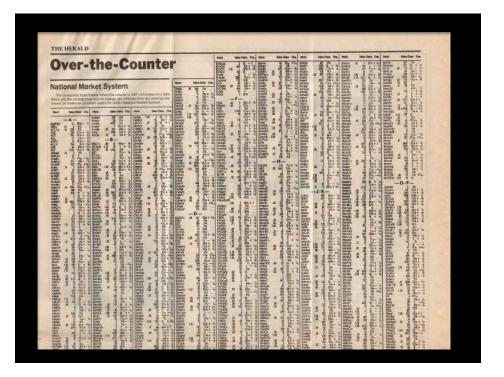


Recap From Last Time:

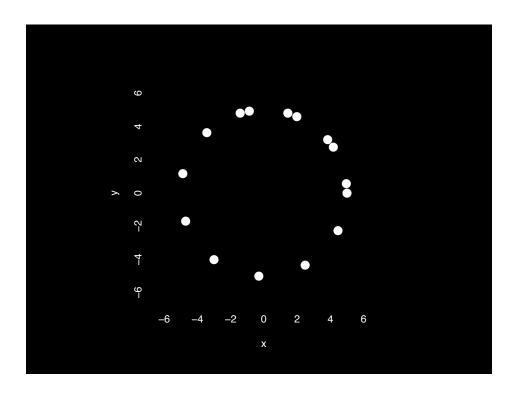
- · What is R and why should we use it?
- Familiarity with R's basic syntax.
- Familiarity with major R data structures namely vectors and data.frames.
- Understand the basics of using **functions** (arguments, vectorizion and re-cycling).
- Be able to use R to read and parse comma-separated (.csv) formatted files ready for subsequent analysis.
- Appreciate how you can use R scripts to aid with reproducibility.

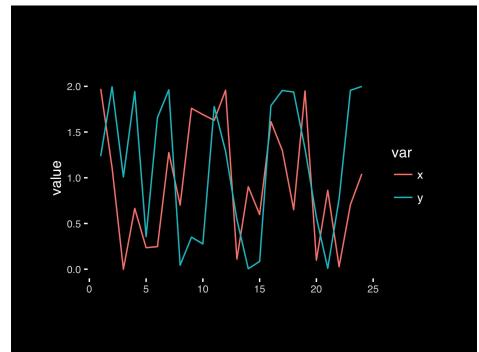
[MPA Link]

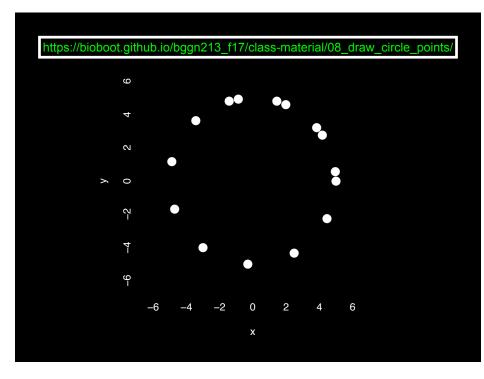
Today's Learning Goals


- Appreciate the major elements of **exploratory data analysis** and why it is important to visualize data.
- Be conversant with data visualization best practices and understand how good visualizations optimize for the human visual system.
- Be able to generate informative graphical displays including scatterplots, histograms, bar graphs, boxplots, dendrograms and heatmaps and thereby gain exposure to the extensive graphical capabilities of R.
- Appreciate that you can build even more complex charts with **ggplot** and additional R packages such as **rgl**.

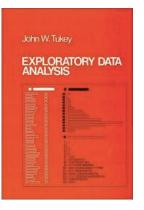
Today's Learning Goals


- Appreciate the major elements of **exploratory data analysis** and why it is important to visualize data.
- Be conversant with data visualization best practices and understand how good visualizations optimize for the human visual system.
- Be able to generate informative graphical displays including scatterplots, histograms, bar graphs, boxplots, dendrograms and heatmaps and thereby gain exposure to the extensive graphical capabilities of R.
- Appreciate that you can build even more complex charts with ggplot and additional R packages such as rgl.


Why visualize at all?


	X	y		
1	5.00	0.00		
2	4.18	2.75		
3	1.98	4.59		
4	-0.86	4.92		
5	-3.43	3.64		
6	-4.86	1.16		
7	-4.70	-1.70		
8	-2.99	-4.01		
9	-0.30	-4.99		
10	2.49	-4.34		
11	4.46	-2.25		
12	4.97	0.57		
13	3.84	3.20		
14	1.45	4.79		
15	-1.42	4.79		

	x	у	
Min.	-4.86	-4.99	
1st Qu.	-2.21	-1.98	
Median	1.45	1.16	
Mean	0.65	0.87	
3rd Qu.	4.01	4.12	
Max.	5.00	4.92	


Exploratory Data Analysis

- ALWAYS look at your data!
- If you can't see it, then don't believe it!
- Exploratory Data Analysis (EDA) allows us to:
 - 1. Visualize distributions and relationships
 - 2. Detect errors
 - 3. Assess assumptions for confirmatory analysis
- EDA is the first step of data analysis!

