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RNA seguencing overview
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Tanscription
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Intron splicing

Mature mRNA

Fragmentation

RNA fragments I N N e -

Reverse transcription

ds-cDNA fragments [ [ [ [ [

High-throughput sequencing

S equences TATGAGACGCATGCTA ACCCCGCC GCGATATATATA CGCGACGATGACT ATATAGC TCGACTGCCAT

Sequence processing

(Quality control)
Alignment

GATAGGTGTGACTACCGCCCCATGAAGCGGCACTGACTATGAGACGCATGCTAACCCCGCCGCGATATATATACGCGACGATGACTATATAGCT CGACT GCCATGACAAAAGTGAAGCCGCATATCTGCTGGGTA

Genome sequence

Goal: RNA quantification, transcript discovery, variant identification




Mapping/Alignment

Alignment

GATAGGTGTGACTACCGCCCCATGAAGCGGCACTGACTATGAGACGCATGCTAACCCCGCCGCGATATATATACGCGACGATGACTATATAGCT CGACT GCCATGACAAAAGT GAAGCCGCATATCTGCTGGGTA

Genome sequence

Quantification

Absolute read counts 15 5 15 (35)

totalTranscriptReads

' RPKME—"i i  ——————————————
Normalized read counts mappedReads(millions) x transcriptLength(Kb) (0.7)

Transcript discovery

soicearant 1 N [
Splice variant B —\/—

Variant discovery

SNP identification: C/T



RNA Sequencing

The absolute basics



Normal Cells Mutated Cells

The mutated cells behave differently than the normal cells

We want to know what genetic mechanism is causing the
difference

One way to address this is to examine differences in gene
expression via RNA sequencing...



Normal Cells Mutated Cells

S

Each cell has a bunch of
chromosomes

/



Normal Cells Mutated Cells

Gene1 Gene2 Gene3

Each chromosome has a
bunch of genes



Normal Cells Mutated Cells

Some genes are active more than

others N/

% MRNA
transcripts
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Gene1 Gene2 Gene3



Normal Cells

Mutated Cells

Gene 3 is the most
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Gene 2 is ‘
not active N
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Normal Cells Mutated Cells

#

HTS tells us which genes are
active, and how much they are
transcribed!
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Normal Cells Mutated Cells
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We use RNA-Seq to measure gene ... then use it to measure gene
expression in normal cells ... expression in mutated cells



Normal Cells Mutated Cells

Then we can compare the two cell
types to figure out what is different in
the mutated cells!
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Normal Cells Mutated Cells

~

Differences apparent for Gene 2 and
to a lesser extent Gene 3



3 Main Steps for RNA-Seq:

1) Prepare a sequencing library
(RNA to cDNA conversion via reverse transcription)

2) Sequence
(Using the same technologies as DNA sequencing)

3) Data analysis
(Often the major bottleneck to overall success!)

We will discuss each of these steps - but we will focus
on step 3 today!



Our last class got us to the start of step 3!

Gene WT-1 WT-2 WT-3
A1BRG 30 5 13
AS1 24 10 18

We sequenced, aligned, counted the reads per gene
in each sample to arrive at our count table/matrix
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Normal Cells Mutated Cells
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Treatment

Inputs
ELERE Reads R2

[optional]

FastQ FastQ

Reads R1 Reads R2

[optional]

FastQ FastQ

Optional Replicates



PASS THE
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PLEASE




Control

Treatment

Inputs
ELERE Reads R2

[optional]

FastQ FastQ

Reads R2
[optional]

REELER R

FastQ
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Quality
Control

FastQC




Treatment

Inputs

FastQ FastQ

1

Quality

Reads R1 Reads R2 Control

[optional] FastQC

FastQ FastQ l
2.
Reference Alignment
Genome ———) .
(Mapping)
Fasta

TopHat2




Treatment

Inputs Steps
FastQ FastQ \ 1.
Quality
Reads R1 Reads R2 Control
[optional] FastQC
FastQ FastQ l
2.
Reference Alignment
Genome ———) .
— (Mapping)
asta TopHat2
Annotati 3.
nnotation Reafi
GTF Counting
CuffLinks

/ \

Count

Table

data.frame

data.frame

...Now what?

