(read from file)

Howto Getorkm

2) Best practices for organizing your
computational biology projects

Read: Noble PLoS Comp Biol (2009)
- “A Quick Guide to Organizing Computational Biology Projects’

All files and directories used in your project should live in a single
project directory.

* Use sub-directories to divide your project into sub-projects.
* Do not use spaces in file and directory names!

Document your methods and workflows with plain text README files
e Also document the origin of all data in your project directory

* Also document the versions of the software that you ran and the
options you used.

e Consider using Markdown for your documentation.
Use version control and backup to multiple destinations!

Be reproducible:

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000424
http://ropensci.github.io/reproducibility-guide/sections/introduction/