Exploratory Data Analysis 1977

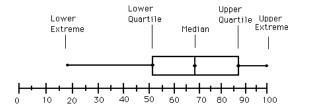
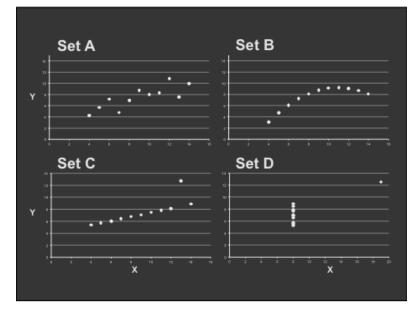

- Based on insights developed at Bell Labs in the 60's
- Techniques for visualizing and summarizing data
- What can the data tell us? (in contrast to "confirmatory" data analysis)
- Introduced many basic techniques:
 - 5-number summary, box plots, stem and leaf diagrams,...
- 5 Number summary:
 - extremes (min and max)
 - · median & quartiles
 - More robust to skewed & longtailed distributions

Chart types

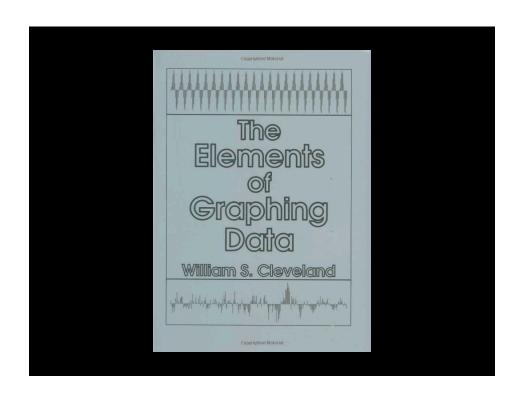
 Box-and-whisker plot : a graphical form of 5-number summary (Tukey)

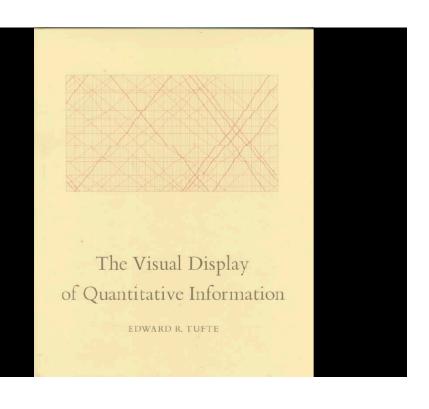


16

The Trouble with Summary Stats

Set	A	Set	t B	Se	t C	Set	D
X	Υ	X	Υ	X	Υ	X	Υ
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
	8.81		8.77		7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.1	14	8.84	8	7.04
6	7.24	6	6.13		6.08	8	5.25
4	4.26	4	3.1	4	5.39	19	12.5
12	10.84	12	9.11	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
	5.68		4.74		5.73	8	6.89
Summary Statistics Linear Regression							
$u_{x} = 9.6$ $u_{y} = 7.5$	$\sigma_{X} = 3.$ $\sigma_{Y} = 2.$		$Y = 3 + 0.$ $R^2 = 0.67$			[Anscom	be 73

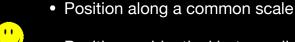

Looking at Data



X Mean: 54.2659224 Y Mean: 47.8313999 X SD : 16.7649829 Y SD : 26.9342120 Corr. : -0.0642526 Key point: You need to visualize your data!

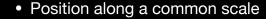
Today's Learning Goals

- Appreciate the major elements of **exploratory data analysis** and why it is important to visualize data.
- Be conversant with data visualization best practices and understand how good visualizations optimize for the human visual system.
- Be able to generate informative graphical displays including scatterplots, histograms, bar graphs, boxplots, dendrograms and heatmaps and thereby gain exposure to the extensive graphical capabilities of R.
- Appreciate that you can build even more complex charts with **ggplot** and additional R packages such as **rgl**.

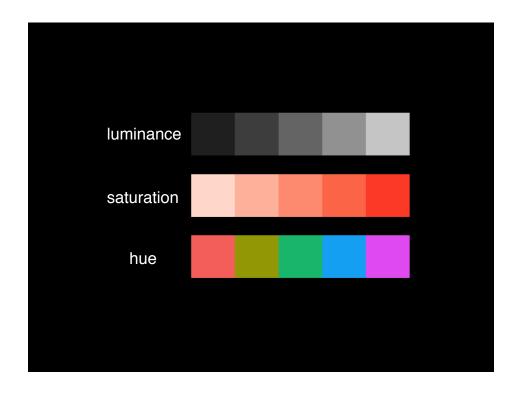

Key Point:

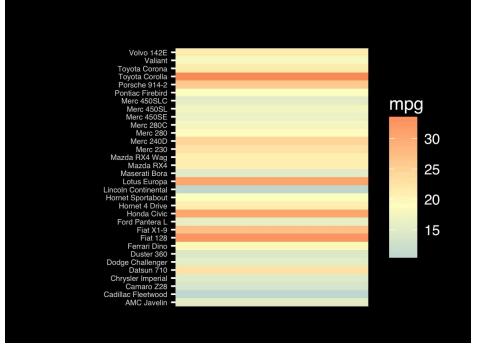
Good visualizations optimize for the human visual system.

