

"Bioinformatics is the application of <u>computers</u> to the collection, archiving, organization, and analysis of <u>biological data</u>."

... A hybrid of biology and computer science

"Bioinformatics is the application of <u>computers</u> to the collection, archiving, organization, and analysis of <u>biological data</u>."

Bioinformatics is computer aided biology!

"Bioinformatics is the application of <u>computers</u> to the collection, archiving, organization, and analysis of <u>biological data</u>."

Bioinformatics is computer aided biology!

Goal: Data to Knowledge

So what is structural bioinformatics?

So what is **structural bioinformatics**?

... computer aided structural biology!

Aims to characterize and interpret biomolecules and their assembles at the molecular & atomic level

Why should we care?

Why should we care?

Because biomolecules are "nature's robots"

... and because it is only by coiling into **specific 3D structures** that they are able to perform their functions

In daily life, we use machines with functional *structure* and *moving parts*

Genomics is a great start

Track Bike – DL 175

REF. NO.	IBM NO.	DESCRIPTION	∎ B
1	156011	Track Frame 21", 22", 23", 24", Team Dod	Δ
2	157040	Fork for 21" Frame	
2	157039	Fork for 22" Frame	
2	157038	Fork for 23" Frame	
2	157037	Fork for 24" Frame	u
3	191202	Handlehar TTT Competition Track Alloy 15/16"	
4		Handlebar Stem. TTT. Specify extension	l.
5	191278	Expander Bolt	n
6	191272	Clamp Bolt	
7	145841	Headset Complete 1 x 24 BSC	
8	145842	Ball Bearings	
9	190420	175 Raleigh Pistard Seta Tubular Prestavalve 27"	
10	190233	Rim, 27" AVA Competition (36H) Alloy Prestavalve	
11	145973	Hub, Large Flange Campagnolo Pista Track Alloy (pairs)	
12	190014	Spokes: 11 5/8"	
13	145837	Sleeve	
14	145636	Ball Bearings	
15	145170	Bottom Bracket Axle	
16	145838	Cone for Sleeve	
17	146473	L.H. Adjustable Cup	
18	145833	Lockring	
19	145239	Straps for Toe Clips	
20	145834	Fixing Bolt	
21	145835	Fixing Washer	
22	145822	Dustcap	
23	145823	R.H. and L.H. Crankset with Chainwheel	
24	146472	Fixed Cup	
25	145235	Toe Clips, Christophe, Chrome (Medium)	
26	145684	Pedals, Extra Light, Pairs	
27	123021	Chain	
28	145980	Seat Post	
29		Seat Post Bolt and Nut	
30	167002	Saddle, Brooks	
31	145933	Track Sprocket, Specify 12, 13, 14, 15, or 16 T.	

 But a parts list is not enough to understand how a bicycle works

... but not the end

- We want the full spatiotemporal picture, and an ability to control it
- Broad applications, including drug design, medical diagnostics, chemical manufacturing, and energy

Extracted from The Inner Life of a Cell by Cellular Visions and Harvard [YouTube link: https://www.youtube.com/watch?v=y-uuk4Pr2i8]

KEY CONCEPT: ENERGY LANDSCAPE

KEY CONCEPT: ENERGY LANDSCAPE

KEY CONCEPT: ENERGY LANDSCAPE

Today's Menu

- Overview of structural bioinformatics
 - · Motivations, goals and challenges
- Fundamentals of protein structure
 - Structure composition, form and forces
- Representing, interpreting & modeling protein structure
 - Visualizing & interpreting protein structures
 - Analyzing protein structures
 - Modeling energy as a function of structure

Today's Menu

- Overview of structural bioinformatics
 - Motivations, goals and challenges
- Fundamentals of protein structure
 - Structure composition, form and forces
- · Representing, interpreting & modeling protein structure
 - Visualizing & interpreting protein structures
 - Analyzing protein structures
 - Modeling energy as a function of structure

Motivation 1: Detailed understanding of molecular interactions

Provides an invaluable structural context for conservation and mechanistic analysis leading to functional insight.

Motivation 1: Detailed understanding of molecular interactions

Computational modeling can provide detailed insight into functional interactions, their regulation and potential consequences of perturbation.

