
BIMM 143

Hands-on Lab Session

Class 07

Barry Grant

http://thegrantlab.org/bimm143

http://thegrantlab.org/bimm143

function()

Last class!

Last class revisited...
• Write a function grade() to determine an overall

grade from a vector of student homework
assignment scores dropping the lowest single
assignment score.

student 1
c(100, 100, 100, 100, 100, 100, 100, 90)

student 2
c(100, NA, 90, 90, 90, 90, 97, 80)

now grade all students in an example class
url <- "https://tinyurl.com/gradeinput"

Last class!

Last class revisited...
• Write a function grade() to determine an overall

grade from a vector of student homework
assignment scores dropping the lowest single
assignment score.

Last class!

grade <- function(x) {
 x <- as.numeric(x)
 x[is.na(x)] = 0
 mean(x[-which.min(x)])
}

Last class revisited...
• Write a function grade() to determine an overall

grade from a vector of student homework
assignment scores dropping the lowest single
assignment score.

Last class!

grade <- function(x) {
 x <- as.numeric(x)
 x[is.na(x)] = 0
 mean(x[-which.min(x)])
}

grade <- function(x) {
 x <- as.numeric(x)
 x[is.na(x)] = 0
 mean(x[-which.min(x)])
}

Last class revisited...
• Write a function grade() to determine an overall

grade from a vector of student homework
assignment scores dropping the lowest single
assignment score.

Last class!

Do this now…
• Write a function grade2() to determine an overall

grade from a vector of student homework
assignment scores OPTIONALLY dropping the
lowest single assignment score.

Last class!

grade <- function(x) {
 x <- as.numeric(x)
 x[is.na(x)] = 0
 mean(x[-which.min(x)])
}

Last class revisited...
Last class!

grade2 <- function(x, drop.lowest=TRUE) {
 x <- as.numeric(x)
 x[is.na(x)] = 0
 if(drop.lowest) {
 mean(x[-which.min(x)])
 } else {
 mean(x)
 }
}

And some function homework….
Complete Q6. In last days lab supplement

library(bio3d)
s1 <- read.pdb("4AKE") # kinase with drug
s2 <- read.pdb("1AKE") # kinase no drug
s3 <- read.pdb("1E4Y") # kinase with drug

s1.chainA <- trim.pdb(s1, chain="A", elety="CA")
s2.chainA <- trim.pdb(s2, chain="A", elety="CA")
s3.chainA <- trim.pdb(s1, chain="A", elety="CA")

s1.b <- s1.chainA$atom$b
s2.b <- s2.chainA$atom$b
s3.b <- s3.chainA$atom$b

plotb3(s1.b, sse=s1.chainA, typ="l", ylab="Bfactor")

plotb3(s2.b, sse=s2.chainA, typ="l", ylab="Bfactor")

plotb3(s3.b, sse=s3.chainA, typ="l", ylab="Bfactor")

Your Homework!

Suggested steps for writing
your functions

1. Start with a simple problem and get a working snippet of code

2. Rewrite to use temporary variables (e.g. x, y, df, m etc.)

3. Rewrite for clarity and to reduce calculation duplication

4. Turn into an initial function with clear useful names

5. Test on small well defined input and (subsets of) real input

6. Report on potential problem by failing early and loudly!

7. Refine and polish

What is Git?
(1) An unpleasant or contemptible

person. Often incompetent,
annoying, senile, elderly or childish
in character.

(2) A modern distributed version
control system with an emphasis
on speed and data integrity.

(1) An unpleasant or contemptible
person. Often incompetent,
annoying, senile, elderly or childish
in character.

(2) A modern distributed version
control system with an emphasis
on speed and data integrity.

What is Git?

Version Control
Version control systems (VCS) record changes to

a file or set of files over time so that you can
recall specific versions later.

There are many VCS available, see:
https://en.wikipedia.org/wiki/Revision_control

https://en.wikipedia.org/wiki/Revision_control

Client-Server vs Distributed VCS

Distributed version control systems (DCVS) allows
multiple people to work on a given project without

requiring them to share a common network.

