BIMM 143

Unsupervised Learning

Lecture 8
Barny Grant
http://thegrantlab.org/bimm143

Today's Menu

- Introduction to machine learning
- Unsupervised, supervised and reinforcement learning
- Clustering
- K-means clustering
- Hierarchical clustering
- Heatmap representations
- Dimensionality reduction, visualization and 'structure' analysis
- Principal Component Analysis (PCA)
- Hands-on application to cell classification

Recap of Lecture 7

- Reviewed the major steps for R function writing
- Introduced the CRAN \& Bioconductor repositories for packages that extend R functionality
- Explored installing and using the ggplot2, bio3d, rgl, rentrez, igraph, blogdown, shiny, and other packages
- Discussed how to judge the utility, usability and development status of R packages.

Types of machine learning

- Unsupervised learning
- Finding structure in unlabeled data
- Supervised learning
- Making predictions based on labeled data
- Predictions like regression or classification
- Reinforcement learning
- Making decisions based on past experience

Types of machine learning

- Unsupervised learning

- Finding structure in unlabeled data
- Supervised learning
- Making predictions based on labeled data
- Predictions like regression or classification
- Reinforcement learning
= Making decisions based on past experience

Today's Menu

- Introduction to machine learning
- Unsupervised, supervised and reinforcement learning
- Clustering
- K-means clustering
- Hierarchical clustering
- Heatmap representations
- Dimensionality reduction, visualization and 'structure' analysis
- Principal Component Analysis (PCA)
- Hands-on application to cell classification

k-means clustering algorithm

- Breaks observations into \boldsymbol{k} pre-defined number of clusters
- You define \boldsymbol{k} the number of clusters!
- Imagine you had data that you could plot along a line and you knew you had to put them into $k=3$
"clusters" (e.g. data from three types of tumor cells)

k-means clustering algorithm

k-means clustering algorithm

- Breaks observations into \boldsymbol{k} pre-defined number of clusters
- You define \boldsymbol{k} the number of clusters!
- Imagine you had data that you could plot along a line and you knew you had to put them into $k=3$ "clusters" (e.g. data from three types of tumor cells)

Here your eyes can clearly see 3 natural groupings How does k-means attempt to define this grouping?

Step 1.
Select \boldsymbol{k} (the number of clusters)

Step 2.
Select $\boldsymbol{k}=\mathbf{3}$ distant data points at random
These are the initial clusters

Step 3.
Measure distance between the 1st point and the $\boldsymbol{k}=\mathbf{3}$ initial
Step 4.
Assign the 1st point to the nearest cluster
clusters

Step 5.
Update cluster centers
Calculate the mean value for the blue cluster including the new point

Step 6.
Assign next point to closest cluster
Use updated cluster centers for distance calculation

Step 7.
Update cluster centers and move to next point Use updated cluster centers for distance calculation

Step 8.
Repeat for each point
Each time updating cluster centers

Hmm....

Here the k-means result does not look as good as what we were able to do by eye!

Step 9.
Assess the quality of the clustering by adding up the variation within each cluster

The total variation within clusters
K-means keeps track of these clusters and their total variance and then does the whole thing over again with different starting points

Step 10.
Repeat with different starting points
Back to the beginning and do all steps over again...

..Pick $k=3$ initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added...

..Pick $k=3$ initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added...

.Pick $k=3$ initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added..

..Pick $k=3$ initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added...
..Pick $k=3$ initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added...

.Pick $k=3$ initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added...
...Pick $k=3$ initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added..

...Pick $k=3$ initial clusters and add the remaining points to the cluster with the nearest mean, recalculating the mean each time a new point is added...

Now the data are all assigned to clusters, we again sum the variation within each cluster

Step 10.
Repeat again with different starting points

After several iterations k-means clustering knows it has the best clustering so-far based on the smallest total variation with clusters.

However, it does not know if it has found the best overall. So it will perform several more iterations with different starting points...

The total variation within clusters

What if we have more dimensions?

Just like before, we pick 3 random points...

... and use the Euclidean distance.
In 2 dimensions the Euclidean distance is the same as the Pythagorean theorem $d=\operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2\right)$

...assign point to nearest cluster and update cluster center *

... and continue
...and continue

Again we have to use a number of different starting conditions before deciding on a good clustering!

What if we have even more dimensions?

