Find a Gene Assighmeén

Lecture 10'{ Q

-

’

N

UCSan‘Eleg

< \(h\/

Questions:

[Q1] Tell me the name of a protein you are interested in. Include the species and the accession
number. This can be a human protein or a protein from any other species as long as it's function
is known.

I you do not have a favorite protein, select human RBP4 or KIF11. Do not use beta globin as
this is in the worked example report that | provide you with online.

[Q2] Perform a BLAST search against a DNA database, such as a database consisting of
genomic DNA or ESTs. The BLAST server can be at NCBI or elsewhere. Include details of the
BLAST method used, database searched and any limits applied (e.g. Organism)

Also include the output of that BLAST search in your document. If appropriate, change the font
to Courier size 10 so that the results are displayed neatly. You can also screen capture a
BLAST output (e.g. alt print screen on a PC or on a MAC press 3-shift-4. The pointer becomes
abulls eye. Select the area you wish to capture and release. The image is saved as a file called
Screen Shot [].png in your Desktop directory). Itis not necessary to print out all of the
blast results if there are many pages.

On the BLAST results, clearly indicate a match that represents a protein sequence,
encoded from some DNA sequence, that is homologous to your query protein. | need to
be able to inspect the pairwise alignment you have selected, including the E value and
score. It should be labeled a "genomic clone" or "mRNA sequence”, etc. - but include no
functional annotation.

In general, [Q2] is the most difficult for students because it requires you to have a “feel”
for how to interpret BLAST results. You need to distinguish between a perfect match to

your query (i.e. a sequence that is not “novel), a near match (something that might be

“novel’, depending on the results of [Q4]), and a non-homologous result.

If you are having trouble finding a novel gene try restricting your search to an organism
that is poorly annotated.

Q3] Gather information about this “novel” protein. At a minimum, show me the protein
sequence of the “novel” protein as displayed in your BLAST results from [Q2] as FASTA
format (you can copy and paste the aligned sequence subject lines from your BLAST
result page if necessary) o translate your novel DNA sequence using a tool called
EMBOSS Transeq at the EBI. Don't forget to translate all six reading frames; the ORF
(open reading frame) is likely to be the longest sequence without a stop codon. It may
not start with a methionine if you don't have the complete coding region. Make sure the
sequence you provide includes a header/subject line and is in traditional FASTA format.

o~

Here, tell me the name of the novel protein, and the species from which it derives. It is
very unlikely (but still definitely possible) that you will find a novel gene from an
organism such as S. cerevisiae, human or mouse, because those genomes have
already been thoroughly annotated. It is more likely that you will discover a new gene in
agenome that is currently being sequenced, such as bacteria or plants or protozoa.

[Q4] Prove that this gene, and its corresponding protein, are novel. For the purposes of

this project, “novel” is defined as follows. Take the protein sequence (your answer to

[Q3)), and use it as a query in a blastp search of the nr database at NCBI.

 If there is a match with 100% amino acid identity to a protein in the database, from the
same species, then your protein is NOT novel (even if the match is to a protein with a
name such as “unknown”). Someone has already found and annotated this sequence,
and assigned it an accession number.

 If the top match reported has less than 100% identity, then it is likely that your protein
is novel, and you have succeeded

+ If there is a match with 100% identity, but to a different species than the one you
started with, then you have likely succeeded in finding a novel gene.

 If there are no database matches to the original query from [Q1], this indicates that
you have partially succeeded: yes, you may have found a new gene, but no, itis not
actually homologous o the original query. You should probably start over.

Q5] Generate a multiple sequence alignment with your novel protein, your original
query protein, and a group of other members of this family from different species. A
typical number of proteins to use in a multiple sequence alignment for this assignment
purpose is a minimum of 5 and a maximum of 20 - although the exact number is up to
you. Include the multiple sequence alignment in your report. Use Courier font with a size
appropriate to fit page width.

Side-note: Indicate your sequence in the alignment by choosing an appropriate name
for each sequence in the input unaligned sequence file (i.e. edit the sequence file so
that the species, or short common, names (ather than accession numbers) display in
the output alignment and in the subsequent answers below). The goal in this step is to
create an interesting an alignment for building a phylogenetic tree that ilustrates
species divergence

Find-a-Gene Project Assignment

A total of 20% of the course grade will be assigned based on the
“find-a-gene project assignment”

The objective with this assignment is for you to demonstrate your
grasp of database searching, sequence analysis, structure analysis
and the R environment that we have covered to date in class.