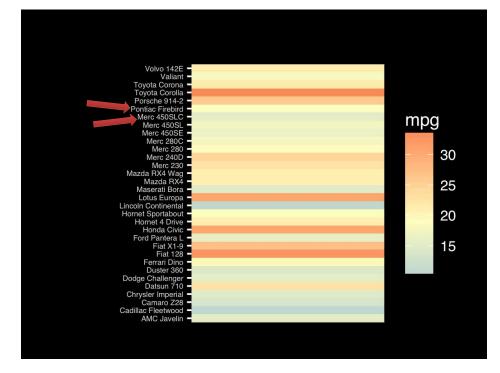
Key Point: The most important measurement should exploit the highest ranked encoding possible

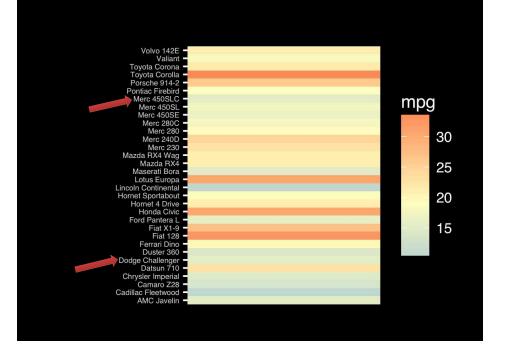

- Position along a common scale
- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue

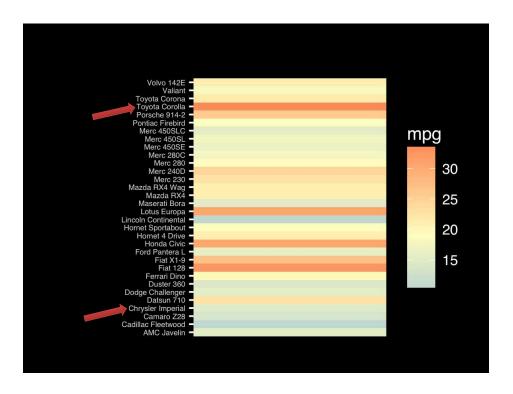
Key Point: The most important measurement should exploit the highest ranked encoding possible

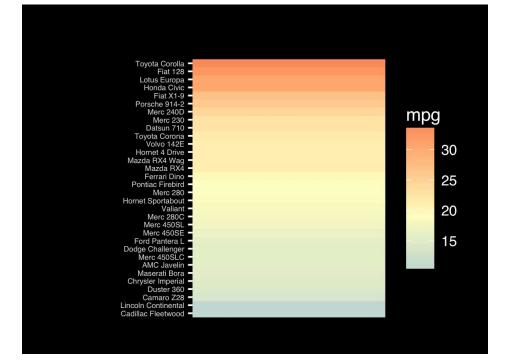


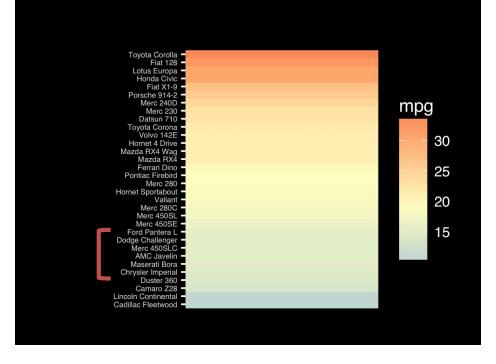

- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue

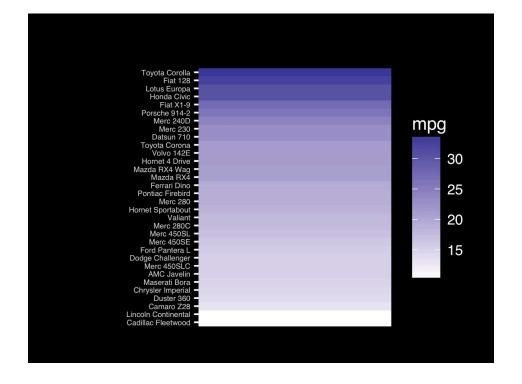

Key Point: The most important measurement should exploit the highest ranked encoding possible