What if we have even more

 dimensions?| | Cell Samples | | |
| :---: | :---: | :---: | :---: |
| | $\# 1$ | $\# 2$ | $\# 3$ |
| Gene 1 | 12 | 6 | -13 |
| Gene 2 | -7 | 13 | 10 |
| Gene 3 | 8 | 6 | -9 |
| Gene 4 | 9 | 5 | -11 |
| Gene 5 | -3 | 1 | 6 |
| Gene 6 | 10 | 4 | -8 |

We could simply plot them by relabeling the cell samples as \mathbf{x}, \mathbf{y}, and \mathbf{z} (i.e. a 3D plot)

What if we have even more dimensions?

...and go through exactly the same procedure with initial cluster assignment followed by distance calculation etc...

...and go through exactly the same procedure with initial cluster assignment followed by distance calculation etc...

$$
d=\operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2\right)
$$

Of course we don't actually need to plot anything.

We can just calculate the Euclidean distance along any number of dimensions and perform our k-means clustering in the same way.

k-means in R

```
kmeans(x, centers= 3, nstart= 20)
```

- Input \mathbf{x} is a numeric matrix, or data.frame, with one observation per row, one feature per column
- k-means has a random component
- Run algorithm multiple times to improve odds of the best model

Determining number of clusters

Trial and error is not the best approach

Systematically try a range of different k values and plot a "scree plot"

Here there is a large reduction in SS with $\mathbf{k}=\mathbf{2}$ but after that the values do not go down as quickly!

Your Turn!

```
tmp <- c(rnorm(30,-3), rnorm(30,3))
x <- cbind(x=tmp, y=rev(tmp))
plot(x)
```


Today's Menu

- Introduction to machine learning
- Unsupervised, supervised and reinforcement learning
- Clustering
- K-means clustering
- Hierarchical clustering
- Heatmap representations
- Dimensionality reduction, visualization and 'structure' analysis
- Principal Component Analysis (PCA)
- Hands-on application to cell classification

Hierarchical clustering

- Number of clusters is not known ahead of time
- Two kinds of hierarchical clustering:
- bottom-up
- top-down

Hierarchical clustering

Simple example:
5 clusters: Each point starts as it's own "cluster"!

Hierarchical clustering
4 clusters

Hierarchical clustering

3 clusters

Hierarchical clustering

End: 1 cluster

Hierarchical clustering

2 clusters

Hierarchical clustering in R

```
dist_matrix <- dist(x)
hc <- hclust(d = dist_matrix)
hc
hclust(d = dist_matrix)
Cluster method : complete
Distance : euclidean
Number of objects: 60
```

Lets have a closer look...

```
dist_matrix <- dist(x)
```

dim(dist_matrix)
NULL
View(as.matrix(dist_matrix))
$\operatorname{dim}(x)$
[1] 60
dim(as.matrix(dist_matrix))
[1] 6060

Dendrogram

- Tree shaped structure used to interpret hierarchical clustering models

Dendrogram

- Tree shaped structure used to interpret hierarchical clustering models

Dendrogram

- Tree shaped structure used to interpret hierarchical clustering models

Dendrogram

- Tree shaped structure used to interpret hierarchical clustering models

Dendrogram

- Tree shaped structure used to interpret hierarchical clustering models

Dendrogram plotting in R
plot(hc)

Dendrogram plotting in R

plot(hc)

abline(h=6, col="red")

Dendrogram plotting in R

```
plot(hc)
abline(h=6, col="red")
cutree(hc, h=6)
```


Dendrogram plotting in R

```
plot(hc)
abline(h=6, col="red")
cutree(hc, k=2 ) # Cut
[1] 1,1,1,2,
```


Linking methods: complete and average

Linking clusters in hierarchical clustering

- How is distance between clusters determined?
- There are four main methods to determine which cluster should be linked:
- Complete: pairwise similarity between all observations in cluster 1 and cluster 2, and uses largest of similarities
- Single: same as above but uses smallest of similarities
- Average: same as above but uses average of similarities
- Centroid: finds centroid of cluster 1 and centroid of cluster 2, and uses similarity between two centroids

Linking method: single

Linking method: centroid

Linkage in R


```
hc.complete <- hclust(d, method="complete")
hc.average <- hclust(d, method="average")
hc.single <- hclust(d, method="single")
```


