
Class 13∗

Transcriptomics and the analysis of RNA-Seq data

Barry Grant

2023-04-03

1. Background

The data for this hands-on session comes from a published RNA-seq experiment where airway
smooth muscle cells were treated with dexamethasone, a synthetic glucocorticoid steroid with
anti-inflammatory effects (Himes et al. 2014).

Glucocorticoids are used, for example, by people with asthma to reduce inflammation of the
airways (Figure 1). The anti-inflammatory effects on airway smooth muscle (ASM) cells has
been known for some time but the underlying molecular mechanisms are unclear.

Himes et al. used RNA-seq to profile gene expression changes in four different ASM cell lines
treated with dexamethasone glucocorticoid.

They found a number of differentially expressed genes but focus much of the discussion on a
gene called CRISPLD2.

This gene encodes a secreted protein known to be involved in lung development, and SNPs in
this gene in previous GWAS studies are associated with inhaled corticosteroid resistance and
bronchodilator response in asthma patients.

Outline

In this class session we will:

• Open a new RStudio Project and Quarto document for today’s class;
• Review how to install both Bioconductor and CRAN packages;
• Explore the Himes et al. gene expression data using base R, dplyr and ggplot2 package

functions;
∗http://thegrantlab.org/teaching/

1

https://en.wikipedia.org/wiki/Dexamethasone
http://www.ncbi.nlm.nih.gov/pubmed/24926665
http://www.bioconductor.org
https://cran.r-project.org
https://dplyr.tidyverse.org
https://ggplot2.tidyverse.org

Figure 1: Illustration of normal and asthma airways

2

• Perform a detailed differential gene expression analysis with the DESeq2 package.
• Render a reproducible PDF report of your work with answers to all questions below.

For full details of the original analysis see the PubMed entry 24926665 and for associated data
see the GEO entry GSE52778.

2. Bioconductor setup

As we already noted in a previous class Bioconductor is a large repository and resource for R
packages that focus on analysis of high-throughput genomic data.

Recall that Bioconductor packages are installed differently than “regular” R packages from
CRAN. To install the core Bioconductor packages, copy and paste the following two lines of
code into your R console one at a time.

N.B. Remember not to put these install commands in your Quarto report as it
will at best re-install the packages every time you render your report, which is not
what you want, and at worst cause a confusing rendering error.

install.packages("BiocManager")
BiocManager::install()

If this finished without yielding obvious error messages we can install the DESeq2 bioconduc-
tor package that we will use in this class:

For this class we will need DESeq2:
BiocManager::install("DESeq2")

More about the install process (click to expand)

The entire install process can take some time as there are many packages with dependen-
cies on other packages.
For some important notes on the install process please see our Bioconductor setup notes.
Your install process may produce some notes or other output.
Generally, as long as you don’t get an error message, you’re good to move on. If you
do see error messages then again please see our Bioconductor setup notes for debugging
steps.

Finally, check that you have installed everything correctly by entering the following two com-
mands at the console window:

3

https://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://www.ncbi.nlm.nih.gov/pubmed/24926665
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778
https://bioboot.github.io/bggn213_W23/class-material/bioconductor_setup/
https://bioboot.github.io/bggn213_W23/class-material/bioconductor_setup/

library(BiocManager)
library(DESeq2)

If you get a message that says something like: Error in library(DESeq2) : there is no
package called 'DESeq2', then the required packages did not install correctly. Please see
our Bioconductor setup notes and let us know so we can debug this together.