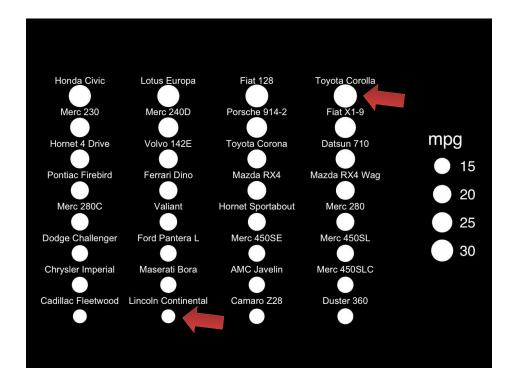


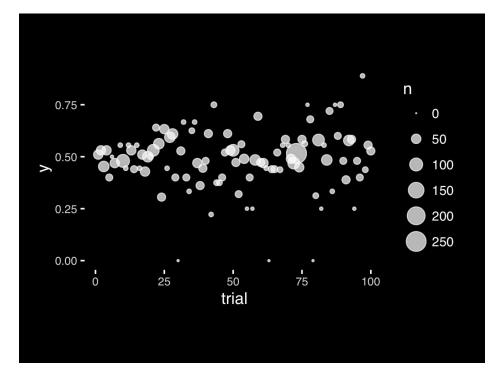

- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue





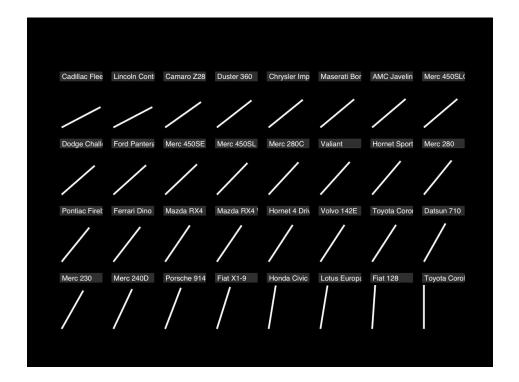

Observation: Alphabetical is almost never the correct ordering of a categorical variable.

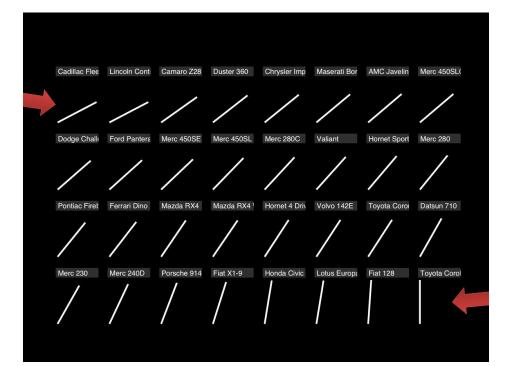


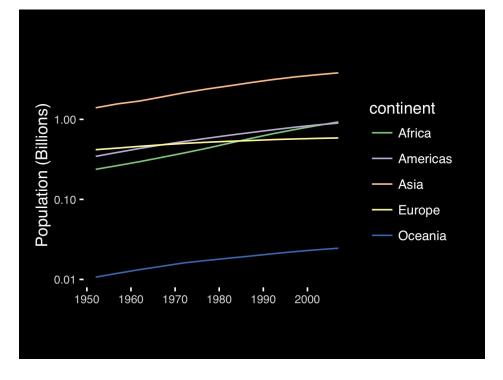


The most important measurement should exploit the highest ranked encoding possible.

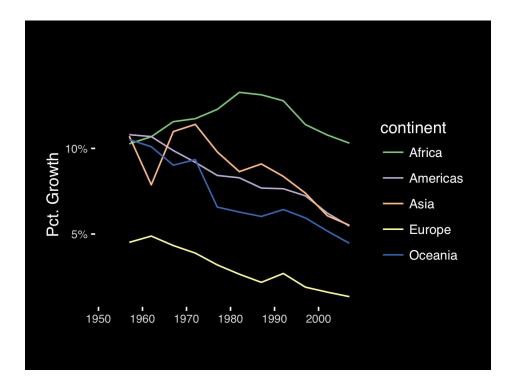
- Position along a common scale
- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue







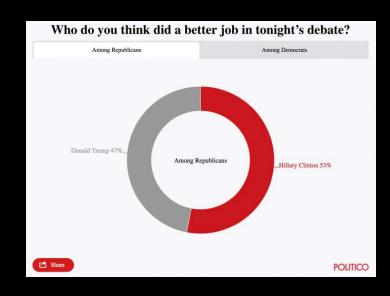
The most important measurement should exploit the highest ranked encoding possible.

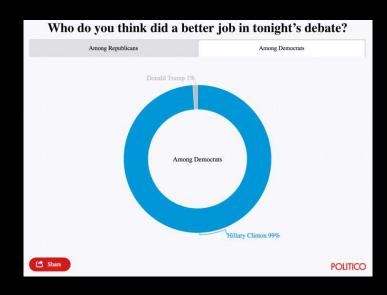

- Position along a common scale
- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue

If growth (slope) is important, plot it directly.