Side-Note: Practical matters

- Data on different scales can cause undesirable results in clustering methods
- Solution is to scale data so that features have same mean and standard deviation
= Subtract mean of a feature from all observations
= Divide each feature by the standard deviation of the feature
- Normalized features have a mean of zero and a standard deviation of one

Side-Note: Practical matters

```
colMeans(x)
[1] -0.1337828 0.0594019
apply(x, 2, sd)
[1] 1.974376 2.112357)
scaled_x <- scale(x)
colMeans(scaled_x)
[1] 2.775558e-17 3.330669e-17
apply(scaled_x, 2, sd)
```


Your Turn!

```
x <- rbind(
    matrix(rnorm(100, mean=0, sd = 0.3), ncol = 2), # cl
    matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2), # c2
    matrix(c(rnorm(50, mean = 1, sd = 0.3), # c3
        rnorm(50, mean = 0, sd = 0.3)), ncol = 2))
colnames(x) <- c("x", "y")
plot(x)
col <- as.factor( rep(c("c1","c2","c3"), each=50) )
plot(x, col=col)
```


Today's Menu

- Introduction to machine learning
- Unsupervised, supervised and reinforcement learning
- Clustering
- K-means clustering
- Hierarchical clustering
- Heatmap representations
- Dimensionality reduction, visualization and 'structure' analysis
- Principal Component Analysis (PCA)
- Hands-on application to cell classification

Even though they look the same we suspect that there are differences

Unfortunately we can't observe the differences visually

	Cell1	Cell2	Cell3	Cell4	\ldots
Gene1	3	0.25	2.8	0.1	\ldots
Gene2	2.9	0.8	2.2	1.8	\ldots
Gene3	2.2	1	1.5	3.2	\ldots
Gene4	2	1.4	2	0.3	\ldots
Gene5	1.3	1.6	1.6	0	\ldots
Gene6	1.5	2	2.1	3	\ldots
Gene7	1.1	2.2	1.2	2.8	\ldots
Gene8	1	2.7	0.9	0.3	\ldots
Gene9	0.4	3	0.6	0.1	\ldots

Each column shows how much each gene is transcribed in each cell

Here is the data...

	Cell1	Cell2	Cell3	Cell4	\ldots
Gene1	3	0.25	2.8	0.1	\ldots
Gene2	2.9	0.8	2.2	1.8	\ldots
Gene3	2.2	1	1.5	3.2	\ldots
Gene4	2	1.4	2	0.3	\ldots
Gene5	1.3	1.6	1.6	0	\ldots
Gene6	1.5	2	2.1	3	\ldots
Gene7	1.1	2.2	1.2	2.8	\ldots
Gene8	1	2.7	0.9	0.3	\ldots
Gene9	0.4	3	0.6	0.1	\ldots

We have just 2 cells so we can plot the measurements for each gene

Cell2

	Cell1	Cell2
Gene1	3	0.25
Gene2	2.9	0.8
Gene3	2.2	1
Gene4	2	1.4
Gene5	1.3	1.6
Gene6	1.5	2
Gene7	1.1	2.2
Gene8	1	2.7
Gene9	0.4	3

	Cell1	Cell2
Gene1	3	0.25
Gene2	2.9	0.8
Gene3	2.2	1
Gene4	2	1.4
Gene5	1.3	1.6
Gene6	1.5	2
Gene7	1.1	2.2
Gene8	1	2.7
Gene9	0.4	3

This gene (Gene9) is lowly transcribed in Cell1 and highly transcribed in Cell2...

Cell2

	Cell1	Cell2
Gene1	3	0.25
Gene2	2.9	0.8
Gene3	2.2	1
Gene4	2	1.4
Gene5	1.3	1.6
Gene6	1.5	2
Gene7	1.1	2.2
Gene8	1	2.7
Gene9	0.4	3

In generel, Cell1 and Cell2 have an inverse correlation.

This suggests that they may be two different types of cells as they are using different genes

	Cell1	Cell2
Gene1	3	0.25
Gene2	2.9	0.8
Gene3	2.2	1
Gene4	2	1.4
Gene5	1.3	1.6
Gene6	1.5	2
Gene7	1.1	2.2
Gene8	1	2.7
Gene9	0.4	3

Alternatively, we could try to plot all 3 cells at once on a 3-dimensional graph.		Cell1	Cell2	Cell3
	Gene1	3	0.25	2.8
	Gene2	2.9	0.8	2.2
	Gene3	2.2	1	1.5
	Gene4	2	1.4	2
	Gene5	1.3	1.6	1.6
${ }^{\text {Cell3 }}$	Gene6	1.5	2	2.1
	Gene7	1.1	2.2	1.2
	Gene8	1	2.7	0.9
Cell2	Gene9	0.4	3	0.6

But what if we have 4 or more Cells?

