
BGGN 213
Working with UNIX

Barry Grant

http://thegrantlab.org/bggn213

Recap From Last Time:
• Motivation: Why we use UNIX for bioinformatics. Modularity,

Programmability, Infrastructure, Reliability and Unix Philosophy

• Shell advantages: Makes your work less error-prone, more
reproducible and less boring allowing you to automate
repetitive tasks and concentrate on more exciting things.

• Key commands: Introduced the 21 key unix commands that
you will use during ~95% of your future unix work

• Jetstream: Many bioinformatic tasks require large amounts of
computing power and can’t realistically be run on your own
machine. These tasks are best performed using remote
computers or cloud computing, which can only be accessed
through a shell.

Basics File Control
Viewing &

Editing
Files

Misc.
useful

Power
commands

Process
related

ls mv less chmod grep top

cd cp head echo find ps

pwd mkdir tail wc sed kill

man rm nano curl sudo Crl-c

ssh |
(pipe) touch source git Crl-z

scp >
(write to file) cat R bg

<
(read from file) tmux python fg

Basics File Control
Viewing &

Editing
Files

Misc.
useful

Power
commands

Process
related

ls mv less chmod grep top

cd cp head echo find ps

pwd mkdir tail wc sed kill

man rm nano curl sudo Crl-c

ssh |
(pipe) touch source git Crl-z

scp >
(write to file) cat R bg

<
(read from file) tmux python fg

Working with Unix
How do we actually use Unix?

Combining Utilities with
Redirection (>, <) and Pipes (|)
• The power of the shell lies in the ability to combine

simple utilities (i.e. commands) into more complex
algorithms very quickly.

• A key element of this is the ability to send the
output from one command into a file or to pass it
directly to another program.

• This is the job of >, < and |

Side-Note: Standard Input and
Standard Output streams

Two very important concepts that unpin Unix
workflows:

• Standard Output (stdout) - default destination of
a program's output. It is generally the terminal
screen.

• Standard Input (stdin) - default source of a
program's input. It is generally the command
line.

Output redirection and piping
Do it Yourself!

> ls ~/Desktop # stdin is “~/Desktop”; stdout to screen

Output redirection and piping

>
|

> ls ~/Desktop # stdin is “~/Desktop”; stdout to screen

> ls ~/Desktop > mylist.txt # stdout redirected to file

 > ls ~/Desktop | less # sdout piped to less (no file created)

Output redirection and piping

-arg

>
|

> ls ~/Desktop # stdin is “~/Desktop”; stdout to screen

> ls ~/Desktop > mylist.txt # stdout redirected to file

 > ls ~/Desktop | less # sdout piped to less (no file created)

> ls -l ~/Desktop # extra optional input argument “-l”

Output redirection and piping

> ls ~/Desktop # stdin is “~/Desktop”; stdout to screen

> ls ~/Desktop > mylist.txt # stdout redirected to file

 > ls ~/Desktop | less # sdout piped to less (no file created)

> ls /nodirexists/ 2> binlist.txt # stderr to file

Output redirection and piping
Do it Yourself!

> ls ~/Desktop # stdin is “~/Desktop”; stdout to screen

> ls ~/Desktop > mylist.txt # stdout redirected to file

 > ls ~/Desktop | less # sdout piped to less (no file created)

> ls /nodirexists/ 2> binlist.txt # stderr to file

Output redirection and piping

> ls ~/Desktop # stdin is “~/Desktop”; stdout to screen

> ls ~/Desktop > mylist.txt # stdout redirected to file

 > ls ~/Desktop | less # sdout piped to less (no file created)

> ls /nodirexists/ 2> binlist.txt # stderr to file

>
|

2>

Do it Yourself!

Output redirection summary
<

<<
>
>>
2>
2>>

-arg

||

ls -l ls -l > list_of_files

ls -l | grep partial_name > list_of_files

We have piped (|) the stdout of one command
into the stdin of another command!

ls -l /usr/bin/ | grep “tree” > list_of_files

grep: prints lines containing a string.
Also searches for strings in text files.

Do it Yourself!

Basics File Control
Viewing &

Editing
Files

Misc.
useful

Power
commands

Process
related

ls mv less chmod grep top

cd cp head echo find ps

pwd mkdir tail wc sed kill

man rm nano curl sudo Crl-c

ssh |
(pipe) touch source git Crl-z

scp >
(write to file) cat R bg

<
(read from file) tmux python fg

Side-Note: grep ‘power command’

• grep - prints lines containing a string pattern. Also searches
for strings in text files, e.g.

 > grep --color "GESGKS" sequences/data/seqdump.fasta

REVKLLLLGAGESGKSTIVKQMKIIHEAGYSEEECKQYK

• grep is a ‘power tool’ that is often used with pipes as it
accepts regular expressions as input (e.g. “G..GK[ST]”)
and has lots of useful options - see the man page for details.