The most important measurement should exploit the highest ranked encoding possible.

- Position along a common scale
- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue


Observation: Pie charts are <u>ALWAYS</u> a mistake.

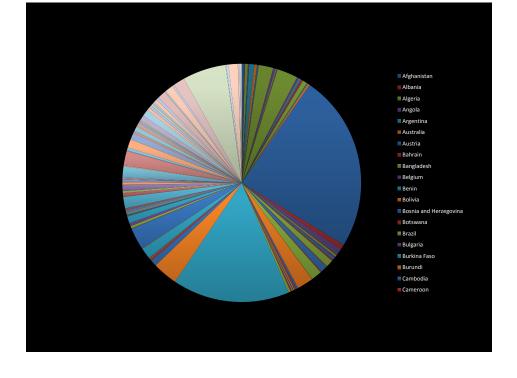

Piecharts are the information visualization equivalent of a roofing hammer to the frontal lobe. They have no place in the world of grownups, and occupy the same semiotic space as short pants, a runny nose, and chocolate smeared on one's face. They are as professional as a pair of assless chaps.

http://blog.codahale.com/2006/04/29/google-analytics-the-goggles-they-do-nothing/

Piecharts are the information visualization equivalent of a roofing hammer to the frontal lobe. They have no place in the world of grownups, and occupy the same semiotic space as short pants, a runny nose, and chocolate smeared on one's face. They are as professional as a pair of assless chaps.

http://blog.codahale.com/2006/04/29/google-analytics-the-goggles-they-do-nothing/

Tables are preferable to graphics for many small data sets. A table is nearly always better than a dumb pie chart; the only thing worse than a pie chart is several of them, for then the viewer is asked to compared quantities located in spatial disarray both within and between pies... Given their low data-density and failure to order numbers along a visual dimension, pie charts should never be used.

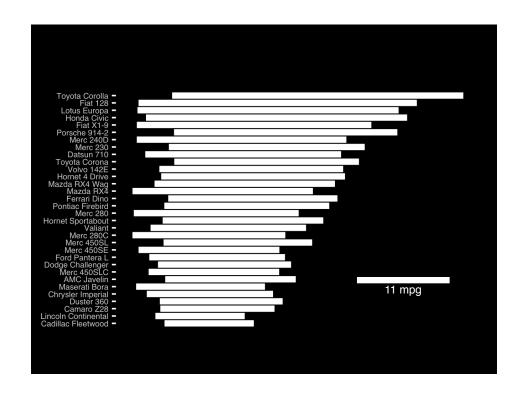

٠

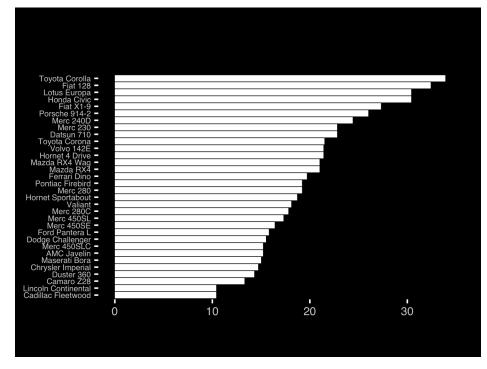
Tables are preferable to graphics for many small data sets. A table is nearly always better than a dumb pie chart; the only thing worse than a pie chart is several of them, for then the viewer is asked to compared quantities located in spatial disarray both within and between pies... Given their low data-density and failure to order numbers along a visual dimension, pie charts should never be used.

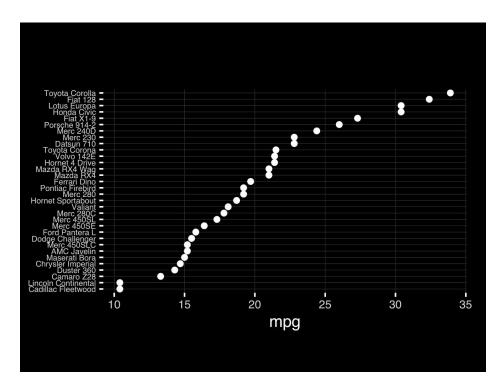
.

Who do you think did a better job in tonight's debate?