Side-note: Aligning reads to a reference genome

The computational analysis of an RNA-seq experiment begins from the FASTQ files
that contain the nucleotide sequence of each read and a quality score at each position.
These reads must first be aligned to a reference genome or transcriptome. The output
of this alignment step is commonly stored in a file format called SAM/BAM. This is the
workflow we followed last day.
Once the reads have been aligned, there are a number of tools that can be used to
count the number of reads/fragments that can be assigned to genomic features for each
sample. These often take as input SAM/BAM alignment files and a file specifying the
genomic features, e.g. a GFF3 or GTF file specifying the gene models as obtained from
ENSEMBLE or UCSC.
In the workflow we’ll use here, the abundance of each transcript was quantified using
kallisto (software, paper) and transcript-level abundance estimates were then summa-
rized to the gene level to produce length-scaled counts using the R package txImport
(software, paper), suitable for using in count-based analysis tools like DESeq. This is the
starting point - a “count matrix”, where each cell indicates the number of reads mapping
to a particular gene (in rows) for each sample (in columns). This is where we left off last
day when analyzing our 1000 genome data.

Note: This is one of several well-established workflows for data pre-
processing. The goal here is to provide a reference point to acquire fundamen-
tal skills with DESeq2 that will be applicable to other bioinformatics tools
and workflows. In this regard, the following resources summarize a number
of best practices for RNA-seq data analysis and pre-processing.

1. Conesa, A. et al. “A survey of best practices for RNA-seq data analysis.”
Genome Biology 17:13 (2016).

2. Soneson, C., Love, M. I. & Robinson, M. D. “Differential analyses
for RNA-seq: transcript-level estimates improve gene-level inferences.”
F1000Res. 4:1521 (2016).

3. Griffith, Malachi, et al. “Informatics for RNA sequencing: a web resource
for analysis on the cloud.” PLoS Comput Biol 11.8: e1004393 (2015).

4

https://bioboot.github.io/bggn213_W23/class-material/bioconductor_setup/
https://en.wikipedia.org/wiki/FASTQ_format
https://bioboot.github.io/bggn213_W23/class-material/sam_format/
https://pachterlab.github.io/kallisto/about
http://www.nature.com/nbt/journal/v34/n5/full/nbt.3519.html
https://bioconductor.org/packages/tximport
https://f1000research.com/articles/4-1521/v2
http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0881-8
https://f1000research.com/articles/4-1521/v2
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

DESeq2 Required Inputs

As input, the DESeq2 package expects (1) a data.frame of count data (as obtained from
RNA-seq or another high-throughput sequencing experiment) and (2) a second data.frame
with information about the samples - often called sample metadata (or colData in DESeq2-
speak because it supplies metadata/information about the columns of the countData matrix)
(Figure 2).

Figure 2: DESeq requires both countData and colData in specific formats.

The count matrix (called the countData in DESeq2-speak) the value in the i-th row and the
j-th column of the data.frame tells us how many reads can be assigned to gene i in sample j.
Analogously, for other types of assays, the rows of this matrix might correspond e.g. to binding
regions (with ChIP-Seq) or peptide sequences (with quantitative mass spectrometry).

For the sample metadata (i.e. colData in DESeq2-speak) samples are in rows and metadata
about those samples are in columns. Notice that the first column of colData must match the
column names of countData (except the first, which is the gene ID column) (Figure 2).

Note from the DESeq2 vignette: The values in the input contData object
should be counts of sequencing reads/fragments. This is important for DESeq2’s
statistical model to hold, as only counts allow assessing the measurement precision

5

correctly. It is important to never provide counts that were pre-normalized for
sequencing depth/library size, as the statistical model is most powerful when ap-
plied to un-normalized counts, and is designed to account for library size differences
internally.

3. Import countData and colData

If you have not already done so first create a new RStudio project (File > New Project
> New Directory > New Project) and download the input airway_scaledcounts.csv and air-
way_metadata.csv into your project directory.

Open a new Quarto Document (File > New File > Quarto Document) add a code chunk
and use the read.csv() function to read these count data and metadata files.