	Cell1	Cell2	Cell3	Cell4	\ldots
Gene1	3	0.25	2.8	0.1	\ldots
Gene2	2.9	0.8	2.2	1.8	\ldots
Gene3	2.2	1	1.5	3.2	\ldots
Gene4	2	1.4	2	0.3	\ldots
Gene5	1.3	1.6	1.6	0	\ldots
Gene6	1.5	2	2.1	3	\ldots
Gene7	1.1	2.2	1.2	2.8	\ldots
Gene8	1	2.7	0.9	0.3	\ldots
Gene9	0.4	3	0.6	0.1	\ldots

Or draw some crazy graph that has an axis for each cell and makes or brains hurt!

	Cell1	Cell2	Cell3	Cell4	\ldots
Gene1	3	0.25	2.8	0.1	\ldots
Gene2	2.9	0.8	2.2	1.8	\ldots
Gene3	2.2	1	1.5	3.2	\ldots
Gene4	2	1.4	2	0.3	\ldots
Gene5	1.3	1.6	1.6	0	\ldots
Gene6	1.5	2	2.1	3	\ldots
Gene7	1.1	2.2	1.2	2.8	\ldots
Gene8	1	2.7	0.9	0.3	\ldots
Gene9	0.4	3	0.6	0.1	\ldots

	Cell1	Cell2	Cell3	Cell4	\ldots
Gene1	3	0.25	2.8	0.1	\ldots
Gene2	2.9	0.8	2.2	1.8	\ldots
Gene3	2.2	1	1.5	3.2	\ldots
Gene4	2	1.4	2	0.3	\ldots
Gene5	1.3	1.6	1.6	0	\ldots
Gene6	1.5	2	2.1	3	\ldots
Gene7	1.1	2.2	1.2	2.8	\ldots
Gene8	1	2.7	0.9	0.3	\ldots
Gene9	0.4	3	0.6	0.1	\ldots

Enter Principal Component Analysis (PCA)

	Cell1	Cell2	Cell3	Cell4	\ldots
Gene1	3	0.25	2.8	0.1	\ldots
Gene2	2.9	0.8	2.2	1.8	\ldots
Gene3	2.2	1	1.5	3.2	\ldots
Gene4	2	1.4	2	0.3	\ldots
Gene5	1.3	1.6	1.6	0	\ldots
Gene6	1.5	2	2.1	3	\ldots
Gene7	1.1	2.2	1.2	2.8	\ldots
Gene8	1	2.7	0.9	0.3	\ldots
Gene9	0.4	3	0.6	0.1	\ldots

PCA converts the correlations (or lack there of) among all cells into a representation we can more readily interpret (e.g. a 2D graph!)

PC1

	Cell1	Cell2	Cell3	Cell4	\ldots
Gene1	3	0.25	2.8	0.1	\ldots
Gene2	2.9	0.8	2.2	1.8	\ldots
Gene3	2.2	1	1.5	3.2	\ldots
Gene4	2	1.4	2	0.3	\ldots
Gene5	1.3	1.6	1.6	0	\ldots
Gene6	1.5	2	2.1	3	\ldots
Gene7	1.1	2.2	1.2	2.8	\ldots
Gene8	1	2.7	0.9	0.3	\ldots
Gene9	0.4	3	0.6	0.1	\ldots

Cells that are highly correlated cluster together

PC1

	Cell1	Cell2	Cell3	Cell4	\ldots
Gene1	3	0.25	2.8	0.1	\ldots
Gene2	2.9	0.8	2.2	1.8	\ldots
Gene3	2.2	1	1.5	3.2	\ldots
Gene4	2	1.4	2	0.3	\ldots
Gene5	1.3	1.6	1.6	0	\ldots
Gene6	1.5	2	2.1	3	\ldots
Gene7	1.1	2.2	1.2	2.8	\ldots
Gene8	1	2.7	0.9	0.3	\ldots
Gene9	0.4	3	0.6	0.1	\ldots

Cells that are highly correlated cluster together

	Cell1	Cell2	Cell3	Cell4	\ldots
Gene1	3	0.25	2.8	0.1	\ldots
Gene2	2.9	0.8	2.2	1.8	\ldots
Gene3	2.2	1	1.5	3.2	\ldots
Gene4	2	1.4	2	0.3	\ldots
Gene5	1.3	1.6	1.6	0	\ldots
Gene6	1.5	2	2.1	3	\ldots
Gene7	1.1	2.2	1.2	2.8	\ldots
Gene8	1	2.7	0.9	0.3	\ldots
Gene9	0.4	3	0.6	0.1	\ldots

To make the clusters easier to see we can color code them..