	Clinton	Trump
Among Democrats	99%	1%
Among Republicans	53%	47%

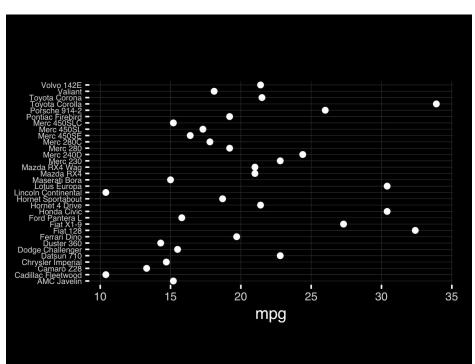

⁻Edward Tufte, The Visual Display of Quantitative Information

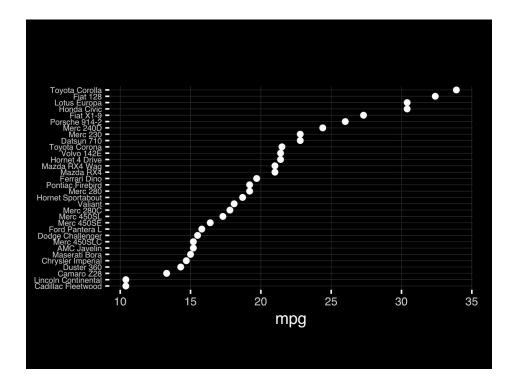

⁻Edward Tufte, The Visual Display of Quantitative Information

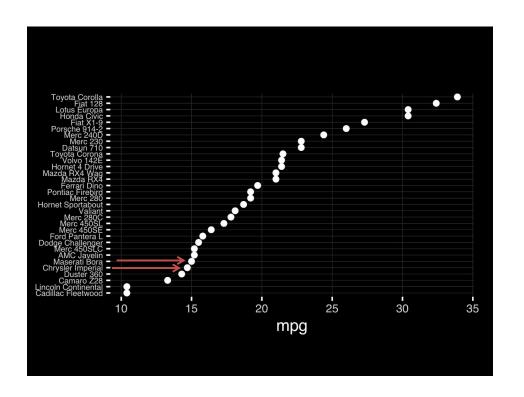

All good pie charts are jokes... Sky Sunny side of pyramid Shady side of pyramid

The most important measurement should exploit the highest ranked encoding possible.

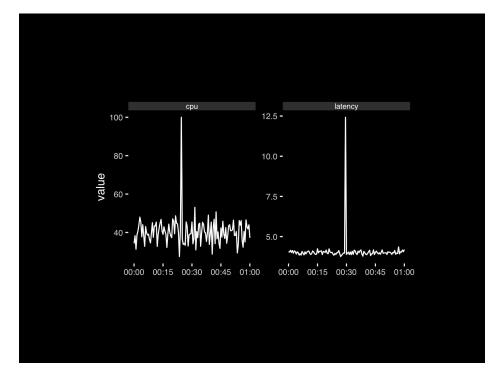
- Position along a common scale
- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue

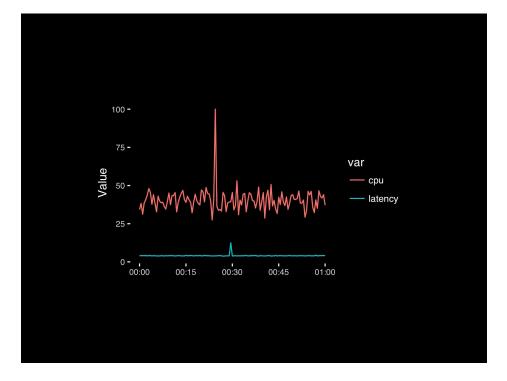




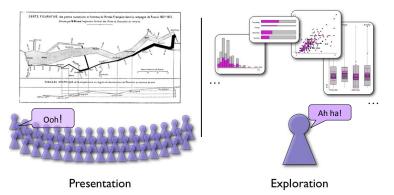


The most important measurement should exploit the highest ranked encoding possible.


- Position along a common scale
- Position on identical but nonaligned scales
- Length
- Angle or Slope
- Area
- Volume or Density or Color saturation/hue



Observation: Comparison is trivial on a common scale.

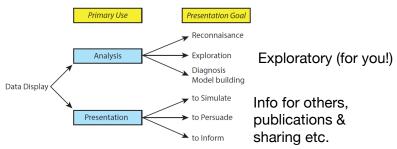

Standardized Value Oc. 00 00:15 00:30 00:45 01:00

Today's Learning Goals

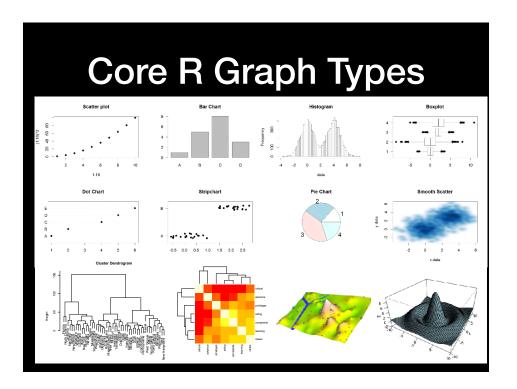
- Appreciate the major elements of **exploratory data analysis** and why it is important to visualize data.
- Be conversant with data visualization best practices and understand how good visualizations optimize for the human visual system.
- Be able to generate informative graphical displays including scatterplots, histograms, bar graphs, boxplots, dendrograms and heatmaps and thereby gain exposure to the extensive graphical capabilities of R.
- Appreciate that you can build even more complex charts with **ggplot** and additional R packages such as **rgl**.

