
BGGN 213
Working with R packages

Barry Grant

http://thegrantlab.org/bggn213

http://thegrantlab.org/bggn213

Recap From Last Time:
• Why it is important to visualize data during exploratory data

analysis.

• Discussed data visualization best practices and how good
visualizations optimize for the human visual system.

• Introduced the extensive graphical capabilities of R with a
focus on generating and customizing scatterplots, histograms,
bar graphs, boxplots, (dendrograms and heatmaps).

• Use the par() function to control fine grained details of the
afore mentioned plot types.

• Noted that you can build even more complex charts with
additional R packages such as ggplot2 and rgl.

[MPA Link]

https://docs.google.com/forms/d/e/1FAIpQLSeg1eIqTXJFweQRKRTuP7qHMIW9zYRAGwfAUAB0l5-Kk6pqdg/viewanalytics

Today’s Learning Goals
• More on data import

• Pre-check recommendations
• read.table() and friends for flat files
• readxl::read_excel() for excel files
• RData files

• Writing your own functions
• What, Why, When and How

• The CRAN & Bioconductor R package repositories
• Rmarkdown, ggplot2, bio3d, rgl and rentrez

• Additional R packages (and development versions of CRAN
packages) on GitHub and BitBucket.

Today’s Learning Goals
• More on data import

• Pre-check recommendations
• read.table() and friends for flat files
• readxl::read_excel() for excel files
• RData files

• Writing your own functions
• What, Why, When and How

• The CRAN & Bioconductor R package repositories
• Rmarkdown, ggplot2, bio3d, rgl and rentrez

• Additional R packages (and development versions of CRAN
packages) on GitHub and BitBucket.

Pre-check recommendations
• Get organized!

• Start a new ‘project’ in a directory you know about and store
all needed project material here (input, scripts and output).

• In RStudio File > New Project > New Directory > …
• Or use ls(); rm(list=ls()); getwd(); setwd(); dir() functions.

• Inspect the file at the command line
• Use the UNIX commands head, less etc.
• Does it have a header line or comments to be included,

ignored or removed?
• Avoid file (or field names) with spaces or special characters

such as ?, $,%, ^, &, *, } etc.
• Short names are prefered over longer names.
• Does the file end with a blank line or a RTN?

Pre-check recommendations
• Get organized!

• Start a new ‘project’ in a directory you know about and store
all needed project material here (input, scripts and output).

• In RStudio File > New Project > New Directory > …
• Or use ls(); rm(list=ls()); getwd(); setwd(); dir() functions.

• Inspect the file at the command line
• Use the UNIX commands head, less etc.
• Does it have a header line or comments to be included,

ignored or removed?
• Avoid file (or field names) with spaces or special characters

such as ?, $,%, ^, &, *, } etc.
• Short names are prefered over longer names.
• Does the file end with a blank line or a RTN?

read.table() and friends for flat files
• The read.table() function is the base of all flat file import functions

• read.csv(“filename.txt”, stringsAsFactors=FALSE) COMMA
• read.csv2(“filename.txt”, stringsAsFactors=FALSE) SEMI-COLON
• read.delim(“filename.txt”, stringsAsFactors=FALSE) TAB
• read.table(“filename.txt”, stringsAsFactors=FALSE) SPACE or ….

• What other differences are there between these functions?

• MS EXCEL file import options include:
• Export (i.e. “Save As…”) your excel data to plain text CSV format.
• Or use readxl::read_excel() to read specified parts of your sheets/workbooks

etc.

• For fast and convenient reading of very large flat files files
• Try data.table::fread() use is similar to read.table() but it automatically finds

field separators and header rows. It is also much faster!

• Saving and loading .RData files…
• Use the functions save() and load() for saving and loading multiple objects to

space efficient binary format files.

Your turn!
https://bioboot.github.io/bggn213_f17/class-material/test1.txt

Do it Yourself!

• Start a new RStudio Project in a clean directory
• Open a new Rmarkdown document and give it a

name and descriptive text.
• Download each of the above files and move them

into your Project
• Experiment with read.table() to get their data

successfully input into your R session.

https://bioboot.github.io/bggn213_f17/class-material/test2.txt
https://bioboot.github.io/bggn213_f17/class-material/test3.txt

https://bioboot.github.io/bggn213_f17/class-material/test1.txt
https://bioboot.github.io/bggn213_f17/class-material/test2.txt
https://bioboot.github.io/bggn213_f17/class-material/test3.txt

Today’s Learning Goals
• More on data import

• Pre-check recommendations
• read.table() and friends for flat files
• readxl::read_excel() for excel files
• RData files

• Writing your own functions
• What, Why, When and How

• The CRAN & Bioconductor R package repositories
• Rmarkdown, ggplot2, bio3d, rgl and rentrez

• Additional R packages (and development versions of CRAN
packages) on GitHub and BitBucket.