Complete the missing code
counts <- read.csv("___", row.names=1)
metadata <- ___("airway_metadata.csv")

Now, take a look at the head of each.

head(counts)

SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516
ENSG00000000003 723 486 904 445 1170
ENSG00000000005 0 0 0 0 0
ENSG00000000419 467 523 616 371 582
ENSG00000000457 347 258 364 237 318
ENSG00000000460 96 81 73 66 118
ENSG00000000938 0 0 1 0 2

SRR1039517 SRR1039520 SRR1039521
ENSG00000000003 1097 806 604
ENSG00000000005 0 0 0
ENSG00000000419 781 417 509
ENSG00000000457 447 330 324
ENSG00000000460 94 102 74
ENSG00000000938 0 0 0

head(metadata)

6

https://bioboot.github.io/bimm143_W18/class-material/airway_scaledcounts.csv
https://bioboot.github.io/bimm143_W18/class-material/airway_metadata.csv
https://bioboot.github.io/bimm143_W18/class-material/airway_metadata.csv

id dex celltype geo_id
1 SRR1039508 control N61311 GSM1275862
2 SRR1039509 treated N61311 GSM1275863
3 SRR1039512 control N052611 GSM1275866
4 SRR1039513 treated N052611 GSM1275867
5 SRR1039516 control N080611 GSM1275870
6 SRR1039517 treated N080611 GSM1275871

You can also use the View() function to view the entire object. Notice something here. The
sample IDs in the metadata sheet (SRR1039508, SRR1039509, etc.) exactly match the column
names of the countdata, except for the rownames, which contains the Ensembl gene ID. This
is important, and we’ll get more strict about it later on.

• Q1. How many genes are in this dataset?
• Q2. How many ‘control’ cell lines do we have?

Hint (click to expand)

The functions dim(), nrow() and View() may be useful for answering these ques-
tions.

4. Toy differential gene expression

Lets perform some exploratory differential gene expression analysis. Note: this analysis is
for demonstration only. NEVER do differential expression analysis this way!

Look at the metadata object again to see which samples are control and which are drug
treated. You can also see this in the metadata printed table below:

Metadata for the Himes et al. RNASeq experiment
Note the ‘dex’ column specifies drug presence/absence

id dex celltype geo_id
SRR1039508 control N61311 GSM1275862
SRR1039509 treated N61311 GSM1275863
SRR1039512 control N052611 GSM1275866
SRR1039513 treated N052611 GSM1275867
SRR1039516 control N080611 GSM1275870
SRR1039517 treated N080611 GSM1275871
SRR1039520 control N061011 GSM1275874

7

SRR1039521 treated N061011 GSM1275875

Note that the control samples are SRR1039508, SRR1039512, SRR1039516, and SRR1039520.
This bit of code will first find the sample id for those labeled control. Then calculate the mean
counts per gene across these samples:

control <- metadata[metadata[,"dex"]=="control",]
control.counts <- counts[,control$id]
control.mean <- rowSums(control.counts)/4
head(control.mean)

ENSG00000000003 ENSG00000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460
900.75 0.00 520.50 339.75 97.25

ENSG00000000938
0.75

Side-note: An alternative way to do this same thing using the dplyr package from the
tidyverse is shown below. Which do you prefer and why?

library(dplyr)
control <- metadata %>% filter(dex=="control")
control.counts <- counts %>% select(control$id)
control.mean <- rowSums(control.counts)/4
head(control.mean)

ENSG00000000003 ENSG00000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460
900.75 0.00 520.50 339.75 97.25

ENSG00000000938
0.75

• Q3. How would you make the above code in either approach more robust? Is there
a function that could help here?

• Q4. Follow the same procedure for the treated samples (i.e. calculate the
mean per gene across drug treated samples and assign to a labeled vector called
treated.mean)

8

Hint (click to expand)

For Q3 consider what would happen if you were to add more samples. Would the
values obtained with the exact code above be correct?
For Q4 you can adapt the above code being sure to substitute "treated" for
"control". For example:

treated <- metadata[metadata[,"dex"]=="___",]
treated.mean <- ___(counts[,treated$id])

We will combine our meancount data for bookkeeping purposes.

meancounts <- data.frame(control.mean, treated.mean)

Directly comparing the raw counts is going to be problematic if we just happened to sequence
one group at a higher depth than another. Later on we’ll do this analysis properly, normalizing
by sequencing depth per sample using a better approach. But for now, colSums() the data
to show the sum of the mean counts across all genes for each group. Your answer should look
like this:

control.mean treated.mean
23005324 22196524

• Q5 (a). Create a scatter plot showing the mean of the treated samples against the
mean of the control samples. Your plot should look something like the following.