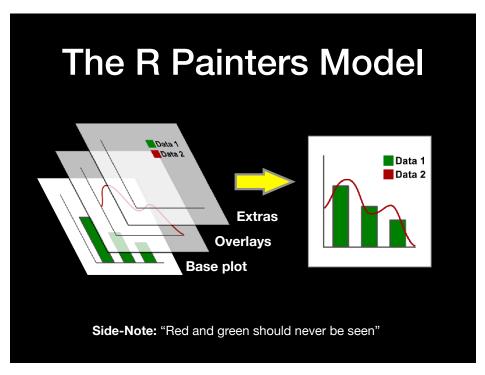
Different graphs for different purposes

Exploratory graphs: many images for a narrow audience (you!) **Presentation graphs**: single image for a large audience

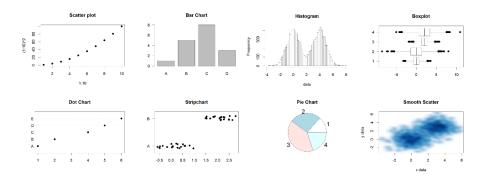

Roles of graphics in data analysis

- Graphs (& tables) are forms of communication:
 - What is the audience?
 - What is the message?


Analysis graphs: design to see patterns, trends, aid the process of data description, interpretation

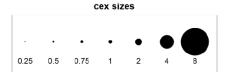

Presentation graphs: design to attract attention, make a point, illustrate a conclusion

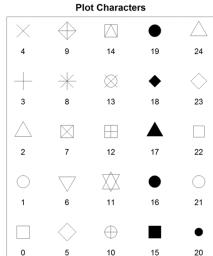
Basic functions of data display



17

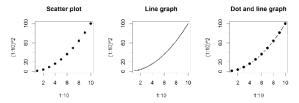
Core Graph Types


- Local options to change a specific plot
- · Global options to affect all graphs


Common Options

- Axis scales
 - xlim c(min, max)
 - ylim c(min, max)
- Axis labels
 - xlab(text)
 - ylab(text)

- · Plot titles
 - main(text)
 - sub (text)
- Plot characters
 - pch (number)
 - cex(number)
- Local options to change a specific plot
- · Global options to affect all graphs


Plot Characters

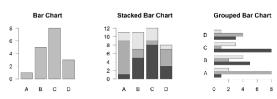
Plot Type Specific Options

Plot (scatterplots and line graphs)

• Input: Almost anything. 2 x Vectors

Output: Nothing

• Options:


- type l=line, p=point, b=line+point

lwd line width (thickness)

- lty line type (1=solid,2=dashed,3=dotted etc.)

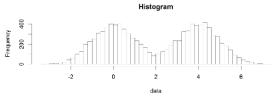
plot(c(1:10)^2, typ="b", lwd=4, lty=3)

Barplot (bar graphs)

• Input: Vector (single) or Matrix (stack or group)

· Output: Bar centre positions

• Options:


names.argBar labels (if not from data)

- horiz=TRUE Plot horizontally

 ${\color{blue}\textbf{-}}\ \texttt{beside=TRUE}$ Plot multiple series as a group not stacked

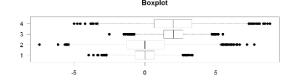
barplot(VADeaths, beside = TRUE)

Hist (histograms)

Input: Vector

· Output: Summary of binned data

• Options:


- probability Y axis is probability, not freq

- labels Per bin text labels

hist(c(rnorm(1000,0), rnorm(1000,4)), breaks=20)

Controlling plot area options with par

Boxplot

• Input: Vector, List or formula (data~factor)

• Output: Summary of the boxplot parameters

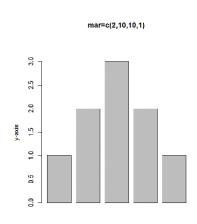
• Options:

- range Sensitivity of whiskers

- varwidth Width represents total observations

- horizontal Plot horizontally

boxplot(cbind(rnorm(1000,0), rnorm(1000,4)))

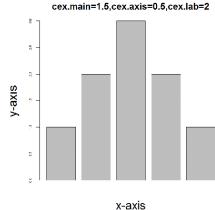

Par

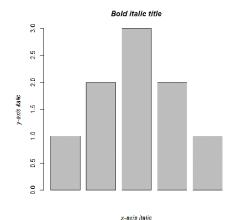
- The par function controls global parameters affecting all plots in the current plot area
- Changes affect all subsequent plots
- Many par options can also be passed to individual plots