You may wish to consult the scoring rubric (in the linked project
description) and the example report for format and content
guidance.

= Your responses to questions Q1-Q4 are due at the beginning of
class Thursday Nov 15th (11/15/18).

= The complete assignment, including responses to all questions,
is due at the beginning of class Thursday Dec 4th (12/04/18).

What is Git?

(1) An unpleasant or contemptible
person. Often incompetent,
annoying, senile, elderly or
childish in character.

(2) A modern distributed version
control system with an emphasis
on speed and data integrity.

What is Git?

(1) An unpleasant or contemptible
person. Often incompetent,
annoying, senile, elderly or
childish in character.

(2) A modern distributed version
control system with an emphasis
on speed and data integrity.

Version Control

Version control systems (VCS) record changes
to a file or set of files over time so that you can
recall specific versions later.

Free/open-source CVS (1986, 1990 in C) - CVSNT (1998) - QVCS Enterprise (1998) - Subversion (2000)

Software Change Manager (1970s) - Panvalet (1970s) - Endevor (1980s) - Dimensions CM
Rt (1980s) - DSEE (1984) - Synergy (1990) - ClearCase (1992) - CMVC (1994) - Visual SourceSafe
Proprietary (1994) - Perforce (1995) - StarTeam (1995) - Integrity (2001) - Surround SCM (2002) «
AccuRev SCM (2002) - SourceAnywhere (2003) « Vault (2003) - Team Foundation Server (2005)
Team Concert (2008)
GNU arch (2001) - Darcs (2002) - DCVS (2002) - ArX (2003) - Monotone (2003) « SVK (2003) -
Free/open-source X . X -
Distributed Codeville (2005) + Bazaar (2005) + Git (2005) - Mercurial (2005) « Fossil (2007) - Veracity (2010)

Proprietary TeamWare (1990s?) - Code Co-op (1997) + BitKeeper (1998) - Plastic SCM (2006)

There are many VCS avallable see:
iKi iki/Revision_control

Client-Server vs Distributed VCS

(-
O ... = //g
/ = W\
v\\~- - T - =
commit access g / g
/ code repository D./ l /
N s _
- =

Client-server approach Distributed approach

Distributed version control systems (DCVS) allows
multiple people to work on a given project without
requiring them to share a common network.

Git is now the most popular free VCS!

THE #1 PROGRAMMER EXCUSE THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF: FOR LEGITIMATELY SLACKING OFF:

“The Subversion server’s down” “The Subversion server’s down” Git offers:

» Speed

e Backups

» Off-line access
Small footprint
Simplicity*
Social coding

~(HEY! GETBAKY ~(HEY! GETBAKY

http://tinyurl.com/distributed-advantages http://tinyurl.com/distributed-advantages

. Q. Would you write your Lab book in
Why use Glt? pencu, then erase and overwrite it

every ciouj wikth new conkenk?

Q. Would you write your Llab boolk in
pencil, then erase and overwrite it
every ciouj with new conbkent?

Version control is the lab notebook of the digital
world: it's what professionals use to keep track of
what they’ve done and to collaborate with others.

Obtaining Git

Why use Git?

Provides ‘snapshots’ of your project during development
and provides a full record of project history.

Allows you to easily reproduce and rollback to past
versions of analysis and compare differences. (N.B. Helps
fix software regression bugs!)

Keeps track of changes to code you use from others such
as fixed bugs & new features

Provides a mechanism for sharing, updating and
collaborating (like a social network)

Helps keep your work and software organized and available

. Note: You might already have git installed ;
: To check open the “Terminal” tab in RStudio and type:

which git

Obtaining Git

. Note: You might already have git installed ;
i To check open the “Terminal” tab in RStudio and type: i

which git

Configuring Git

i Windows
Follow the GitBash instructions here:
 https://bioboot.github.io/bimm143_F18/setu

i Mac & Linux
i Download git directly from here:

! https://git-scm.com/downloads

Configuring Git
(RStudio Terminal Tab)
(...or RStudio > Tools > Shell)

First tell Git who you are
> git config --global user.name “Barry Grant”
> git config --global user.email “bjgrant@ucsd.edu”

Using Git

1. Initiate a Git repository,
2. Edit content (iLe. change some files).
3, Store a ‘snapsho&' of the current file state.*

Create a new
RStudio project

1 New option to create

a Git repository... 2 New Git tab...