PC1

	Cell1	Cell2	Cell3	Cell4	\ldots
Gene1	3	0.25	2.8	0.1	\ldots
Gene2	2.9	0.8	2.2	1.8	\ldots
Gene3	2.2	1	1.5	3.2	\ldots
Gene4	2	1.4	2	0.3	\ldots
Gene5	1.3	1.6	1.6	0	\ldots
Gene6	1.5	2	2.1	3	\ldots
Gene7	1.1	2.2	1.2	2.8	\ldots
Gene8	1	2.7	0.9	0.3	\ldots
Gene9	0.4	3	0.6	0.1	\ldots

Once we have identified the clusters
from our PCA results, we can go back to or original cells..

Once we have identified the clusters from our PCA results, we can go back to or original cells...

...and see they represent three different types of cells doing three different things with their genes!

Some key points:

The PCs (i.e. new plot axis) are ranked by their importance

So PC1 is more important than PC2 which in turn is more important than PC3 etc.

Some key points:

The PCs (i.e. new plot axis) are ranked by their importance

So PC1 is more important than PC2 which in turn is more important than PC3 etc.

So the red and blue cluster are more dissimilar than the yellow and blue clusters

The PCs (i.e. new plot axis) are ranked by the amount of variance in the original data (i.e. gene expression values) that they "capture"

Some key points:
The PCs (i.e. new plot axis) are ranked by their importance

So PC1 is more important than PC2 which in turn is more important than PC3 etc.

So the red and blue cluster are more dissimilar than the yellow and blue clusters

- We actually get two main things out of a typical PCA

The PCs (i.e. new plot axis) are

- The new axis (called PCs or Eigenvectors) and ranked by their importance
- Eigenvalues that detail the amount of variance captured by each PC

PC1 (44\%)
which in turn is more important than PC3 etc.
So PC1 is more important than PC2

So the red and blue cluster are more dissimilar than the yellow and blue clusters

The PCs (i.e. new plot axis) are ranked by the amount of variance in the original data (i.e. gene expression values) that they "capture"

In this example PC1 'captures' 4 x more of the original variance than PC2 (44/11 = 4)

- Another cool thing we can get out of PCA is a quantitive report on how the original variables contributed to each PC
- In other words, which were the most important genes that lead to the observed clustering in PC-space
- These are often called the loadings and we can plot them to see which are the most important genes for the observed separation as well as outputting ranked lists of genes that act to discriminate the samples

```
gene64 rragen9
0.1047968 0.1047629
```

```
gene7 rrane65
-0.1047629 -0.1047443
```


Outline: How to do PCA in R

- How to use the prcomp() function to do PCA.
- How to draw and interpret PCA plots
- How to determine how much variation each principal component accounts for and the the "intrinsic dimensionality" useful for further analysis
- How to examine the loadings (or loading scores) to determine what variables have the largest effect on the graph and are thus important for discriminating samples.
- First lets generate some example data to work with.

```
## Initialize a blank 100 row by 10 column matrix
```

mydata <- matrix(nrow=100, ncol=10)

- First lets generate some example data to work with.
- First lets generate some example data to work with.

```
## Initialize a blank 100 row by 10 column matrix
## Initialize a blank 100 row by 10
## Lets label the rows gene1, gene2 etc. to gene100
## Lets label the rows gene1, gene2 etc. to gene100
```

```
## Initialize a blank 100 row by 10 column matrix
## Inltialize a blank 100 row by 10
## Lets label the rows gene1, gene2 etc. to gene100
rownames(mydata) <- paste("gene", 1:100, sep="")
## Lets label the first 5 columns wt1, wt2, wt3, wt4 and wt5
## and the last 5 ko1, ko2 etc. to ko5 (for "knock-out")
## and the last 5 ko1, ko2 etc. to ko5 (for "knock-out")
    paste("ko", 1:5, sep="")')
```