Client-server approach Distributed approach

http://tinyurl.com/distributed-advantages

http://tinyurl.com/distributed-advantages

http://tinyurl.com/distributed-advantages

Git offers:

• Speed

• Backups

• Off-line access

• Small footprint

• Simplicity*

• Social coding

Git is now the most popular free VCS!

http://tinyurl.com/distributed-advantages

Where did Git come from?
Written initially by Linus Torvalds to
support Linux kernel and OS
development.

Meant to be distributed, fast and more
natural.

Capable of handling large projects.

Now the most popular free VCS!

Why use Git?

Q. Would you write your lab book in

 pencil, then erase and overwrite it

 every day with new content?

Q. Would you write your lab book in

 pencil, then erase and overwrite it

 every day with new content?

Version control is the lab notebook of the digital
world: it’s what professionals use to keep track of
what they’ve done and to collaborate with others.

Why use Git?
• Provides ‘snapshots’ of your project during development and

provides a full record of project history.

• Allows you to easily reproduce and rollback to past versions of
analysis and compare differences. (N.B. Helps fix software
regression bugs!)

• Keeps track of changes to code you use from others such as
fixed bugs & new features

• Provides a mechanism for sharing, updating and collaborating
(like a social network)

• Helps keep your work and software organized and available

Obtaining Git

Obtaining Git

Note: You hopefully already have git installed!

To check open the “Terminal” tab in RStudio and type:

 which git

 git --version

1

2

Obtaining Git

Note: You might already have git installed

To check open the “Terminal” tab in RStudio and type:

 which git

 git --version

1

2

Obtaining Git

Class Computer Setup Page

Windows Only (if you have problems)

If the “which git” command did not work, try:

where git

If this works see next slide. If not then you
need to install GitBash, instructions here:

Note: You might already have git installed

To check open the “Terminal” tab in RStudio and type:

 which git

 git --version

1

2

xcode-select --install

Mac Only (if you have problems)

If the “which git” command did not work, you
may need to install select developer tools.

In your Terminal type:

https://git-scm.com/downloads
https://git-scm.com/downloads

Obtaining Git

1

2

https://bioboot.github.io/bggn213_S19/setup/

Windows Only (if you have problems)
Did you install GitBash, instructions here:

If so try:

where git

Then Restart RStudio

RStudio > Tools > Global Options > TerminalGo to:
On a PC Only!

Make sure
Git Bash is
selected!

Then Restart RStudio

https://bioboot.github.io/bggn213_S19/setup/
https://git-scm.com/downloads

xcode-select --install

Installing Git

Class Computer Setup Page

Windows (if you have problems)
Follow the GitBash instructions here:

Mac (if you have problems)
In the Terminal instal select developer tools

Do it Yourself!Note: You might already have git installed

To check open the “Terminal” tab in RStudio and type:

 which git

 git --version

1

2

Configuring Git

Configuring Git

First tell Git who you are

> git config --global user.name “Barry Grant”

> git config --global user.email “bjgrant@ucsd.edu”

Do it Yourself!

(RStudio Terminal Tab)

(…or RStudio > Tools > Shell)

Configuring RStudio

For Mac & Linux

(PC on next slide)

RStudio > Tools > Global Options > Git/SVN

1

Go to:

Make sure this is ticked!
Make sure this is correct!2

Check in your RStudio “Terminal” tab:

Do it Yourself!

On a PC!
RStudio > Tools > Global Options > Git/SVN

1

Go to:

This is the PATH for PC!2
Check in your Windows File Explorer:

Make sure this is ticked!

Do it Yourself!

Restart RStudio!

Using Git

Using Git
1. Initiate a Git repository.

2. Edit content (i.e. change some files).

3. Store a ‘snapshot’ of the current file state.*

Create a new Test

RStudio project

 Check if new Git options appear in RStudio?

New Git tab…
New option to create

a Git repository…

1
2

Do it Yourself!

Using Git in RStudio

1. Initiate a git repository for an RStudio Project

2. Do your work and edit content as normal

3. Periodically add important files to git “Staging Area”

4. Commit changes to your “git repository”

 Rinse and repeat….

Demo:

Follow along!

GitHub & Bitbucket
GitHub and Bitbucket are two popular hosting services for
Git repositories. These services allow you to share your
projects and collaborate with others using both ‘public’ and
‘private’ repositories*.

https://github.com https://bitbucket.org

https://github.com
https://bitbucket.org

What is the big deal?