A
Environment History Connections GED
Directory name: 4 B Diff Commit © [-1
Test Staged Status Path

(] B B .gitignore

a B B test.Rproj

Create New Project

Create project as gubdirectory of:
Browse
[¥I create a git repository

[TUse packrat with this project

Cancel

Check if new Git options appear in RStudio?

Using Git with
RStudio

Go to: RStudio > Tools > Global Options > Git/SVN

Options

[¥IEnable version control interface for RStudio projects

1 Make sure this is ticked!
2 Make sure this is correct!

SSHRMC‘" o Checkin your RStudio “Terminal” tab:

Console Terminal Markdown

Control with RStudio

Terminal '~ | another
blitz: > which git
/usr/local/bin/git
blitz: >

GitHub & Bitbucket

GitHub and Bitbucket are two popular hosting services for
Git repositories. These services allow you to share your
projects and collaborate with others using both ‘public’ and
‘private’ repositories”.

= UDitbucket Dunboar - Toams - Repostoros - Smppes+ Groate -

test

Nikkei Hang Seng Us.10Yr Crude Oil Yen
1789373 0.49% 21404.96 0.72% -0/32Yield 2.074% 3917 -036% 11916 0.26%

THE WALL STREET JOURNAL. ~ seronoueees

Home World U.S. Politics Economy Business Tech Markets Opinion Arts Life Real Estate Q
BEAE osen News Sport Weather Shop Reel Travel More

NEWS

Home = Video | World | US&Canada UK | Business Tech = Science | Stories = Entertainment&Ars | Health

YOU ARE READING A PREVIEW OF A PAID ARTICLE. [SI:RH:113 (1A TOGET MORE GREAT CONTENT. .] . .
Microsoft buys Github code-sharing site Top Stories

for $7.5bn Gangster 'Whitey' Bulger killed in

GitHub Raises $250 Million at $2 Billion -
Valuation o

Capital raise puts company's total funding at $350 million Synagogue shooting victims'

funerals start
018

| " ® 30 Octol
A na | yt I€S . ; What do American voters care

How does your organization’s
talent measure up

to its technology? ‘a

about?

© 30 October 2018

What is the big deal? First sign up for a GitHub account
https://github.com

* At the simplest level GitHub and Bitbucket offer backup of
your projects history and a centralized mechanism for
sharing with others by putting your Git repo online.

Explore Features Enterprise Pricing

* GitHub in particular is often referred to as the “nerds

FaceBook and LinkedIn combined”. BUIld SOﬂware
* At their core both services offer a new paradigm for open better’ together'

collaborative project development, particularly for software. FEnE RIS T, R DI e 3 R D AT 2

open source and private projects. Public projects are always free.

* |In essence they allow anybody to contribute to any
public project and get acknowledgment.

Pick the FREE plan!

Pull requests Issues Gist
Welcome to GitHub
You've taken your first step into a larger world, @biobootStudent

Completed stop2
(
et up & persona 0 S oo ian

Choose your personal plan
Each plan includes:

Plan

Large

Cost

$50/month

Private repositories
Unlimited collaborators

50
Unlimited public repositories

20

Medium S22/montn
Free setup

Small St2/month 10 HTTPS Protection
Email support

Miro S7/montn
Wikis, Issues, Pages, & more

Free So/month

Your GitHub homepage

Check your email for verification request

Pull requests Issues Gist

Pro tip: updating your profile with your name, location, and a profile picture helps other
GitHub users get to know you

ontriputions E] Repositories 3\ Public activity

Contributions

biobootStudent

Joined on Aug 26, 2015

This is your contribution graph. When you make a commit to a repository, you'll get a 1 for that
day. Make more contributions and you'll get a darker green square. Over time, your chart might
start looking something like this.

We have a quick guide that will show you how to create your first repository. You'll also make a
commit and earn your first green square!

Read the Hello World guide

Pull requests Issues Gist

Your email was verified

Learn Git and GitHub without any code!

biobootStudent - Your repositories

u don't hav
Welcome to GitHub! What's next?
Create a repositor

ProTip! Feline cephalopod adhesives are great
for decorating portable computation devices.
Q ProTipt Edit your feed by updating the users you follow and repositories you wac

) Subscribe to your news feed

Name your repo
bimMmM143

O b Pull requests Issues Marketplace ~ Explore

Create a new repository

A repository contains all the files for your project, including the revision history.