- First lets generate some example data to work with.

```
## Initialize a blank 100 row by 10 column matrix
```

mydata <- matrix(nrow=100, ncol=10)
\#\# Lets label the rows gene1, gene2 etc. to gene100 rownames (mydata) <- paste("gene", 1:100, sep="")
\#\# Lets label the first 5 columns wt1, wt2, wt3, wt4 and wt5 \#\# and the last 5 ko1, ko2 etc. to ko5 (for "knock-out") colnames (mydata) <- c(paste("wt", $1: 5$, sep=""), \quad paste ("ko", $1: 5$, sep="") $)$
\#\# Fill in some fake read counts
for (i in 1 :nrow (mydata))

${ }_{i}$ counts

wt.values <- rpois(5, lambda=sample ($\mathrm{x}=10: 1000$, size=1))
ko.values <- rpois(5, lambda=sample ($x=10: 1000$, size $=1$))
mydata[i,] <- c(wt.values, ko.values)
head (mydata)

- NOTE: the samples are columns, and the genes are rows!

```
mydata <- matrix(nrow=100, ncol=10)
```

rownames(mydata) <- paste("gene", 1:100, sep="")
colnames (mydata) <- c(paste ("wt", $1: 5$, sep=""),
paste("ko", 1:5, sep="")
for(i in 1:nrow(mydata)) (
wt.values <- rpois (5, lambda=sample ($x=10: 1000$, size=1) $) ~$
ko.values ko.values <- rpois (5 , lambda=sample ($x=10: 1000$, size=1)) mydata[i,] <- c(wt.values, ko.values)
head (mydata)
wt1 wt2 wt3 wt4 wt5 ko1 ko2 ko3 ko4 ko5 $\begin{array}{lllllllllll}\text { gene1 } & 147 & 171 & 160 & 175 & 187 & 63 & 57 & 58 & 55 & 59\end{array}$
 $\begin{array}{llllllllllll}\text { gene3 } & 702 & 672 & 653 & 681 & 701 & 593 & 579 & 644 & 596 & 610\end{array}$

- Now we have our data we call prcomp() to do PCA
- NOTE: prcomp() expects the samples to be rows and genes to be columns so we need to first transpose the matrix with the t() function!

```
## lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)
## See what is returned by the prcomp() function
attributes(pca)
# $names
#[1] "sdev" "rotation" "center" "scale" "x"
# $class
#[1] "prcomp"
```

- The returned $\mathrm{pca} \$ \mathrm{x}$ here contains the principal
- The returned pca\$x here contains the principal components (PCs) for drawing our first graph.
- Here we will take the first two columns in pca\$x (corresponding to PC1 and PC2) to draw a 2-D plot

```
## lets do PCA
pca <- prcomp(t (mydata), scale=TRUE)
## See what is returned by the prcomp() function
attributes(pca)
# $names
#[1] "sdev" "rotation" "center" "scale" "x"
# $class
#[1] "prcomp"
```

\#\# lets do PCA
pca <- prcomp(t(mydata), scale=TRUE)
\#\# A basic PC1 vs PC2 2-D plot
plot(pca\$x[,1], pca\$x[,2])

- The returned pca\$x here contains the principal components (PCs) for drawing our first graph.
- Here we will take the first two columns in pca\$x (corresponding to PC1 and PC2) to draw a 2-D plot
- Looks interesting with a nice separation of samples into two groups of 5 samples each
- Now we can use the square of pca\$sdev, which stands for "standard deviation", to calculate how much variation in the original data each PC accounts for

\#\# lets do PCA
 \#\# lets do PCA pca <- prcomp(t (mydata), scale=TRUE)
 \#\# A basic PC1 vs PC2 2-D plot plot(pca\$x[,1], pca\$x[,2])

- Looks interesting with a nice separation of samples into two groups of 5 samples each
- Now we can use the square of pca\$sdev, which stands for "standard deviation", to calculate how much variation in the original data each PC accounts for

```
## lets do PCA
```

pca <- prcomp(t(mydata), scale=TRUE)
\#\# A basic PC1 vs PC2 2-D plot
plot(pca\$x[,1], pca\$x[,2])
\#\# Precent variance is often more informative to look at pca.var <- pca\$sdev^2 pca.var.per <- round(pca.var/sum(pca.var)*100, 1)