• At the simplest level GitHub and Bitbucket offer backup of
your projects history and a centralized mechanism for
sharing with others by putting your Git repo online.

• GitHub in particular is often referred to as the “nerds
FaceBook and LinkedIn combined”.

• At their core both services offer a new paradigm for open
collaborative project development, particularly for software.

• In essence they allow anybody to contribute to any public
project and get acknowledgment.

First sign up for a GitHub account
https://github.com

https://github.com

Pick the FREE plan!

Your GitHub homepage
Check your email for verification request

Connecting RStudio to
GitHub

Create a Personal Access Token (PAT) on GitHub

See section 4 of lab worksheet

Skip the hello-world tutorial
https://guides.github.com/activities/hello-world/

https://guides.github.com/activities/hello-world/

Name your repo

bimm143

Add a
README

Create

bggn213bimm143

Copy the “Clone” HTTPS link

bggn213

RStudio > New Project > Version Control

RStudio > New Project > Version Control

GitHub
Pastebimm143.git

bimm143_github

bimm143

Demo of editing, adding
committing and pushing

 Check if new Git tab

Appears in RStudio?

Now experiment editing the
README.md file in RStudio
and adding, committing and
 pushing changes to GitHub

via this tab

Demo of editing, adding
committing and pushing

 Check if new Git tab

Appears in RStudio?

Now experiment editing the
README.md file in RStudio
and adding, committing and
 pushing changes to GitHub

via this tab

When you are ready copy your
different class directories/projects
to this new GitHub tracked folder

Side-note: How to edit online
Specifically lets add some Markdown content

Summary
• Git is a popular ‘distributed’ version control

system that is lightweight and free

• GitHub and BitBucket are popular hosting
services for git repositories that have changed the
way people contribute to open source projects

• Introduced basic git and GitHub usage within
RStudio and encouraged you to adopt these ‘best
practices’ for your future projects.

Learning Resources
• Set up Git. If you will be using Git mostly or entirely via

GitHub, look at these how-tos.

< https://help.github.com/categories/bootcamp/ >

• Getting Git Right. Excellent Bitbucket git tutorials

< https://www.atlassian.com/git/ >

• Pro Git. A complete, book-length guide and reference to Git,
by Scott Chacon and Ben Straub.

< http://git-scm.com/book/en/v2 >

• StackOverflow. Excellent programming and developer Q&A.

< http://stackoverflow.com/questions/tagged/git >

https://help.github.com/categories/bootcamp/
https://www.atlassian.com/git/
http://git-scm.com/book/en/v2
http://stackoverflow.com/questions/tagged/git

Learning git can be painful!
However in practice it is not nearly as crazy-making as
the alternatives:

• Documents as email attachments

• Hair-raising ZIP archives containing file salad

• Am I working with the most recent data?

• Archaelogical “digs” on old email threads and
uncertainty about how/if certain changes have been
made or issues solved

Finally Please remember that GitHub
and BitBucket are PUBLIC and that
you should cultivate your professional

and scholarly profile with intention!

BIMM 143

Hands-on Lab Session

Live Cast

Barry Grant

http://thegrantlab.org/bimm143

http://thegrantlab.org/bimm143

Reference Slides

Using Command Line Git

1. Initiate a Git repository.

2. Edit content (i.e. change some files).

3. Store a ‘snapshot’ of the current file state.*

Initiate a Git repository

Initiate a Git repository
> cd ~/Desktop

> mkdir git_class # Make a new directory

> cd git_class # Change to this directory

> git init # Our first Git command!

> ls -a # what happened?

Do it Yourself!

Side-Note: The .git/ directory

• Git created a ‘hidden’ .git/ directory inside your
current working directory.

• You can use the ‘ls -a’ command to list (i.e. see)
this directory and its contents.

• This is where Git stores all its goodies - this is
Git!

• You should not need to edit the contents of the .git
directory for now but do feel free to poke around.

Important Git commands
> git status # report on content changes

> git add <filename> # stage/track a file

> git commit -m “message” # snapshot

Important Git commands
> git status # report on content changes

> git add <filename> # stage/track a file

> git commit -m “message” # snapshot

You will use these three commands again and again in your Git workflow!

Git TRACKS your directory content

• To get a report of changes (since last commit) use:

 > git status

• You tell Git which files to track with:

 > git add <filename>

 This adds files to a so called STAGING AREA

 (akin to a “shopping cart” before purchasing).