Owner Repository name
bioboot~ £ bimm143
Great repository names are short and memorable. Need inspiration? How about cuddly-invention.

Description (optional)

Public

Anyone can see this repository. You choose whe
Private

You ct a commit to this repository.

< Iniffalize this repository with a README
g will et you immediately clone the repository to your computer. SKkip this step if you're importing an existing repository

Add gitignore: None ~ Add a license: None v (@)

Loy Create

Copy the “Clone” HTTPS link

o This repository Search Pull requests Issues Marketplace Explore

bioboot / bimm143 @ Unwatch~ 1 % Star 0

<> Code Issues 0 Pull requests 0 Projects 0 Insights

No description, website, or topics provided.

Add topics

© 1 commit 1 branch © 0 releases

Settings

22 1 contributor

Branch: master~ New pull request Create new file Upload files Find filgt [Nl ILEITIEELRS

. bioboot Initial commit Clone with HTTPS ® Use SSH
Use Git or checkout with SVN using the web URL,

E) README.md Initial commit

https://github.con/bioboot/binm143.gif [

README.md

Open in Desktop Download ZIP

bimm143

RStudio > New Project > Version Control

New Project

Create Project

New Directory
Start a project in a brand new working directory

Existing Directory
Associate a project with an existing working directory

Version Control
Checkout a project from a version control repository

Cancel

RStudio > New Project > Version Control

New Project

Back Clone Git Repository

Repository URL:
https://github.com/bioboot/bimm143.git

GitHub
Paste

Project directory name:
bimm143_github
Create project as subdirectory of:

~/Desktop/courses/bimm143_S18

Browse...

¥ Open in new session Create Project |§ Cancel

Demo of editing, adding
committing and pushing

Check if new Git tab
Appears in RStudio?

Environment History ~ Connections ~ Git_
B Diff Commit Q -1 Now experiment editing the
Staged Status Path README.md file in RStudio
@ BEE gitgnore and adding, committing and
@ HEBE testRproj pushing changes to GitHub
\ERLIERE]

Demo of editing, adding

o) Side-note: How to edit online
committing and pushing

Specifically lets add some Markdown content

) e

biobootStudent / demo1_github

Check if new Git tab
Appears in RStudio?

master - demo1_github / README
Now experiment editing the biobootstudent Update README
Environment History ~ Connections = Git_ README.md file in RStudio 2

B Diff Commit Q-1 and adding, committing and
Staged Status Path pushing changes to GitHub

s B B _.gitignore via this tab

[] B B test.Rproj

When you are ready copy your
different class directories/projects
to this new GitHub tracked folder

Summary

Learning Resources

Set up Git. If you will be using Git mostly or entirely via

Git is a popular ‘distributed’ version control GitHub. 100k at these how-tos.

system that is lightweight and free

GitHub and BitBucket are popular hosting
services for git repositories that have changed the
way people contribute to open source projects

Introduced basic git and GitHub usage within
RStudio and encouraged you to adopt these ‘best
practices’ for your future projects.

< https://help.github.com/categories/bootcamp/ >

Getting Git Right. Excellent Bitbucket git tutorials
< https://www.atlassian.com/git/ >

Pro Git. A complete, book-length guide and reference to Git,
by Scott Chacon and Ben Straub.
< http://git-scm.com/book/en/v2 >

StackOverflow. Excellent programming and developer Q&A.
< http://stackoverflow.com/questions/tagged/git >

Learning git can be painful!

However in practice it is not nearly as crazy-making as
the alternatives:

* Documents as email attachments

* Hair-raising ZIP archives containing file salad
* Am | working with the most recent data?

* Archaelogical “digs” on old email threads and

uncertainty about how/if certain changes have been
made or issues solved

Side-Note: Changing your
default git text editor

* You can configure the default text editor that will
be used when Git needs you to type in a
message.

> git config --global core.editor nano

* |f not configured, Git uses your system’s default
editor, which is generally Vim.

Finally Please remember that GitHub
and BitBucket are PUBLIC and that

you should cultivate your professional
and scholarly profile with intention!

Reference Slides

Using Command Line Git Initiate a Git repository

1. Initiate a Grit repository,
2. Edit content (iLe. change some files).
3. Store a ‘snapshob’ of the current file statex

Initiate a Git repository

> cd ~/Desktop

> mkdir git_class # Make a new directory

> cd git_class # Change to this directory
> git init # Our first Git command!
> |s -a # what happened?

