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Next Up:

 Overview of structural bioinformatics
e Motivations, goals and challenges

* Fundamentals of protein structure
e Structure composition, form and forces

* Representing, interpreting & modeling protein structure
* Visualizing and interpreting protein structures
* Analyzing protein structures

* Modeling energy as a function of structure
 Drug discovery & Predicting functional dynamics



Key concept:

Potential functions describe a systems
energy as a function of its structure

Energy

Structure/Conformation



Two main approaches:
(1). Physics-Based
(2). Knowledge-Based



Two main approaches:
(1). Physics-Based
(2). Knowledge-Based



For physics based potentials
energy terms come from physical theory

V(R) — Ebonded + En

on.bonded



V(R) =k + Enon.bonded

Sum of and non-bonded
atom-type and position based terms



V(R) :+ Enon.bonded

L IS Itself a sum of three terms:



V(R) — + Enon.bonded

Ebonded IS Itself a sum of three terms:

Ebond.stretch + Ebond.angle T Eband.mtate
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Bond Stretch
Z I{zbs(bl i ba)

Bond Angle
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Bond Rotate
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VAR = B+ Enononte

Enon.banded IS a sum of two terms:
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Total potential energy

The potential energy can be given as a sum of
terms for: Bond stretching, Bond angles, Bond
rotations, van der Walls and Electrostatic
interactions between atom pairs

V(R) = E
+E .
+E

+L van.der.Waals }

+ £ L non.bonded

electrostatic



Potential energy surface

Now we can calculate the potential energy
surface that fully describes the energy of a
molecular system as a function of its geometry

Energy (V)

Position (x)



Potential energy surface

Now we can calculate the potential energy
surface that fully describes the energy of a
molecular system as a function of its geometry

Energy (V)

Position (x)



Key concept:

Now we can calculate the potential energy
surface that fully describes the energy of a
molecular system as a function of its geometry

* The forces are

E the gradients of
the ener

5; gy

O F(x) =—dV/dx

LLI

Position (x)



Moving Over The Energy Surface

* Energy Minimization
drops into local minimum

* Molecular Dynamics
uses thermal energy to
move smoothly over
surface

Energy (V)

* Monte Carlo Moves are Position (x)
random. Accept with
probabillity:

exp(—AV/dx)



PHYSICS-ORIENT

D APPROACHES

Weaknesses
Fully physical detail becomes computationally intractable
Approximations are unavoidable
(Quantum effects approximated classically, water may be treated crudely)
Parameterization still required

Strengths
Interpretable, provides guides to design
Broadly applicable, in principle at least
Clear pathways to improving accuracy

Status

Useful, widely adopted but far from perfect

Multiple groups working on fewer, better approxs
Force fields, quantum
entropy, water effects

Moore’s law: hardware improving
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SIDE-NOTE: GPUS AND ANTON
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POTENTIAL FUNCTIONS DESCRIBE A SYSTEMS
ENERGY A5 A FUNCTION OF ITS STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based



KNOWLEDGE-BASED DOCKING POTENTIALS

Pistidine

]
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Ligand
carboxylate

: Aromatic
. 1 stacking




ENERGY DETERMINES PROBABILITY
(STABILITY)

Basic idea: Use probability as a proxy for energy

\/\/\/ Boltzmann:
—E(r)/RT

p(r)xe

Inverse Boltzmann:
E(r)=-RTIn| p(r)}

Probability Energy

%

X

Example: ligand carboxylate O to protein histidine N

Find all protein-ligand structures in the PDB with a ligand carboxylate O
1. For each structure, histogram the distances from O to every histidine N
2. Sum the histograms over all structures to obtain p(ro.n)

3. Compute E(ro.n) from p(ro)



KNOWLEDGE-BAS

D POTENTIALS

Weaknesses
Accuracy limited by availability of data

Strengths
Relatively easy to implement
Computationally fast

Status
Useful, far from perfect
May be at point of diminishing returns
(not always clear how to make improvements)



Computer Aideo
Drug Discovery



Next Up:

 Overview of structural bioinformatics
e Motivations, goals and challenges

* Fundamentals of protein structure
e Structure composition, form and forces

* Representing, interpreting & modeling protein structure
* Visualizing and interpreting protein structures
* Analyzing protein structures
* Modeling energy as a function of structure

* Drug discovery & Predicting functional dynamics



THE TRADITIONAL EMPIRICAL PATH TO
DRUG DISCOVERY

Compound library
(commercial, in-house,

synthetic, natural) \

High throughput screening

(HTS) \
Hit confirmation

N\

Lead compounds

(00, MM K N

Lead optimization
(Medicinal chemistry)

v

Animal and clinical €= potent drug candidates
evaluation (nM Kg)