What is a function

 name.of.function <- function(arg1, arg2) {
 statements
 return(something)
}

1 2

1

2

Name (can be almost anything you want)

Body (where the work gets done)

3

3

Arguments (i.e. input to your function)

What is a function

add <- function(x, y=1) {
 # Sum the input x and y
 x + y
}

1 2

1

2

Name (in this case “add”)

Body (will return the result of the last statement)

3

3

Arguments (here “x” and “y”)

Your function is treated just
like any other function…

add <- function(x, y=1) {
 # Sum the input x and y
 x + y
}

add(x=1, y=4)
add(1, 4)
add(1)

add(c(1, 2, 3))
add(c(1, 2, 3), 4)

add(1, 2, 2)
add(x=1, y=“b”)

Why would you write a
function

What does this code do?

df$a <- (df$a - min(df$a)) / (max(df$a) - min(df$a))

df$b <- (df$b - min(df$a)) / (max(df$b) - min(df$b))

df$c <- (df$c - min(df$c)) / (max(df$c) - min(df$c))

df$d <- (df$d - min(df$d)) / (max(df$a) - min(df$d))

When you find yourself doing the same thing 3 or
more times it is time to write a function.

Why would you write a
function

Consider copy and paste errors:

df$a <- (df$a - min(df$a)) / (max(df$a) - min(df$a))

df$b <- (df$b - min(df$a)) / (max(df$b) - min(df$b))

df$c <- (df$c - min(df$c)) / (max(df$c) - min(df$c))

df$d <- (df$d - min(df$d)) / (max(df$a) - min(df$d))

When you find yourself doing the same thing 3 or
more times it is time to write a function.

Why would you write a
function

Here the intent is far more clear

df$a <- rescale(df$a)

• Makes the purpose of the code more clear
• Reduce mistakes from copy/paste
• Makes updating your code easer
• Reduce duplication and facilitate re-use.

Consider the advantages:

How would you write this
function

First consider the original code:

df$a <- (df$a - min(df$a)) / (max(df$a) - min(df$a))

df$b <- (df$b - min(df$a)) / (max(df$b) - min(df$b))

df$c <- (df$c - min(df$c)) / (max(df$c) - min(df$c))

df$d <- (df$d - min(df$d)) / (max(df$a) - min(df$d))

Start with a working code snippet, simplify, reduce
calculation duplication,…

How would you write this
function

Simplify to work with a generic vector named “x”

x <- (x - min(x)) / (max(x) - min(x))

Start with a working code snippet, simplify, reduce
calculation duplication,…

How would you write this
function

Note that we call the min() function twice…

x <- (x - min(x)) / (max(x) - min(x))

Start with a working code snippet, simplify, reduce
calculation duplication,…

How would you write this
function

Note that we call the min() function twice…

xmin <- min(x)
x <- (x - xmin) / (max(x) - xmin)

Start with a working code snippet, simplify, reduce
calculation duplication,…

How would you write this
function

Further optimization to use the range() function…

rng <- range(x)
x <- (x - rng[1]) / (rng[2] - rng[1])

Start with a working code snippet, simplify, reduce
calculation duplication,…

How would you write this
function

You need a “name”, “arguments” and “body”…

rescale <- function(x) {
 rng <-range(x)
 (x - rng[1]) / (rng[2] - rng[1])
}

Test on a small example where you know the answer
rescale(1:10)

Start with a working code snippet, simplify, reduce
calculation duplication, finally turn it into a function

How would you write this
function

Test on a small example where you know the answer
rescale(1:10)

How would you get your function to work here…
rescale(c(1,2,NA,3,10))

What should your function do here?
recale(c(1,10,”string”))

Test, Fail, Change, Test again,…

Side-Note: Seeing and using
your function in RStudio

• An easy way to visualize the code of a function is to
type its name without the parentheses ().

• If you have your new function saved to a separate file
then you can load and execute it using
the source() function. E.g. source(“MyUtils.R")

• The return() statement is not required in a function but
it is advisable to use it when the function performs
several computations. It has the effect of ending the
function execution and returning control to the code
which called it.

rescale <- function(x, na.rm=TRUE, plot=FALSE) {
 if(na.rm) {
 rng <-range(x, na.rm=TRUE)
 } else {
 rng <-range(x)
 }
 print("Hello")

 answer <- (x - rng[1]) / (rng[2] - rng[1])

 print("is it me you are looking for?")

 if(plot) {
 plot(answer, typ="b", lwd=4)
 }
 print("I can see it in ...")
}

rescale <- function(x, na.rm=TRUE, plot=FALSE) {
 if(na.rm) {
 rng <-range(x, na.rm=TRUE)
 } else {
 rng <-range(x)
 }
 print("Hello")

 answer <- (x - rng[1]) / (rng[2] - rng[1])
 return(answer)
 print("is it me you are looking for?")

 if(plot) {
 plot(answer, typ="b", lwd=4)
 }
 print("I can see it in ...")
}

Your turn!
http://tinyurl.com/bggn213-L9

Do it Yourself!