Side-Note: The .git/ directory

Git created a ‘hidden’ .git/ directory inside your
current working directory.

You can use the ‘Is -a’ command to list (i.e. see)
this directory and its contents.

This is where Git stores all its goodies - this is Git!

You should not need to edit the contents of the .git
directory for now but do feel free to poke around.

Important Git commands Important Git commands

> git add <filename> # stage/track a file > git add <filename> # stage/track a file
> git commit -m “message” # snapshot > git commit -m “message” # snapshot

> git status # report on content changes > git status # report on content changes)

You will use these three commands again and again in your Git workflow!

Git TRACKS your directory content Example Git workflow

» To get a report of changes (since last commit) use:
> git status Eva creates a README text file
(this starts as untracked)

* You tell Git which files to track with:
> git add <filename> Adds file to STAGING AREA*

This adds files to a so called STAGING AREA [(tracked and ready to take a snapshot)
(akin to a “shopping cart” before purchasing).

. Commit changes*

* You tell Git when to take an historical SNAPSHOT of (records Snapshot of Staged f||es|)

your staged files (i.e. record their current state) with:
> git commit -m ‘Your message about changes’

Example Git workflow . Eva creates a README file

Eva creates a README text file > # cd ~/Desktop/git_class
> # git init

F-N - o
Adds file to STAGING AREA - echo "This is a first line of text.” > README
> git status # Report on changes

Commit changes*
On branchimaster
[raster]

Initial commit
#

Fva modifies README and adds a ToDo text file #
. usegit add <file>..." to include in what will be committed)

ry Adds both to STAGING AREA*

H *
Commit changes # nothing added to commit but untracked files present (use "git add" to track)

2. Adds to ‘staging area’ 3. Commit changes

> gitadd README # Add README file to staging area > git commit -m “Create a README file” # Take snapshot
> git status # Report on changes # [master (root-commit) 8676840] Create a README file
1 file changed, 1 insertion(+)

On branch master
create mode 100644 README

Initial commit
.
#/Changes to be committed: > git status # Report on changes

(use "git rm --cached <file>..." to unstage) # On branch master
nothing to commit, working directory clean

#
new file: README
#

4. Eva modifies README file
and adds a ToDo file

> echo "This is a 2nd line of text." >> README
> echo "Learn git basics" >> ToDo

> git status # Report on changes

On branch master
#
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified:

#
#
#
#
Untracked files:

(use 'git add <file>..." to include in what will be committed)
#

#

#

#

no changes added to commit (use "git add" and/or "git commit -a")

6. Commits changes

> git commit -m "Add ToDo and modify README"

[master 7b679fa] Add ToDo and modify README
2 files changed, 2 insertions(+)
create mode 100644 ToDo

> git status

On branch master
nothing to commit, working directory clean

5. Adds both files to ‘staging area’

1.

> git add README ToDo # Add both files to ‘staging area’
> git status # Report on changes

On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: README
new file: ToDo

Example Git workflow

Eva creates a README text file
Adds file to STAGING AREA*

Commit changes*

...But, how do we see the history of our project changes?

git log: Timeline history of
snapshots (i.e. commits)

> git log

commit 7b679fa747e8640918fcaad7e4c3f9c70c87b170
Author: Barry Grant <bjgrant@umich.edu>

Date: Thu Jul 30 11:43:40 2015 -0400

#

Add ToDo and finished README

#

commit 86768401610770ae32e2fd4faece07d1d5¢c68619¢
Author: Barry Grant <bjgrant@umich.edu>

Date: Thu Jul 30 11:26:40 2015 -0400

#

Create a README file

#

Side-Note: Git history is akin
to a graph

Nodes are commits labeled by their
unigue ‘commit ID’.

(This is a CHECKSUM of the commits
author, time, commit msg, commit content
and previous commit ID).

HEAD is a reference (or ‘pointer’) to the
currently checked out commit (typically the
most recent commit).

git log: Timeline history of
snapshots (i.e. commits)

> git log

commit 7b679fa747e8640918fcaad7e4c3f9c70c87b170
Author: Barry Grant <bjgrant@umich.edu>

Date: Thu Jul 30 11:43:40 2015 -0400

#

Add ToDo and finished README

#

commit 86768401610770ae32e2fd4faece07d1d5¢c68619¢
Author: Barry Grant <bjgrant@umich.edu>

Date: Thu Jul 30 11:26:40 2015 -0400

#

Create a README file

#

Projects can have complicated
graphs due to branching

Master Feature

5906. ..
1g9Kk...