COMPUTER-AID

D LIGAND DESIGN

Aims to reduce number of compounds synthesized and assayed

Lower costs

Ensemble Docking

v
Scoring

Reduce chemical waste

Visual

anaiysis
in vitro
assays
000 +00ZINC

'

in vitro
assays

Facilitate faster progress



Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



Two main approaches:
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(2). Ligand/Drug-Based
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Structure of Targeted Protein Known: Structure-Based Drug Discovery

HIV Protease/KNI-272 complex



PROTEIN-LIGAND DOCKING

Structure-Based Ligand Design

Docking software
Search for structure of lowest energy Potential function
Energy as function of structure

O—©
VDW
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STRUCTURE-BAS

D VIRTUAL SCREENING

Compound 3D structure of target
database (crystallography, NMR,

bioinformatics
modeling)

Virtual screening
(e.g., computational
docking)

/ Candidate ligands

Ligand optimization

Med chem, Experimental assay
crystallography, modelmg l

ngands ——3Prug candidates



COMPOUND LIBRARIES

[AR LIBRARIES BiOFOCUS

JLE REPOSITORY
CuUlL OSITOR A Galapagos Company
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COMMON SIMPLIFICATIONS USED IN
PHYSICS-BASED DOCKING

Quantum effects approximated classically
Protein often held rigid
Configurational entropy neglected

Influence of water treated crudely



Hand-on time!

https://bioboot.github.io/bimmi143_S19/lectures/#13

You can use the classroom computers or your own
laptops. If you are using your laptops then you will need
to install MGLTools


https://bioboot.github.io/bimm143_S19/lectures/#13

Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based



Scenario 2
Structure of Targeted Protein Unknown:
Ligand-Based Drug Discovery

e.g. MAP Kinase Inhibitors ~
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Why Look for Another Ligand if You Already Have Some?

Experimental screening generated some ligands, but they don't
bind tightly enough

A company wants to work around another company’s chemical
patents

An high-affinity ligand is toxic, is not well-absorbed, difficult to
synthesize etc.



LIGAND-BAS

D VIRTUAL SCREENING

Compound Library Known Ligands

N v

Molecular similarity
Machine-learning
e

v

Candidate ligands

7 l
Optimization

Med chem, crystallography, Assay

modeling \ l

Actives ——3  Potent drug candidates



CHEMICAL SIMILARITY
LIGAND-BASED DRUG-DISCOVERY

Compounds
(available/synthesizable)

Different

ey Don’t bother

Test experimentally



CHEMICAL FINGERPRINTS
BINARY STRUCTURE KEYS

Molecule 2 - i u




CHEMICAL SIMILARITY FROM
FINGERPRINTS

Molecule 2 - i __.

Tanimoto Similarity o & =025
(or Jaccard Index), T N,

Intersection .::h
I BN =

Union

_ N




Pharmacophore Models
dappako (drug) + dopa (carry)

_ Bulky hydrophobe
A 3-point pharmacophore




Molecular Descriptors
More abstract than chemical fingerprints

Physical descriptors
molecular weight

charge mN
dipole moment ﬁ)‘ )k ,‘
number of H-bond donors/acceptors

number of rotatable bonds * Rotatable bonds

hydrophobicity (log P and clogP)
Topological
branching index

measures of linearity vs interconnectedness

Etc. etc.



A High-Dimensional “Chemical Space”

Each compound is a point in an n-dimensional space
Compounds with similar properties are near each other

Descriptor 3

Descriptor 2

Point representing a
® compound in descriptor
space

Apply multivariate statistics and machine learning for descriptor-
selection. (e.g. partial least squares, PCA, support vector machines,
random forest, deep learning etc.)



Proteins and Ligand are Flexible

Protein




NMA (Normal Mode Analysis) is a bioinformatics
method to predict the intrinsic dynamics of biomolecules

https://bioboot.github.io/bimmi143_S19/lectures/#12



https://bioboot.github.io/bimm143_S19/lectures/#12

NMA in Bio3D

* Normal Mode Analysis (NMA) is a bioinformatics method
that can predict the major motions of biomolecules.

Then you can open the resulting mode_7.pdb file in VMD
> Use "TUBE" representation and hit the play button...




Bio3D view()

e |f you want the 3D viewer in your R
markdown you can install the
development version of bio3d.view

* |n your R console:

 Jo use in your R session:




SideNote: view()

e |f you want the interactive 3D viewer in Rmd rendered to
output: html_output document:




Hand-on time!

https://bioboot.github.io/bimmi143_S19/lectures/#13

Focus on section 3 & 4 exploring NMA and PCA apps


https://bioboot.github.io/bimm143_S19/lectures/#13

Reference Slides

Molecular Dynamics (MD) and Normal Mode Analysis
(NMA) Background and Cautionary Notes

| Muddy Point Assessment |



https://goo.gl/forms/pFcCQlDVzIClxI8R2

PREDICTING FUNCTIONAL DYNAMICS

* Proteins are intrinsically flexible molecules with internal
motions that are often intimately coupled to their

biochemical function
— E.g. ligand and substrate binding, conformational
activation, allosteric regulation, etc.