Grant et al. PLoS. Comp. Biol. (2010)

Structural Genomics has contributed to driving down the cost and time required for structural determination

Data from: https://www.rcsb.org/stats/

Motivation 3:

Theoretical and computational predictions have been, and continue to be, enormously valuable and influential!

Image Credit: "Structure determination assembly line" Adam Godzik

SUMMARY OF KEY MOTIVATIONS

Sequence > Structure > Function

 Structure determines function, so understanding structure helps our understanding of function

Structure is more conserved than sequence

Structure allows identification of more distant evolutionary relationships

Structure is encoded in sequence

• Understanding the determinants of structure allows design and manipulation of proteins for industrial and medical advantage

- Visualization
- Analysis
- Comparison
- Prediction
- Design

Scarabelli and Grant. PLoS. Comp. Biol. (2013)

- Visualization
- Analysis
- Comparison
- Prediction
- Design

Scarabelli and Grant. PLoS. Comp. Biol. (2013)

Goals:

Visualization

- Analysis
- Comparison
- Prediction
- Design

Grant et al. PLoS One (2011, 2012)

Goals:

- Visualization
- Analysis
- Comparison
- Prediction
- Design

Grant et al. PLoS Biology (2011)

MAJOR RESEARCH AREAS AND CHALLENGES

Include but are not limited to:

- Protein classification
- Structure prediction from sequence
- Binding site detection
- Binding prediction and drug design
- Modeling molecular motions
- · Predicting physical properties (stability, binding affinities)
- Design of structure and function
- etc...

With applications to Biology, Medicine, Agriculture and Industry

Today's Menu

- Overview of structural bioinformatics
 - Motivations, goals and challenges
- Fundamentals of protein structure
 - Structure composition, form and forces
- Representing, interpreting & modeling protein structure
 - Visualizing & interpreting protein structures
 - Analyzing protein structures
 - Modeling energy as a function of structure

HIERARCHICAL STRUCTURE OF PROTEINS Primary > Secondary > Tertiary > Quaternary

RECAP: AMINO ACID NOMENCLATURE

Image from: http://www.ncbi.nlm.nih.gov/books/NBK21581/

AMINO ACIDS CAN BE GROUPED BY THE **PHYSIOCHEMICAL PROPERTIES**

AMINO ACIDS POLYMERIZE THROUGH PEPTIDE BOND FORMATION

PHI vs PSI PLOTS ARE KNOWN AS

 Stend mindrance dictates torsion angle preference
 Ramachandran plot show preferred regions of φ and ψ dihedral angles which correspond to major forms of secondary structure

Image from: http://www.ncbi.nlm.nih.gov/books/NBK21581/

MAJOR SECONDARY STRUCTURE TYPES ALPHA HELIX & BETA SHEET

a-helix

- Most common from has <u>3.6 residues per</u> <u>turn</u> (number of residues in one full rotation)
- Hydrogen bonds (dashed lines) between residue <u>i and i+4</u> stabilize the structure
- The side chains (in green) protrude outward
- 3_{10} -helix and π -helix forms are less common

Image from: http://www.ncbi.nlm.nih.gov/books/NBK21581/

MAJOR SECONDARY STRUCTURE TYPES ALPHA HELIX & **BETA SHEET**

In antiparallel β-sheets

- Adjacent β-strands run in <u>opposite</u> directions
- Hydrogen bonds (dashed lines) between NH and CO stabilize the structure
- The side chains (in green) are above and below the
 sheet
 Image from: http://www.ncbi.nlm.nih.gov/books/NBK21581/

MAJOR SECONDARY STRUCTURE TYPES ALPHA HELIX & **BETA SHEET**

In parallel β-sheets

- Adjacent β-strands run in same direction
- Hydrogen bonds (dashed lines) between NH and CO stabilize the structure
- The side chains (in green) are above and below the sheet
 Image from: http://www.ncbi.nlm.nih.gov/books/NBK21581/