- Looks interesting with a nice separation of samples into two groups of 5 samples each
- Now we can use the square of pca\$sdev, which stands for "standard deviation", to calculate how much variation in the original data each PC accounts for

```
\#\# lets do PCA
```

pca <- prcomp(t(mydata), scale=TRUE)
\#\# A basic PC1 vs PC2 2-D plot
plot(pca\$x[,1], pca\$x[,2])
\#\# Precent variance is often more informative to look at
pca.var <- pca\$sdev^2
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)
pca.var.per
$\left[\begin{array}{llllllllll}{[1]} & 91.0 & 2.8 & 1.9 & 1.3 & 0.8 & 0.7 & 0.6 & 0.5 & 0.3\end{array} 0.0\right.$

- Looks interesting with a nice separation of samples into two groups of 5 samples each
- From the "scree plot" it is clear that PC1 accounts for almost all of the variation in the data!
- Now we can use the square of pca\$sdev, which stands for "standard deviation", to calculate how much variation in the original data each PC accounts for
pca.var <- pca\$sdev^2
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)
barplot(pca.var.per, main="Scree Plot",
xlab="Principal Component", ylab="Percent Variation")

- Which means there are big differences between these two groups that are separated along the PC1 axis...
pca.var <- pca\$sdev^2
pca.var <- pca\$sdev^2
pca.var.per <- round (pca.var/sum(pca.var)*100, 1)
barplot(pca.var.per, main="Scree Plot"
xlab="Principal Component", ylab="Percent Variation") Scree Plot

- Lets make our plot a bit more useful...
\#\# A vector of colors for wt and ko samples
\#\# A vector of colors for
colvec <- colnames (mydata)
colvec <- colnames (mydata)
colvec [grep ("wt", colvec)] <- "red"
colvec [grep ("ko", colvec)] <- "blue"
plot (pca\$x[,1], pca\$x[,2], col=colvec, pch=16, xlab=paste0("PC1 (", pca.var.per[1], "\%)"), ylab=paste0("PC2 (", pca.var.per[2], "\%)"))

- Finally, lets look at how to use the loading scores to determine which genes have the largest effect on where samples are plotted in the PCA plot
- The prcomp() function calls loading scores \$rotation
\#\# Click to identify which sample is which
identify(pca\$x[,1], pca\$x[,2], labels=colnames(mydata))
\#\# Press ESC to exit...
\#\# Lets focus on PC1 as it accounts for > 90\% of variance
loading scores <- pca\$rotation[,1]
- Finally, lets look at how to use the loading scores to determine which genes have the largest effect on where samples are plotted in the PCA plot
- The prcomp() function calls loading scores \$rotation
\#\# Lets focus on PC1 as it accounts for > 90\% of variance loading_scores <- pca\$rotation [,1]
sumnary (1oading_scores)

- Finally, lets look at how to use the loading scores to determine which genes have the largest effect on where samples are plotted in the PCA plot
- The prcomp() function calls loading scores \$rotation
$\# \#$ we are interested in the magnitudes of both plus
$\# \#$ and minus contributing genes
\#\# and minus contributing genes
gene_scores <- abs (loading_scores)
- Finally, lets look at how to use the loading scores to determine which genes have the largest effect on where samples are plotted in the PCA plot
- The prcomp() function calls loading scores \$rotation
- Finally, lets look at how to use the loading scores to determine which genes have the largest effect on where samples are plotted in the PCA plot
- The prcomp() function calls loading scores \$rotation
loading_scores <- pca\$rotation [, 1]
gene_scores <- abs(loading_scores)
\#\# Sort by magnitudes from high to low
gene_score_ranked <- sort(gene_scores, decreasing=TRUE)

```
loading_scores <- pca$rotation[,1]
gene_scores <- abs(loading_scores)
## Sort by magnitudes from high to low
## Sort by magnitudes from high to low 
## Find the names of the top 5 genes
top 5 genes <- names(gene score ranked[1:5])
```

```
loading_scores <- pca$rotation[,1]
```

loading_scores <- pca\$rotation[,1]
gene_scores <- abs(loading_scores)
gene_scores <- abs(loading_scores)

Sort by magnitudes from high to low

Find the names of the top 5 genes

Find the names of the top 5 genes

\#\#p_5_genes <- names(gene_score_ranked[1:5])
\#\#p_5_genes <- names(gene_score_ranked[1:5])