* Thus knowledge of dynamics can provide a deeper
understanding of the mapping of structure to function

— Molecular dynamics (MD) and normal mode analysis
(NMA) are two major methods for predicting and

characterizing molecular motions and their properties




MOLECULAR DYNAMICS SIMULATION

e Use force-field to find
Potential energy between
all atom pairs

e Move atoms to next state

* Repeat to generate
trajectory

McCammon, Gelin & Karplus, Nature (1977)
| See: https://www.youtube.com/watch?v=ui1ZysMFcKKk |



https://www.youtube.com/watch?v=ui1ZysMFcKk

» Divide time into discrete (~11fs) time steps (At)
(for integrating equations of motion, see below)

S



» Divide time into discrete (~11fs) time steps (At)
(for integrating equations of motion, see below)

o L L i



» Divide time into discrete (~11fs) time steps (At)
(for integrating equations of motion, see below)

o L L i

» At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

Nucleic motion described classically

&P o
R; = —ViE(R)

e

Empirical force field

E(é) - bonzded EZ(E) * non—%mded EZ(E)




» Divide time into discrete (~11fs) time steps (At)
(for integrating equations of motion, see below)

o L L i

» At each time step calculate pair-wise atomic forces (F(t))
(by evaluating force-field gradient)

Nucleic motion described classically

L2~ s
R, = —V,E(R)

e

Empirical force field

E(é) - bonzded EZ(E) * non—%nded EZ(R’)

» Use the forces to calculate velocities and move atoms to new positions
(by integrating numerically via the “leapfrog” scheme)

At i At F(t)
ST T R R
r(t+At) =  r(t)+v(t+ ét)ﬁm



BASIC ANATOMY OF A MD SIMULATION

» Divide time into discrete (~11fs) time steps (At)
(for integrating equations of motion, see below)

-

| Ateach time step calculate pair-wise atomic forces (F(t))
' (by evaluating force-field gradient)

Nucleic motion described classically

—R; = —V,E(R)

d2
d2

Empirical forgag

a(\\’ |
Z Use the f~- ma W5 ‘Yte velocities and move atoms to new posmo S

K\‘e(a - numerically via the “leapfrog” scheme)

At At F(t)
) = j—
v(t+—-) vt — =)+ —

At




MD Prediction of Functional Motions

0.00 ns

Yao and Grant, Biophys J. (2013)

| 19/. ;:é‘ X ;\a\)
0.00 ns \




COARSE GRAINING: NORMAL MODE ANALYSIS
(NMA)

* MD is still time-consuming for large systems

* Elastic network model NMA (ENM-NMA) is an example
of a lower resolution approach that finishes in seconds
even for large systems.

E * 1 bead/
, 1 amino acid
%{ * Connected by
Y  springs
Atomistic Coarse Grained




NMA models the protein as a network of elastic strings

Proteinase K




Hand-on time!

https://bioboot.github.io/bimmi143_S19/lectures/#13

Focus on section 3 & 4 exploring NMA and PCA apps


https://bioboot.github.io/bimm143_S19/lectures/#13

ACHIEVEMENTS CHALLENGES

llan Samish et al. Bioinformatics 2015;31:146-150




INFORMING SYSTEMS BIOLOGY?

Literature and ontologies

Gene expression
“"““”I““"Nll"'u---u..-..l. ‘\/‘ D
Genomes o il
2\ .'\..mﬂv’/ ‘.‘.{k, ‘ !

DNA & RNA sequence

Protein sequence

DNA & RNA structure

Protein families,
motifs and domains

Protein interactions

Pathways

Systems



SUMMARY

Structural bioinformatics is computer aided structural biology

Described major motivations, goals and challenges of structural
bioinformatics

Reviewed the fundamentals of protein structure

Explored how to visualize protein structure with VMD and use R to
perform more advanced structural bioinformatics analysis!

Introduced both physics and knowledge based modeling approaches for
describing the structure, energetics and dynamics of proteins
computationally

Introduced both structure and ligand based bioinformatics approaches for
drug discovery and design


https://goo.gl/forms/pFcCQlDVzIClxI8R2

CAUTIONARY NOTES

* A model is never perfect

A model that is not quantitatively accurate in every respect does
not preclude one from establishing results relevant to our
understanding of biomolecules as long as the biophysics of the
model are properly understood and explored.

 Calibration of parameters is an ongoing imperfect process

Questions and hypotheses should always be designed such that
they do not depend crucially on the precise numbers used for the
various parameters.

* A computational model is rarely universally right or wrong

A model may be accurate in some regards, inaccurate in others.
These subtleties can only be uncovered by comparing to all
available experimental data.