Protein Data Bank (PDB) is the main repository for Biomolecular structure data

You can get a 3D View of and read details about the experiment and molecule http://www.rcsb.org •• <> 0 0 i www.rcsb.org/3d-view/1IE RCSB PDB Deposit - See Visualize - Analyze - Download - Learn - More -Structure Summ 3D View Sequence Sequence Similarity Structure Similarity Experiment 1IEP Display Files -CRYSTAL STRUCTURE OF THE C-ABL KINASE DOMAIN IN COMPLEX WITH STI-571. Electron Ligand tructure Note: Use your mouse to drag, rotate, and zoom in and out of the structure. Mouse-over to identify atoms and bonds. Mouse Density Maps View Structure View Documentation Assembly @ Bioassembly 1 \$ Model @ Model 1 netry @ None Style @ Cartoon Color @ Rainbow igand @ Ball & Stick ÷ Quality @ Automatic lons 🔞 🔽 Hydroneos 🙆 🐖 Clashes @ Default Structure View @

Side-Note: PDB File Format

• PDB files contains atomic coordinates and associated information.

	Amino Sequence/Residue									
		Ac	cid		Numl	ber	Coordinates			
_	Element	: '	C	hain		X	Y	Z	(etc.)	
ATOM	1	N	MET	A	1	19.353	41.547	-3.887		
ATOM	2	CA	MET	A	1	20.513	40.939	-4.592		
ATOM	3	С	MET	A	1	20.150	39.658	-5.355	•••	
ATOM	4	0	MET	A	1	19.053	39.551	-5.903		
ATOM	5	СВ	MET	A	1	21.642	40.678	-3.592	•••	
ATOM	6	CG	MET	A	1	21.233	39.903	-2.360		
ATOM	7	SD	MET	A	1	22.533	39.928	-1.113	•••	
ATOM	8	CE	MET	A	1	23.771	38.881	-1.885		
ATOM	9	N 🔨	ASP	A	2	21.068	38.694	-5.390		
ATOM	10	CA	ASP	A	2	20.856	37.440	-6.117		
ATOM	11	С	ASP	A	2	20.124	36.371	-5.299		
ATOM	12	0	ASP	A	2	20.680	35.818	-4.351		

Element position within amino acid

Side-Note: PDB File Format

• PDB files contains atomic coordinates and associated information.

What Does a Protein Look like?

Key forces affecting structure:

Key forces affecting structure:

- H-bonding
- Van der Waals
- Electrostatics
- Hydrophobicity

Key forces affecting structure:

• H-bonding

 $\nabla_1 \qquad \nabla_2 \qquad \nabla_2 \qquad \nabla_1 \qquad \nabla_2 \qquad \nabla_2$

- Van der Waals
- Electrostatics
- Hydrophobicity

 $-C \stackrel{O}{\leftarrow} 0 \stackrel{H}{\leftarrow} N \stackrel{H}{\leftarrow} N \stackrel{H}{\leftarrow} 0 \stackrel{H}{\leftarrow} N \stackrel$

carboxyl group and amino group

(some time called IONIC BONDs or SALT BRIDGEs)

Coulomb's lawE = Energy
 $k = constant<math>E = \frac{K q_1 q_2}{D r}$ $D = Dielectric constant (vacuum = 1; H_2O = 80)$
 $q_1 \& q_2 = electronic charges (Coulombs)$
r = distance (Å)

Key forces affecting structure:

- H-bonding
- Van der Waals
- Electrostatics
- Hydrophobicity

The force that causes hydrophobic molecules or nonpolar portions of molecules to aggregate together rather than to dissolve in water is called <u>Hydrophobicity</u> (Greek, "water fearing"). This is not a separate bonding force; rather, it is the result of the energy required to insert a nonpolar molecule into water.

Today's Menu

- Overview of structural bioinformatics
 - Motivations, goals and challenges
- Fundamentals of protein structure
 - Structure composition, form and forces

Representing, interpreting & modeling protein structure

- Visualizing & interpreting protein structures
- Analyzing protein structures
- · Modeling energy as a function of structure

Today's Menu

- Overview of structural bioinformatics
 - Motivations, goals and challenges
- Fundamentals of protein structure
 - Structure composition, form and forces
- Representing, interpreting & modeling protein structure
 - Visualizing & interpreting protein structures
 - Analyzing protein structures
 - Modeling energy as a function of structure

Hand-on time!

Do IT YOUTSERI

Focus on section 1 only please!

N.B. Remember to make your new class11 RStudio project inside your GitHub tracked directory from last day and <u>UNCHECK</u> the "Create a Git repository" option...