• You tell Git when to take an historical SNAPSHOT of
your staged files (i.e. record their current state) with:

 > git commit -m ‘Your message about changes’

Eva creates a README text file

(this starts as untracked)

Adds file to STAGING AREA*

(tracked and ready to take a snapshot)

Commit changes*

(records snapshot of staged files!)

Example Git workflow

Example Git workflow
• Eva creates a README text file

• Adds file to STAGING AREA*

• Commit changes*

• Eva modifies README and adds a ToDo text file

• Adds both to STAGING AREA*

• Commit changes*

Hands on example!

1. Eva creates a README file

> # cd ~/Desktop/git_class

> # git init

> echo "This is a first line of text." > README

> git status # Report on changes

On branch master

Initial commit

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

#	 README

#

nothing added to commit but untracked files present (use "git add" to track)

Do it Yourself!

2. Adds to ‘staging area’

> git add README # Add README file to staging area

> git status # Report on changes

On branch master

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

#

# 	 new file: README

#

3. Commit changes

> git commit -m “Create a README file” # Take snapshot

[master (root-commit) 8676840] Create a README file

1 file changed, 1 insertion(+)

create mode 100644 README

> git status # Report on changes

On branch master

nothing to commit, working directory clean

4. Eva modifies README file

and adds a ToDo file

> echo "This is a 2nd line of text." >> README

> echo "Learn git basics" >> ToDo

> git status # Report on changes

On branch master

#

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

#	 modified: README

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

#	 ToDo

#

no changes added to commit (use "git add" and/or "git commit -a")

5. Adds both files to ‘staging area’

> git add README ToDo # Add both files to ‘staging area’

> git status # Report on changes

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

#	 modified: README

#	 new file: ToDo

#

6. Commits changes

> git commit -m "Add ToDo and modify README"

[master 7b679fa] Add ToDo and modify README

2 files changed, 2 insertions(+)

create mode 100644 ToDo

> git status

On branch master

nothing to commit, working directory clean

Example Git workflow
• Eva creates a README text file

• Adds file to STAGING AREA*

• Commit changes*

• Eva modifies README and adds a ToDo text file

• Adds both to STAGING AREA*

• Commit changes*

1.

2.

3.

4.

5.

6.

…But, how do we see the history of our project changes?

> git log

commit 7b679fa747e8640918fcaad7e4c3f9c70c87b170

Author: Barry Grant <bjgrant@umich.edu>

Date: Thu Jul 30 11:43:40 2015 -0400

#

Add ToDo and finished README

#

commit 86768401610770ae32e2fd4faee07d1d5c68619c

Author: Barry Grant <bjgrant@umich.edu>

Date: Thu Jul 30 11:26:40 2015 -0400

#

Create a README file

#

git log: Timeline history of
snapshots (i.e. commits)

> git log

commit 7b679fa747e8640918fcaad7e4c3f9c70c87b170

Author: Barry Grant <bjgrant@umich.edu>

Date: Thu Jul 30 11:43:40 2015 -0400

#

Add ToDo and finished README

#

commit 86768401610770ae32e2fd4faee07d1d5c68619c

Author: Barry Grant <bjgrant@umich.edu>

Date: Thu Jul 30 11:26:40 2015 -0400

#

Create a README file

#

git log: Timeline history of
snapshots (i.e. commits)

Past

Side-Note: Git history is akin

 to a graph

7b67…

8676…

HEAD
Nodes are commits labeled by their

unique ‘commit ID’.

(This is a CHECKSUM of the commits
author, time, commit msg, commit content

and previous commit ID).

HEAD is a reference (or ‘pointer’) to the
currently checked out commit (typically the

most recent commit).

Time

Projects can have complicated
graphs due to branching

7b67…

8676…

HEAD

Master

59d6…

Feature BugFix

1g9k…

39x2…

Branches allow you to work independently
of other lines of development we will talk

more about these later!

Key Points:

You explicitly and iteratively tell git what files to
track (“git add”) and snapshot (“git commit”).

Git keeps an historical log “(git log”) of the
content changes (and your comments on these

changes) at each past commit.