Show the scores (with +/- sign)

Show the scores (with +/- sign)

Show the scores (with +/-

```
## Show the scores (with +/- 
```

- Here we see genes with the largest positive loading scores that effectively 'push' the "ko" samples to the right positive side of the plot.
- And the genes with high negative scores that push "wt" samples to the left side of the plot.
loading_scores <- pca\$rotation [, 1]
gene_scores <- abs(loading_scores)
\#\# Sort by magnitudes from high to low
gene_score_ranked <- sort (gene_scores, decreasing=TRUE)
\#\# Find the names of the top 5 genes
top_5_genes <- names (gene_score_ranked[1:5])
\#\# Show the scores (with +/- sign)

geasrotationltop_5_genes,1/				
gene64	gene39	gene7	gene60	gene65
0.1047968	0.1047629	-0.1047629	0.1047601	-0.1047443

PCA Recap

- PCA is classic "multivariate statistical technique" used to reduce the dimensionality of a complex data set to a more manageable number (typically 2D or 3D)
- For a matrix of m genes $x n$ samples, we mean center (i.e. subtract the sample mean from each sample column), optionally rescale the values for each sample column, then calculate a new covariance matrix of size $n \times n$
- We finally diagonalize the covariance matrix to yield our n Eigenvectors (called principal components or PCs) and n Eigenvalues.
- The top PCs (with largest Eigenvalues) retain the essential features of the original data and represent a useful subspace for further analysis (e.g. visualization, clustering, feature extraction, outlier detection etc...)
- Here we see genes with the largest positive loading scores that effectively 'push' the "ko" samples to the right positive side of the plot.
- And the genes with high negative scores that push "wt" samples to the left side of the plot.

```
pca$rotation[top_5_genes,1]
```

gene64 gene39
$0.1047968 \quad 0.1047629$
gene7 gene65
$\begin{array}{rr}\text { gene7 } & \text { gene65 } \\ -0.1047629 & -0.1047443\end{array}$

PCA objectives in a nutshell

- to reduce dimensionality
- to visualize multidimensional data
- to choose the most useful variables (features)
- to identify groupings of objects (e.g. genes/samples)
- to identify outliers

Your turn!

Perform a PCA on the UK foods dataset
https://bioboot.github.io/bimm143 F18/class-material/UK food pca/

Input: read, View/head,
PCA: prcomp,
Plots: PCA plot
scree plot,
loadings plot.
[Muddy Point Feedback Link]

Practical issues with PCA

- Scaling the data
- Missing values:

Scaling

> data(mtcars) > head(mtcars)												
	mpg	cyl	disp	p hp	drat	wt	qsec	vs		gear	carb	
Mazda RX4	21.0	6	160	0110	3.90	2.620	16.46	6	1	4	4	
Mazda RX4 Wag	21.0	6	160	0110	3.90	2.875	17.02	2	1	4	4	
Datsun 710	22.8	4	108	893	3.85	2.320	18.61	1	1	4	1	
Hornet 4 Drive	21.4	6	258	8110	3.08	3.215	19.44	4	0	3	1	
Hornet Sportabout	18.7	8	360	0175	3.15	3.440	17.02	2	0	3	2	
Valiant	18.1	6	225	105	2.76	3.460	20.22	2	0	3	1	
\# Means and standard deviations vary a lot > round(colMeans(mtcars), 2)												
20.096 .19230	. 7214	46.69		3.60	3.22	17.8		0.44		0.41	3.69	2.81
$>\underset{\mathrm{mpg}}{\mathrm{round}} \text { (apply (mtc } \mathrm{cyl}$	$\begin{aligned} & \text { ars, } \\ & \text { is, } \end{aligned}$	$\begin{array}{r} \text { 2, sd } \\ \mathrm{hp} \end{array}$	$\begin{aligned} & \text { d), } 2 \text {) } \\ & 0 \\ & d r \end{aligned}$	$\begin{aligned} & \text { 2) } \\ & \text { drat } \end{aligned}$		qsec		vs		am	gear	carb
6.031 .79123	94	68.56		0.53	0.98	1.79		0.50		0.50	0.74	1.62

Scaling

Practical issues with PCA

prcomp(x, center=TRUE, scale=FALSE)
prcomp(x, center=TRUE, scale=TRUE)

- Scaling the data
- Missing values:
= Drop observations with missing values
= Impute / estimate missing values