8696

Branches allow you to work independently
of other lines of development we will talk
more about these later!

Summary of key Git commands:

> git status # Get a status report of changes since last commit

> git add <filename> # Tell Git which files to track/stage

> git commit -m ‘Your message’ # Take a content snapshot!

> git log # Review your commit history

> git diff <commit.ID> <commit.ID> # Inspect content differences

> git checkout <commit.ID> # Navigate through the commit history

‘Staging
Area’

status

Local
Repository

git diff: Show changes
between commits

> git diff 8676 7b67

diff --git a/README b/README

index 73bc85a..67bd82c 100644
--- a/README

+++ b/README

Q@@ -1 +1,2 @@

This is a first line of text.

+This is a 2nd line of text.

diff --git a/ToDo b/ToDo
new file mode 100644

index 0000000..14fbd56
--- /dev/null

+++ b/ToDo

@@ -0,0 +1 @@

+Learn git basics

git diff: Show changes
between commits

> git diff 8676 ## Difference to current HEAD position!

diff --git a/README b/README
index 73bc85a..67bd82c 100644

— a/README
+++ D/README m 7687 ...

@@ -1 +1,2 @@
This is a first line of text.
+This is a 2nd line of text.

diff --git a/ToDo b/ToDo
new file mode 100644

index 0000000..14fbd56
--- /dev/null

+++ b/ToDo

@@ -0,0 +1 @@

+Learn git basics

*

git diff: Show changes
between commits

> git diff 7b67 8676

diff --git a/README b/README

index 67bd82c..73bc85a 100644
--- a/README

+++ b/README

#@@-12 +1 @@

This is a first line of text.

#

diff --git a/ToDo b/ToDo

deleted file mode 100644
index 14fbd56..0000000
--- a/ToDo

+++ /dev/null

#@@1 +0,0 @@

#

HEAD advances automatically with
each new commit

m 7‘7- . To move HEAD (back or forward)

on the Git graph (and retrieve the
associated snapshot content) we
can use the command:

> git checkout <commit.ID>

8@6...

git checkout: Moves HEAD

> more README
This is a first line of text.
This is a 2nd line of text.

> git log --oneline
7b679fa Add ToDo and finished README
8676840 Create a README file

git checkout: Moves HEAD
(e.g. back to the future!)

> git checkout master
Previous HEAD position was 8676840... Create a README file
Switched to branch ‘master’ *

> git log --oneline m 7‘7
7b679fa Add ToDo and finished README "'

8676840 Create a README file

> more README
This is a first line of text.
This is a 2nd line of text.

8@6. ..

git checkout: Moves HEAD
(e.g. back in time)

> more README
This is a first line of text.
This is a 2nd line of text.

> git log --oneline
7b679fa Add ToDo and finished README
8676840 Create a README file

> git checkout 86768
You are in 'detached HEAD' state...<cut>...
HEAD is now at 8676840... Create a README file

> more README
This is a first line of text.

> git log --oneline
8676840 Create a README file

Side-Note: There are two* main ways to

use git checkout

» Checking out a commit makes the entire working

directory match that commit. This can be used to
view an old state of your project.

> git checkout <commit.ID>

» Checking out a specific file lets you see an old

version of that particular file, leaving the rest of
your working directory untouched.

> git checkout <commit.ID> <filename>

You can discard revisions Removing untracked files
with git revert with git clean

* The git revert command undoes a committed

snapshot. * The git clean command removes untracked files from

your working directory.

* But, instead of removing the commit from the
project history, it figures out how to undo the
changes introduced by the commit and appends
a new commit with the resulting content.

* Like an ordinary rm command, git clean is not
undoable, so make sure you really want to delete the
untracked files before you run it.

. . it clean -n # dry run display of files to be ‘cleaned’
> git revert <commit.ID> -9 y play

* This prevents Git from losing history! > gitclean - # remove untracked files

Tower (Mac only)
GitHub_Desktop (Mac, Windows)
SourceTree (Mac, Windows)
SmartGit (Linux)
RStudio

https://git-scm.com/downloads/quis