Side-Note: PDB File Format

• PDB files contains atomic coordinates and associated information.

Amino Sequence/Residue									
		Ac	id		Number		Coordinates		
_	Element	· ·	C	hain		X	Y	Z	(etc.)
ATOM	1	N	MET	A	1	19.353	41.547	-3.887	
ATOM	2	CA	MET	A	1	20.513	40.939	-4.592	•••
ATOM	3	С	MET	A	1	20.150	39.658	-5.355	•••
ATOM	4	0	MET	A	1	19.053	39.551	-5.903	•••
ATOM	5	СВ	MET	A	1	21.642	40.678	-3.592	•••
ATOM	6	CG	MET	A	1	21.233	39.903	-2.360	•••
ATOM	7	SD	MET	A	1	22.533	39.928	-1.113	•••
ATOM	8	CE	MET	A	1	23.771	38.881	-1.885	•••
ATOM	9	N 🔨	ASP	A	2	21.068	38.694	-5.390	
ATOM	10	CA	ASP	A	2	20.856	37.440	-6.117	
ATOM	11	C	ASP	A	2	20.124	36.371	-5.299	
ATOM	12	0	ASP	A	2	20.680	35.818	-4.351	

Element position within amino acid

Side-Note: PDB File Format

PDB files contains atomic coordinates and associated information.

Today's Menu

- Overview of structural bioinformatics
 - Motivations, goals and challenges
- Fundamentals of protein structure
 - Structure composition, form and forces
- Representing, interpreting & modeling protein structure
 - Visualizing and interpreting protein structures
 - Analyzing protein structures
 - · Modeling energy as a function of structure

Hand-on time!

Do is tourself

Focus on section 3 to 5

Bio3D view()

 If you want the 3D viewer in your R markdown you can install the development version of bio3d.view

• In your R console:

install.packages("devtools")

- > devtools::install_bitbucket("Grantlab/bio3d-view")
- To use in your R session:

bibrary("bio3d.view")

pdb <- read.pdb("5p21")</p>

view(pdb)

view(pdb, "overview", col="sse")

Today's Menu

- Overview of structural bioinformatics
 - Motivations, goals and challenges
- Fundamentals of protein structure
 - Structure composition, form and forces
- Representing, interpreting & modeling protein structure
 - Visualizing and interpreting protein structures
 - Analyzing protein structures
 - Modeling energy as a function of structure

NMA models the protein as a network of elastic strings

NMA in Bio3D

• Normal Mode Analysis (NMA) is a bioinformatics method that can predict the major motions of biomolecules.

{**r**} prary(bio3d)

ibrary(bio3d.view)

``{r

pdb <- read.pdb("1hel") modes <- nma(pdb) m7 <- mktrj(modes, mode=7, file="mode_7.pdb") view(m7, col=vec2color(rmsf(m7)))

Bio3D view()

 If you want the interactive 3D viewer in Rmd rendered to output: html_output document:

(U) ibrary(bio3d.view) ibrary(rgl)

``{r}

modes <- nma(read.pdb("1hel")) m7 <- mktrj(modes, mode=7, file="mode_7.pdb")

view(m7, col=vec2color(rmsf(m7))) rglwidget(width=500, height=500) KEY CONCEPT: POTENTIAL FUNCTIONS DESCRIBE A SYSTEMS ENERGY AS A FUNCTION OF ITS STRUCTURE

Two main approaches:

(1). Physics-Based

(2). Knowledge-Based

KEY CONCEPT: POTENTIAL FUNCTIONS DESCRIBE A SYSTEMS ENERGY AS A FUNCTION OF ITS STRUCTURE

Two main approaches:

- (1). Physics-Based
- (2). Knowledge-Based

Structure/Conformation

SUMMARY

- Structural bioinformatics is computer aided structural biology
- Described major motivations, goals and challenges of structural bioinformatics
- Reviewed the fundamentals of protein structure
- Explored how to use R to perform advanced custom structural bioinformatics analysis!

 Introduced both physics and knowledge based modeling approaches for describing the structure, energetics and dynamics of proteins computationally

Muddy Point Assessment 1

This will be the focus of the next class!

Structure/Conformation