9

0 50000 150000 250000 350000

0
10

00
00

25
00

00

Control

Tr
ea

te
d

Hint (click to expand)

Here you can call plot() with x=meancounts[,1] and y=meancounts[,2]. Or just
call plot(meancounts)

plot(meancounts[,1],meancounts[,2], xlab="Control", ylab="Treated")

• Q5 (b).You could also use the ggplot2 package to make this figure producing the
plot below. What geom_?() function would you use for this plot?

10

0e+00

1e+05

2e+05

3e+05

0e+00 1e+05 2e+05 3e+05
control.mean

tr
ea

te
d.

m
ea

n

Wait a sec. There are 60,000-some rows in this data, but I’m only seeing a few dozen dots at
most outside of the big clump around the origin.

• Q6. Try plotting both axes on a log scale. What is the argument to plot() that
allows you to do this?

Hint (click to expand)

See the help for ?plot.default to see how to set log axis.

11

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05

1e
+

00
1e

+
03

log Control

lo
g

Tr
ea

te
d

If you are using ggplot have a look at the function scale_x_continuous(trans="log2")
and of course do the same for the y axis.

We can find candidate differentially expressed genes by looking for genes with a large change
between control and dex-treated samples. We usually look at the log2 of the fold change,
because this has better mathematical properties.

Here we calculate log2foldchange, add it to our meancounts data.frame and inspect the results
either with the head() or the View() function for example.

meancounts$log2fc <- log2(meancounts[,"treated.mean"]/meancounts[,"control.mean"])
head(meancounts)

control.mean treated.mean log2fc
ENSG00000000003 900.75 658.00 -0.45303916
ENSG00000000005 0.00 0.00 NaN
ENSG00000000419 520.50 546.00 0.06900279
ENSG00000000457 339.75 316.50 -0.10226805
ENSG00000000460 97.25 78.75 -0.30441833
ENSG00000000938 0.75 0.00 -Inf

There are a couple of “weird” results. Namely, the NaN (“not a number”) and -Inf (negative
infinity) results.

12

The NaN is returned when you divide by zero and try to take the log. The -Inf is returned
when you try to take the log of zero. It turns out that there are a lot of genes with zero
expression. Let’s filter our data to remove these genes. Again inspect your result (and the
intermediate steps) to see if things make sense to you

zero.vals <- which(meancounts[,1:2]==0, arr.ind=TRUE)

to.rm <- unique(zero.vals[,1])
mycounts <- meancounts[-to.rm,]
head(mycounts)

control.mean treated.mean log2fc
ENSG00000000003 900.75 658.00 -0.45303916
ENSG00000000419 520.50 546.00 0.06900279
ENSG00000000457 339.75 316.50 -0.10226805
ENSG00000000460 97.25 78.75 -0.30441833
ENSG00000000971 5219.00 6687.50 0.35769358
ENSG00000001036 2327.00 1785.75 -0.38194109

• Q7. What is the purpose of the arr.ind argument in the which() function call
above? Why would we then take the first column of the output and need to call
the unique() function?

Hint (click to expand)

The arr.ind=TRUE argument will clause which() to return both the row and column
indices (i.e. positions) where there are TRUE values. In this case this will tell us
which genes (rows) and samples (columns) have zero counts. We are going to ignore
any genes that have zero counts in any sample so we just focus on the row answer.
Calling unique() will ensure we don’t count any row twice if it has zero entries in
both samples. Ask Barry to discuss and demo this further;-)

A common threshold used for calling something differentially expressed is a log2(FoldChange)
of greater than 2 or less than -2. Let’s filter the dataset both ways to see how many genes are
up or down-regulated.

up.ind <- mycounts$log2fc > 2
down.ind <- mycounts$log2fc < (-2)

13

• Q8. Using the up.ind vector above can you determine how many up regulated
genes we have at the greater than 2 fc level?