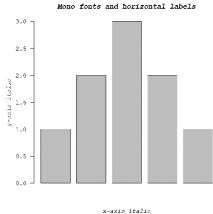
Par examples

- Reading current value
 - par()\$cex
- Setting a value
 - $-par(cex=1.5) \rightarrow old.par$
- Restoring a value
 - par (old.par)
 - dev.off()

mar=c(5,4,4,2)


Par options

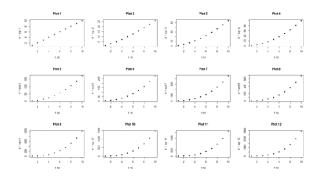

- Margins
 - mai (set margins in inches)
 - mar (set margins in number of lines)
 - mex (set lines per inch)
 - 4 element vector (bottom, left, top, right)
- Warning
 - Error in plot.new() : figure margins too large


Par options

- Fonts and labels
 - cex global char expansion
 - cex.axis
 - cex.lab
 - cex.main
 - cex.sub

Default cex sizes SIXE-Y SIXE-Y

Par options


• Font style

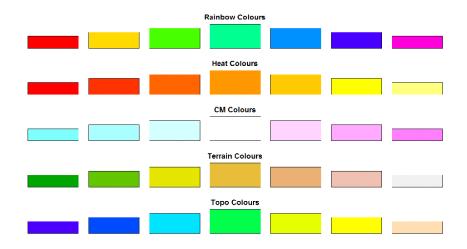
- font (font.axis, font.main, font.sub, font.lab)
 - 1 = Plain text
 - 2 = Bold text
 - 3 = Italic text
 - 4 = Bold italic text
- las (label orientation)
 - 0 = Parallel to axis
 - 1 = Horizontal
 - 2 = Perpendicular
 - 3 = Vertical

Par options

Multi-panel

- mfrow(rows, cols)
- Not supported by some packages

Exercise 1


Using Color

Specifying colors

- Hexadecimal strings
 - #FF0000 (red)
 - #0000FF (blue)
 - #CC00CC (purple)
- Controlled names
 - "red" "green" etc.
 - colors()

Built in color schemes

- Functions to generate colors
- Pass in number of colors to make
- Functions:
 - rainbow
 - -heat.colors
 - -cm.colors
 - -terrain.colors
 - topo.colors

Color Packages

- Color Brewer
 - Set of pre-defined, optimized palettes
 - library(RColorBrewer)
 - brewer.pal(no colours, palette)
- ColorRamps
 - Create smooth palettes for ramped color
 - Generates a function to make actual color vectors
 - colorRampPalette(c("red","white","blue"))
 - colorRampPalette(c("red","white","blue"))(5)

Color Packages

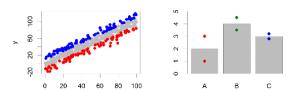
- Colorspace
 - library(colorspace)
 - choose.palette()

Applying Color to Plots

- Vector of colors passed to the col parameter
- Vector of factors used to divide the data
 - Colors taken from pallete
 - Can read or set using pallete function
 - palette()
 - palette(brewer.pal(9,"Set1")
 - Ordered by levels of factor vector

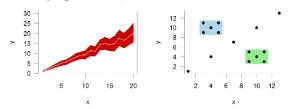
Dynamic use of color

- Coloring by density
 - Pass data and palette to densCols
 - Vector of colors returned
- Coloring by value
 - Need function to map values to colors

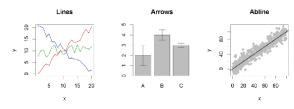

Color Mapping Function

```
map.colors <- function(value,range,palette) {
   proportion <- (value-range[1])/(range[2]-range[1])
   index <- round((length(palette)-1)*proportion)+1
   return(palette[index])
}</pre>
```

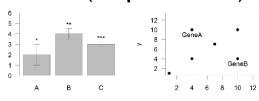
Exercise 2


Plot Overlays Exercise 3

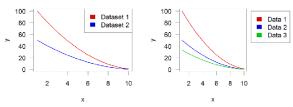
Points


- Input: 2 Vectors (x and y positions)
- Options:
 - -pch
 - cex

Polygon (shaded areas)


- Input:
 - 2 vectors (x and y) for bounding region
- Options:
 - **-**col

Lines / Arrows / Abline


- Input:
 - Lines 2 vectors (x and y)
 - Arrows 4 vectors (x0,x1,y0,y1)
 - Abline Intercept and slope (or correlation object)
- Options:
 - lwd
 - angle (arrows)

Text (in plot text)

- Input:
 - Text, x, y
- Options:
 - adj (x and y offsets)
 - pos (auto offset 1=below,2=left,3=above, 4=right)

Legend

- Input:
 - Position (x,y or "topright","bottomleft" etc)
 - Text labels
- Options:
 - fill (colours for shaded boxes)
 - xpd=NA (draw outside plot area)

Exercise 3