This is where we
stoped last day



Treatment

Inputs Steps

FastQ FastQ \ 1

Quality
Reads R1 Reads R2 Control
[optional] FastQC
FastQ FastQ l
2.
Reference :
Alignment
Genome .
— (Mapping)
asta TopHat2
l Our missing step
/ 4.
Annotation R:eaéld data.frame Differential
GTF Counting expression
CuffLinks \A / analysis!
DESeq2
data.frame




Install DESeq2

Bioconductor Setup Link

install.packages("BiocManager")
BiocManager::install()

BiocManager::install("DESeq2")

Note: Answer NO to prompts to install from source or update...


https://bioboot.github.io/bimm143_W19/class-material/bioconductor_setup/

Old packages: 'devtools', 'dplyr', 'DT', 'ggplot2', 'ggpubr
"lattice', 'MASS', 'Matrix', 'mclust', 'mgcv', 'openssl',
'packrat’, 'pkgload', 'ps', 'psych', 'raster', 'rcmdcheck',
'Recpp’, 'remotes’', 'rsconnect', 'sessioninfo', 'shiny',
'shinythemes', 'survival', 'tidyr', 'tinytex', 'xfun'

Update all/some/none? [a/s{:]:

n

Install DESeq2

Bioconductor Setup Link

install.packages("BiocManager")
BiocManager::install()

BiocManager::install("DESeq2")

Note: Answerto prompts to install from source or update...


https://bioboot.github.io/bimm143_W19//class-material/bioconductor_setup/

Background to lodays Data

Glucocorticoids inhibit inflammatory processes and are often
used to treat asthma because of their anti-inflammatory eftects
on airway smooth muscle (ASM) cells.
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» Data from: Himes et al. "RNA-Seqg Transcriptome Profiling Identifies CRISPLD2
as a Glucocorticoid Responsive Gene that Modulates Cytokine Function in
Alrway Smooth Muscle Cells." PLoS ONE. 2014 Jun 13;9(6):e99625.

Mechanism?



http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099625
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099625
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099625
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099625

Background to lodays Data

The anti-inflammatory eftects of glucocorticoids on airway smooth
muscle (ASM) cells has been known for some time but the underlying
molecular mechanisms are uncleatr.

Himes et al. used RNA-seq to profile gene expression changes in 4
ASM cell lines treated with dexamethasone (a common synthetic
glucocorticoid).

Used Tophat and Cufflinks and found many differentially expressed
genes. Focus on CRISPLDZ2 that encodes a secreted protein involved
in lung development

SNPs in CRISPLD?2 in previous GWAS associated with inhaled
corticosteroid resistance and bronchodilator response in asthma
patients.

Confirmed the upregulated CRISPLD2 with gPCR and increased
protein expression with Western blotting.



Data pre-processing

Analyzing RNA-seq data starts with sequencing reads.
Many different approaches, see references on class website.

Our workflow (previously done):

e Reads downloaded from GEO (GSE:GSE52778)
e Quantify transcript abundance (kallisto).
e Summarize to gene-level abundance (ixImport)

Our starting point is a count matrix: each cell indicates the
number of reads originating from a particular gene (in rows)
for each sample (in columns).



counts + metadata

‘ countData ‘ colData
gene |ctrl_1 | ctrl_2 |exp_1|exp_2 id treatment sex
geneA| 10 11 56 45 ctrl_1 control male
geneB| O 0 128 o4 ctrl_2 control female
geneC| 42 41 59 41 exp_1 treated male
geneD| 103 122 1 23 exp_2 treated female
geneE| 10 23 14 956
colData describes metadata about
geneF | 0 1 2 0 the columns of countData

countData is the count matrix

(Number of reads coming from each
gene for each sample)




Counting is (relatively) easy:

) ' ) ) )
.
— o @O ey CO am
~ ) ) D ) D
Unaligned reads < ) -
> -- (G
| - ) O O
o @& D
) C_ ) )
Alignment
\J
( > >
Aligned Reads < - - - - -
D ) ) g @&
Count Count
Gene A Gene B

. Counts:

Gene B: 4



Hands-on time!

https://bioboot.qgithub.io/bimm143 F19/lectures/#14



https://bioboot.github.io/bimm143_F19/lectures/#14

Fold change (log ratios)

* Jo a statistician fold change is sometimes considered
meaningless. Fold change can be large (e.g. >>two-fold
up- or down-regulation) without being statistically significant
(e.g. based on probability values from a t-test or ANOVA).

* To a biologist fold change is almost always considered
important for two reasons. First, a very small but
statistically significant fold change might not be relevant to a
cell’s function. Second, it is of interest to know which genes
are most dramatically regulated, as these are often thought
to reflect changes in biologically meaningful transcripts and/
or pathways.



Volcano plot

A common summary figure used to highlight genes that are both
significantly regulated and display a high fold change

Log2(FoldChange)

A volcano plot shows fold change (x-axis) versus -log of the p-value (y-
axis) for a given transcript. The more significant the p-value, the larger the
-log of that value will be. Therefore we often focus on ‘higher up' points.