• Q9. Using the down.ind vector above can you determine how many down regulated
genes we have at the greater than 2 fc level?

• Q10. Do you trust these results? Why or why not?

Hint (click to expand)

What type of vectors are up.ind and down.ind? How could you count the number
of TRUE elements? Your answers should look like:

[1] "Up: 250"

[1] "Down: 367"

For question 10, all our analysis has been done based on fold change. However,
fold change can be large (e.g. »two-fold up- or down-regulation) without being
statistically significant (e.g. based on p-values). We have not done anything yet to
determine whether the differences we are seeing are significant. These results in
their current form are likely to be very misleading. In the next section we will begin
to do this properly with the help of the DESeq2 package.

In total, you should have over 600 differentially expressed genes, in either direction.

5. Setting up for DESeq

Let’s do this the right way. DESeq2 is an R package specifically for analyzing count-based NGS
data like RNA-seq. It is available from Bioconductor. Bioconductor is a project to provide
tools for analyzing high-throughput genomic data including RNA-seq, ChIP-seq and arrays.
You can explore Bioconductor packages here.

Bioconductor packages usually have great documentation in the form of vignettes. For a
great example, take a look at the DESeq2 vignette for analyzing count data. This 40+ page
manual is packed full of examples on using DESeq2, importing data, fitting models, creating
visualizations, references, etc.

Just like R packages from CRAN, you only need to install Bioconductor packages once (in-
structions here), then load them every time you start a new R session.

14

http://www.bioconductor.org/
http://www.bioconductor.org/packages/release/BiocViews.html#___Software
http://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
setup.html#bioconductor
setup.html#bioconductor

library(DESeq2)
citation("DESeq2")

Take a second and read through all the stuff that flies by the screen when you load the DESeq2
package. When you first installed DESeq2 it may have taken a while, because DESeq2 depends
on a number of other R packages (S4Vectors, BiocGenerics, parallel, IRanges, etc.) Each
of these, in turn, may depend on other packages. These are all loaded into your working
environment when you load DESeq2. Also notice the lines that start with The following
objects are masked from 'package:....

Importing data

Bioconductor software packages often define and use custom class objects for storing data. This
helps to ensure that all the needed data for analysis (and the results) are available. DESeq
works on a particular type of object called a DESeqDataSet. The DESeqDataSet is a single
object that contains input values, intermediate calculations like how things are normalized,
and all results of a differential expression analysis.

You can construct a DESeqDataSet from (1) a count matrix, (2) a metadata file, and (3) a
formula indicating the design of the experiment.

We have talked about (1) and (2) previously. The third needed item that has to be specified
at the beginning of the analysis is a design formula. This tells DESeq2 which columns in the
sample information table (colData) specify the experimental design (i.e. which groups the
samples belong to) and how these factors should be used in the analysis. Essentially, this
formula expresses how the counts for each gene depend on the variables in colData.

Take a look at metadata again. The thing we’re interested in is the dex column, which tells us
which samples are treated with dexamethasone versus which samples are untreated controls.
We’ll specify the design with a tilde, like this: design=~dex. (The tilde is the shifted key to
the left of the number 1 key on my keyboard. It looks like a little squiggly line).

We will use the DESeqDataSetFromMatrix() function to build the required DESeqDataSet
object and call it dds, short for our DESeqDataSet. If you get a warning about “some variables
in design formula are characters, converting to factors” don’t worry about it. Take a look at
the dds object once you create it.

dds <- DESeqDataSetFromMatrix(countData=counts,
colData=metadata,
design=~dex)

dds

15

class: DESeqDataSet
dim: 38694 8
metadata(1): version
assays(1): counts
rownames(38694): ENSG00000000003 ENSG00000000005 ... ENSG00000283120
ENSG00000283123

rowData names(0):
colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
colData names(4): id dex celltype geo_id

6. Principal Component Analysis (PCA)

Before running DESeq analysis we can look how the count data samples are related to one
another via our old friend Principal Component Analysis (PCA). We will follow the DESeq
recommended procedure and associated functions for PCA. First calling vst() to apply a
variance stabilizing transformation (read more about this in the expandable section below)
and then plotPCA() to calculate our PCs and plot the results.