Concentrate on Section 1B and questions 1 to 6.
Other sections are there for your benefit.

http://tinyurl.com/bggn213-L9

Can you improve this analysis code?
library(bio3d)
s1 <- read.pdb("4AKE") # kinase with drug
s2 <- read.pdb("1AKE") # kinase no drug
s3 <- read.pdb("1E4Y") # kinase with drug

s1.chainA <- trim.pdb(s1, chain="A", elety="CA")
s2.chainA <- trim.pdb(s2, chain="A", elety="CA")
s3.chainA <- trim.pdb(s1, chain="A", elety="CA")

s1.b <- s1.chainA$atom$b
s2.b <- s2.chainA$atom$b
s3.b <- s3.chainA$atom$b

plotb3(s1.b, sse=s1.chainA, typ="l", ylab="Bfactor")
plotb3(s2.b, sse=s2.chainA, typ="l", ylab="Bfactor")
plotb3(s3.b, sse=s3.chainA, typ="l", ylab="Bfactor")

Do it Yourself!

Today’s Learning Goals
• More on data import

• Pre-check recommendations
• read.table() and friends for flat files
• readxl::read_excel() for excel files
• RData files

• Writing your own functions
• What, Why, When and How

• The CRAN & Bioconductor R package repositories
• Rmarkdown, ggplot2, bio3d, rgl and rentrez

• Additional R packages (and development versions of CRAN
packages) on GitHub and BitBucket.

CRAN &
Bioconductor
Major repositories for R packages

that extend R functionality

R Highlight!

CRAN: Comprehensive R
Archive Network

• CRAN is a network of mirrored servers around the
world that administer and distribute R itself, R
documentation and R packages (basically add on
functionality!)

• There are currently ~11,700 packages on CRAN in
the areas of finance, bioinformatics, machine
learning, high performance computing, multivariate
statistics, natural language processing, etc. etc.

https://cran.r-project.org/

Side-note: R packages come
in all shapes and sizes

R packages can be of variable quality and often there are
multiple packages with overlapping functionality.

Refer to relevant publications, package
citations, update/maintenance history,

documentation quality and your own tests!

From: “Credit for Code”. Nature Genetics (2014), 46:1

The journal has sufficient experience with CRAN
and Bioconductor resources to endorse their use by
authors. We do not yet provide any endorsement
for the suitability or usefulness of other solutions.

“
”

https://cran.r-project.org

1

https://cran.r-project.org
https://cran.r-project.org

Installing a package
RStudio > Tools > Install Packages

> install.packages(“bio3d”)
> library(“bio3d”)

Your Turn: Pick a
package to explore and install

(Rmarkdown), ggplot2, bio3d, rgl, rentrez, igraph

Questions to answer:
• How does it extend R functionality? (i.e. What can you do with it that

you could not do before?)
• How is it’s documentation, vignettes, demos and web presence?
• Can you successfully follow a tutorial or vignette to get started quickly

with the package?
• Can you find a GitHub or Bitbucket site for the the package with a

regular heartbeat?

Do it Yourself!

Collaborative Google Doc Link

https://docs.google.com/document/d/1NWKCfySNAoZII_j9SwDLhEdpOEDDtAALPik4DxbXS9Q/edit?usp=sharing

Bioconductor
R packages and utilities for working with

high-throughput genomic data

http://bioconductor.org

http://bioconductor.org

Fir0002/Flagstaffotos

More pragmatic:
Bioconductor is a software
repository of R packages
with some rules and guiding
principles.

Version 3.3 had 1211 software
packages.

Bioconductor has
emphasized

Reproducible Research
since its start, and has been
an early adapter and driver
of tools to do this.

“Bioconductor: open software development for
computational biology and bioinformatics”

Gentleman et al
Genome Biology 2004, 5:R80

“Orchestrating high-throughput genomic
analysis with Bioconductor”

Huber et al
Nature Methods 2015, 12:115-121

Installing a
bioconductor package

> source("https://bioconductor.org/biocLite.R")
> biocLite()
> biocLite("GenomicFeatures")

See: http://www.bioconductor.org/install/

http://www.bioconductor.org/install/

Summary
• R is a powerful data programming language and

environment for statistical computing, data analysis and
graphics.

• Introduced R syntax and major R data structures

• Demonstrated using R for exploratory data analysis and
graphics.

• Exposed you to the why, when, and how of writing your
own R functions.

• Introduced CRAN and Bioconductor package repositories.

Learning Resources
• TryR. An excellent interactive online R tutorial for beginners.

< http://tryr.codeschool.com/ >

• RStudio. A well designed reference card for RStudio.
< https://help.github.com/categories/bootcamp/ >

• DataCamp. Online tutorials using R in your browser.
< https://www.datacamp.com/ >

• R for Data Science. A new O’Reilly book that will teach you
how to do data science with R, by Garrett Grolemund and
Hadley Wickham.

< http://r4ds.had.co.nz/ >

http://tryr.codeschool.com/
http://www.rstudio.com/wp-content/uploads/2016/01/rstudio-IDE-cheatsheet.pdf
https://www.datacamp.com/
http://r4ds.had.co.nz/