Do it Yourself!

grep example using
regular expressions

• Suppose a program that you are working with complains that
your input sequence file contains non-nucleotide characters.
You can eye-ball your file or …

> grep -v "^>" seqdump.fasta | grep --color "[^ATGC]"

Do it Yourself!

Exercises:
(1). Use “man grep” to find out what

the -v argument option is doing!

(2). How could we also show line number
for each match along with the output?

(tip you can grep the output of
“man grep” for ‘line number’)

• Suppose a program that you are working with complains that
your input sequence file contains non-nucleotide characters.
You can eye-ball your file or …

> grep -v "^>" seqdump.fasta | grep --color -n "[^ATGC]"

• First we remove (with -v option) lines that start with a “>”
character (these are sequence identifiers).

• Next we find characters that are not A, T, C or G. To do this we
use ^ symbols second meaning: match anything but the
pattern in square brackets. We also print line number (with -n
option) and color output (with --color option).

grep example using
regular expressions

Do it Yourself!

Key Point: Pipes and redirects
avoid unnecessary i/o

• Disc i/o is often a bottleneck in data processing!

• Pipes prevent unnecessary disc i/o operations by
connecting the stdout of one process to the stdin of
another (these are frequently called “streams”)

> program1 input.txt 2> program1.stderr | \
program2 2> program2.stderr > results.txt

• Pipes and redirects allow us to build solutions from
modular parts that work with stdin and stdout
streams.

Unix ‘Philosophy’ Revisited

“Write programs that do one
thing and do it well. Write
programs to work together and
that encourage open standards.
Write programs to handle text
streams, because that is a
universal interface.”

— Doug McIlory

Pipes provide speed, flexibility and
sometimes simplicity…

• In 1986 “Communications of the ACM magazine” asked famous
computer scientist Donald Knuth to write a simple program to
count and print the k most common words in a file alongside their
counts, in descending order.

• Kunth wrote a literate programming solution that was 7 pages
long, and also highly customized to this problem (e.g. Kunth
implemented a custom data structure for counting English words).

• Doug McIlroy replied with one line:

> cat input.txt | tr A-Z a-z | sort | uniq -c | sort -rn | sed 10q

Key Point:

You can chain any number of programs
together to achieve your goal!

This allows you to build up fairly complex
workflows within one command-line.

Shell scripting

#!/bin/bash
This is a very simple hello world script.
echo "Hello, world!”

Exercise:
• Create a "Hello world"-like script using command line tools

and execute it.

• Copy and alter your script to redirect output to a file using
> along with a list of files in your home directory.

• Alter your script to use >> instead of >. What effect does
this have on its behavior?

Do it Yourself!
Variables in shell scripts

#!/bin/bash
Another simple hello world script
message='Hello World!'
echo $message

• “message” - is a variable to which the string 'Hello
World!' is assigned

• echo - prints to screen the contents of the variable
"$message"

Do it Yourself!

See #6 @ https://swcarpentry.github.io/shell-novice/

Side-Note: Environment Variables $PATH ‘special’
environment variable

• What is the output of this command?

> echo $PATH

• Note the structure: <path1>:<path2>:<path3>

• PATH is an environmental variable which the shell
uses to search for commands typed on the
command line without a full path.

• Exercise: Use the command env to discover more.

Summary
• Built-in unix shell commands allow for easy data

manipulation (e.g. sort, grep, etc.)

• Commands can be easily combined to generate
flexible solutions to data manipulation tasks.

• The unix shell allows users to automate repetitive
tasks through the use of shell scripts that promote
reproducibility and easy troubleshooting

• Introduced the 21 key unix commands that you will
use during ~95% of your future unix work…

Basics File Control
Viewing &

Editing
Files

Misc.
useful

Power
commands

Process
related

ls mv less chmod grep top

cd cp head echo find ps

pwd mkdir tail wc sed kill

man rm nano curl sudo Crl-c

ssh |
(pipe) touch source git Crl-z

>
(write to file) cat R bg

<
(read from file) python fg

Hands-on time
Using Jetstream for Bioinformatics
 • Running command-line BLAST
 • Ortholog mapping (running large jobs)
 • Visualizing results with R/RStudio

Do it Yourself!
 New commands

sudo Execute a command with root permissions

apt-get Package handling utility for updating & installing software

curl Download data

gunzip File compression and decompression

blastp Command line BLAST

shmlast Mapping orthologs from RNA-seq data

How to Get Working
Best practices for organizing your

computational biology projects

Read: Noble PLoS Comp Biol (2009)
 - “A Quick Guide to Organizing Computational Biology Projects"

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000424

All files and directories used in your project should live in a single
project directory.

• Use sub-directories to divide your project into sub-projects.
• Do not use spaces in file and directory names!

Document your methods and workflows with plain text README files
• Also document the origin of all data in your project directory
• Also document the versions of the software that you ran and the

options you used.
• Consider using Markdown for your documentation.

Use version control and backup to multiple destinations!

Be reproducible:
http://ropensci.github.io/reproducibility-guide/sections/introduction/