It is good practice to regularly check the status
of your working directory, staging arena repo

(“git status“)

Break

> git status # Get a status report of changes since last commit

> git add <filename> # Tell Git which files to track/stage

> git commit -m ‘Your message’ # Take a content snapshot!

> git log # Review your commit history

> git diff <commit.ID> <commit.ID> # Inspect content differences

> git checkout <commit.ID> # Navigate through the commit history

Summary of key Git commands:

Your

Directory

‘Staging

Area’

Local

Repository

add

commit

checkout

diff

diff <commit.ID>

status

log

> git diff 8676 7b67

diff --git a/README b/README

index 73bc85a..67bd82c 100644

--- a/README

+++ b/README

@@ -1 +1,2 @@

This is a first line of text.

+This is a 2nd line of text.

diff --git a/ToDo b/ToDo

new file mode 100644

index 0000000..14fbd56

--- /dev/null

+++ b/ToDo

@@ -0,0 +1 @@

+Learn git basics

git diff: Show changes

between commits

7b67…

8676…

> git diff 7b67 8676

diff --git a/README b/README

index 67bd82c..73bc85a 100644

--- a/README

+++ b/README

@@ -1,2 +1 @@

This is a first line of text.

-This is a 2nd line of text.

diff --git a/ToDo b/ToDo

deleted file mode 100644

index 14fbd56..0000000

--- a/ToDo

+++ /dev/null

@@ 1 +0,0 @@

-Learn git basics

git diff: Show changes

between commits

7b67…

8676…

> git diff 8676 ## Difference to current HEAD position!

diff --git a/README b/README

index 73bc85a..67bd82c 100644

--- a/README

+++ b/README

@@ -1 +1,2 @@

This is a first line of text.

+This is a 2nd line of text.

diff --git a/ToDo b/ToDo

new file mode 100644

index 0000000..14fbd56

--- /dev/null

+++ b/ToDo

@@ -0,0 +1 @@

+Learn git basics

HEAD

git diff: Show changes

between commits

7b67…

8676…

HEAD advances automatically with
each new commit

HEAD 7b67…

8676…

To move HEAD (back or forward)
on the Git graph (and retrieve the
associated snapshot content) we

can use the command:

> git checkout <commit.ID>

> more README

This is a first line of text.

This is a 2nd line of text.

> git log --oneline

7b679fa Add ToDo and finished README

8676840 Create a README file

git checkout: Moves HEAD

7b67…

8676…

HEAD

> more README

This is a first line of text.

This is a 2nd line of text.

> git log --oneline

7b679fa Add ToDo and finished README

8676840 Create a README file

> git checkout 86768

You are in 'detached HEAD' state…<cut>…

HEAD is now at 8676840... Create a README file

> more README

This is a first line of text.

> git log --oneline

8676840 Create a README file

7b67…

8676…HEAD

git checkout: Moves HEAD

(e.g. back in time)

Do it Yourself!

> git checkout master

Previous HEAD position was 8676840... Create a README file

Switched to branch 'master'

> git log --oneline

7b679fa Add ToDo and finished README

8676840 Create a README file

> more README

This is a first line of text.

This is a 2nd line of text.

7b67…

8676…

HEAD

git checkout: Moves HEAD

(e.g. back to the future!)

Side-Note: There are two* main ways to

use git checkout

• Checking out a commit makes the entire working
directory match that commit. This can be used to
view an old state of your project.

> git checkout <commit.ID>

• Checking out a specific file lets you see an old
version of that particular file, leaving the rest of
your working directory untouched.

> git checkout <commit.ID> <filename>

You can discard revisions

with git revert

• The git revert command undoes a committed
snapshot.

• But, instead of removing the commit from the
project history, it figures out how to undo the
changes introduced by the commit and appends
a new commit with the resulting content.

> git revert <commit.ID>

• This prevents Git from losing history!

Removing untracked files

with git clean

• The git clean command removes untracked files from
your working directory.

• Like an ordinary rm command, git clean is not
undoable, so make sure you really want to delete the
untracked files before you run it.

> git clean -n # dry run display of files to be ‘cleaned’

> git clean -f # remove untracked files

GUIs
Tower (Mac only)

GitHub_Desktop (Mac, Windows)

SourceTree (Mac, Windows)

SmartGit (Linux)

RStudio

Demo Tower

https://git-scm.com/downloads/guis

https://git-scm.com/downloads/guis