2. class-material (bash)

Setup your point color vector
mycols <- rep("gray”, nrow(res01))
mycols[ abs(res01%log2FoldChange) >2] <- "red"

VARV

inds <- (res01$padj < 0.01) & (abs(res01$log2FoldChange) > 2)
mycols| inds ] <- "blue”

VvV VvV

' Significant

# Volcano plot with custom colors

> plot( res01$log2FoldChange, -log(res01$padij),
col=mycols, ylab="-Log(P-value)",
xlab="Log2(FoldChange)" )

abline(v=c(-2,2), col="gray", Ity=2)
abline(h=-log(0.1), col="gray", Ity=2)

VvV VvV

Log2(FoldChange)




-Log(P-value)

150

100

50

Volcano Plot
Fold change vs P-value

©  Significant
(P < 0.01 & log2 > 2)

Log2(FoldChange)




Recent developments in RNA-Seo

* Long read sequences:
= PacBio and Oxford Nanopore [Recent Paper]

» Single-cell RNA-Seq: [Review article]
= Observe heterogeneity of cell populations
= Detect sub-population

* Alignment-free quantification:
= Kallisto [Software link]
= Salmon [Software link, Blog post]



https://www.nature.com/articles/nmeth.4577
https://www.nature.com/articles/nature21350
https://pachterlab.github.io/kallisto/
https://combine-lab.github.io/salmon/
http://robpatro.com/blog/?p=248

Additional Reference Slides


http://tinyurl.com/bggn213-L15

Public RNA-Seq data sources

Gene Expression Omnibus (GEO):
= http://www.ncbi.nim.nih.gov/geo/
= Both microarray and sequencing data

Sequence Read Archive (SRA):
= http://www.ncbi.nlm.nih.gov/sra
= All sequencing data (not necessarily RNA-Seq)

ArrayExpress.
= https://www.ebi.ac.uk/arrayexpress/
= European version of GEO

All of these have links between them


http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/arrayexpress/

Paired-End Reads

Read 1
é
———————————————————————
v | )
Read 2

Paired-end sequencing enables both ends of the DNA fragment to be sequenced. Because the distance
between each paired read is known, alignment algorithms can use this information to map the reads over
repetitive regions more precisely. This results in much better alignment of the reads, especially across
difficult-to-sequence, repetitive regions of the genome.

Taken From: https://www.illumina.com/science/technology/next-generation-
sequencing/paired-end-vs-single-read-sequencing.html



https://www.illumina.com/science/technology/next-generation-sequencing/paired-end-vs-single-read-sequencing.html
https://www.illumina.com/science/technology/next-generation-sequencing/paired-end-vs-single-read-sequencing.html
https://www.illumina.com/science/technology/next-generation-sequencing/paired-end-vs-single-read-sequencing.html

Count Normalization

* Normalization is required to make comparisons
INn gene expression

» Between 2+ genes in one sample
» Between genes in 2+ samples

* Genes will have more reads mapped in a sample
with high coverage than one with low coverage

» 2X depth = 2Xx expression

* Longer genes will have more reads mapped
than shorter genes

» 2X length = 2x more reads



Normalization: RPKM, FPKM & TPM

* N.B. Some tools for differential expression analysis such as
edgeR and DESeq2 want raw read counts - i.e. non normalized
input!

* However, often for your manuscripts and reports you will want
to report normalized counts

 RPKM, FPKM and TPM all aim to normalize for sequencing
depth and gene length. For the former:

* Count up the total reads in a sample and divide that
number by 1,000,000 - this is our “per million” scaling.

* Divide the read counts by the “per million” scaling
factor. This normalizes for sequencing depth, giving you
reads per million (RPM)

* Divide the RPM values by the length of the gene, in
kilobases. This gives you RPKM.



* FPKM was made for paired-end RNA-seq

* With paired-end RNA-seq, two reads can
correspond to a single fragment

* The only difference between RPKM and
FPKM is that FPKM takes into account that
two reads can map to one fragment (and so
it doesn’t count this fragment twice).



 TPM is very similar to RPKM and FPKM. The only
difference is the order of operations:

* First divide the read counts by the length of each
gene in kilobases. This gives you reads per kilobase
(RPK).

* Count up all the RPK values in a sample and divide
this number by 1,000,000. This is your “per million”
scaling factor.

* Divide the RPK values by the “per million” scaling
factor. This gives you TPM.

* Note, the only difference is that you normalize for gene
length first, and then normalize for sequencing depth
second.



* When you use TPM, the sum of all TPMs in
each sample are the same.

* This makes it easier to compare the
proportion of reads that mapped to a gene
in each sample.

* |n contrast, with RPKM and FPKM, the sum
of the normalized reads in each sample may
be different, and this makes it harder to
compare samples directly.