Variance stabilizing transformation (click to expand)

The purpose of the variance stabilizing transformation in DESeq2 is to normalize count
data and stabilize the variance across the mean expression level. This is important
because count data often have different variances at different levels of expression, and this
can lead to false positive or false negative results in downstream analysis. The variance
stabilizing transformation is a type of power transformation that aims to stabilize the
variance across the mean expression level of genes.
The vst() function in DESeq2 transforms raw count data into a log2-counts per million
(logCPM) space, where the variance is approximately independent of the mean. This
transformation improves the performance of statistical tests and reduces the impact of
outliers on the analysis. The variance-stabilized data can then be used for exploratory
data analysis, visualization, and downstream statistical analysis, such as differential ex-
pression analysis, clustering, and dimension reduction. For motivated readers this vi-
gnette has additional details.

vsd <- vst(dds, blind = FALSE)
plotPCA(vsd, intgroup = c("dex"))

16

https://compbiocore.github.io/deseq-workshop-1/assets/deseq_workshop_1.html#Why-is-it-Important-to-Transform-Data-Before-Analysis?
https://compbiocore.github.io/deseq-workshop-1/assets/deseq_workshop_1.html#Why-is-it-Important-to-Transform-Data-Before-Analysis?

−10

0

10

20

−10 0 10 20
PC1: 32% variance

P
C

2:
 2

4%
 v

ar
ia

nc
e

group

control

treated

The plotPCA() function comes with DESeq2 and intgroup are our dex groups for labeling
the samples; they tell the function to use them to choose colors.

We can also build the PCA plot from scratch using the ggplot2 package. This is done by
asking the plotPCA function to return the data used for plotting rather than building the
plot.

pcaData <- plotPCA(vsd, intgroup=c("dex"), returnData=TRUE)
head(pcaData)

PC1 PC2 group dex name
SRR1039508 -17.607922 -10.225252 control control SRR1039508
SRR1039509 4.996738 -7.238117 treated treated SRR1039509
SRR1039512 -5.474456 -8.113993 control control SRR1039512
SRR1039513 18.912974 -6.226041 treated treated SRR1039513
SRR1039516 -14.729173 16.252000 control control SRR1039516
SRR1039517 7.279863 21.008034 treated treated SRR1039517

Calculate percent variance per PC for the plot axis labels
percentVar <- round(100 * attr(pcaData, "percentVar"))

17

ggplot(pcaData) +
aes(x = PC1, y = PC2, color = dex) +
geom_point(size =3) +
xlab(paste0("PC1: ", percentVar[1], "% variance")) +
ylab(paste0("PC2: ", percentVar[2], "% variance")) +
coord_fixed() +
theme_bw()

−10

0

10

20

−10 0 10 20
PC1: 32% variance

P
C

2:
 2

4%
 v

ar
ia

nc
e

dex

control

treated

7. DESeq analysis

Finally, let’s run the DESeq analysis pipeline on the dataset, and reassign the resulting object
back to the same variable. Note that before we start, dds is a bare-bones DESeqDataSet. The
DESeq() function takes a DESeqDataSet and returns a DESeqDataSet, but with additional
information filled in (including the differential expression results we are after). Notice how if
we try to access these results before running the analysis, nothing exists.

results(dds)

Error in results(dds): couldn't find results. you should first run DESeq()

18

Here, we’re running the DESeq pipeline on the dds object, and reassigning the whole thing
back to dds, which will now be a DESeqDataSet populated with all those values. Get some help
on ?DESeq (notice, no “2” on the end). This function calls a number of other functions within
the package to essentially run the entire pipeline (normalizing by library size by estimating
the “size factors,” estimating dispersion for the negative binomial model, and fitting models
and getting statistics for each gene for the design specified when you imported the data).

dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

Getting results

Since we’ve got a fairly simple design (single factor, two groups, treated versus control), we can
get results out of the object simply by calling the results() function on the DESeqDataSet
that has been run through the pipeline. The help page for ?results and the vignette both
have extensive documentation about how to pull out the results for more complicated models
(multi-factor experiments, specific contrasts, interaction terms, time courses, etc.).

res <- results(dds)
res

log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 38694 rows and 6 columns

baseMean log2FoldChange lfcSE stat pvalue
<numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000000003 747.1942 -0.3507030 0.168246 -2.084470 0.0371175
ENSG00000000005 0.0000 NA NA NA NA

19

ENSG00000000419 520.1342 0.2061078 0.101059 2.039475 0.0414026
ENSG00000000457 322.6648 0.0245269 0.145145 0.168982 0.8658106
ENSG00000000460 87.6826 -0.1471420 0.257007 -0.572521 0.5669691
...
ENSG00000283115 0.000000 NA NA NA NA
ENSG00000283116 0.000000 NA NA NA NA
ENSG00000283119 0.000000 NA NA NA NA
ENSG00000283120 0.974916 -0.668258 1.69456 -0.394354 0.693319
ENSG00000283123 0.000000 NA NA NA NA

padj
<numeric>

ENSG00000000003 0.163035
ENSG00000000005 NA
ENSG00000000419 0.176032
ENSG00000000457 0.961694
ENSG00000000460 0.815849
... ...
ENSG00000283115 NA
ENSG00000283116 NA
ENSG00000283119 NA
ENSG00000283120 NA
ENSG00000283123 NA

Convert the res object to a data.frame with the as.data.frame() function and then pass it
to View() to bring it up in a data viewer.

Why do you think so many of the adjusted p-values are missing (NA)? Try looking at the
baseMean column, which tells you the average overall expression of this gene, and how that
relates to whether or not the p-value was missing. Go to the DESeq2 vignette and read the
section about “Independent filtering and multiple testing.”

Note. The goal of independent filtering is to filter out those tests from the pro-
cedure that have no, or little chance of showing significant evidence, without even
looking at the statistical result. Genes with very low counts are not likely to see
significant differences typically due to high dispersion. This results in increased
detection power at the same experiment-wide type I error [i.e., better FDRs].

We can summarize some basic tallies using the summary function.

summary(res)

out of 25258 with nonzero total read count

20

http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf

adjusted p-value < 0.1
LFC > 0 (up) : 1563, 6.2%
LFC < 0 (down) : 1188, 4.7%
outliers [1] : 142, 0.56%
low counts [2] : 9971, 39%
(mean count < 10)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

The results function contains a number of arguments to customize the results table. By default
the argument alpha is set to 0.1. If the adjusted p value cutoff will be a value other than 0.1,
alpha should be set to that value:

res05 <- results(dds, alpha=0.05)
summary(res05)

out of 25258 with nonzero total read count
adjusted p-value < 0.05
LFC > 0 (up) : 1236, 4.9%
LFC < 0 (down) : 933, 3.7%
outliers [1] : 142, 0.56%
low counts [2] : 9033, 36%
(mean count < 6)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

8. Adding annotation data

Our result table so far only contains the Ensembl gene IDs. However, alternative gene names
and extra annotation are usually required for informative interpretation of our results. In this
section we will add this necessary annotation data to our results.

We will use one of Bioconductor’s main annotation packages to help with mapping between
various ID schemes. Here we load the AnnotationDbi package and the annotation data
package for humans org.Hs.eg.db.

library("AnnotationDbi")
library("org.Hs.eg.db")

21

Note: You may have to install these with the BiocManager::install("AnnotationDbi")
and BiocManager::install("org.Hs.eg.db") function calls.

The later of these is is the organism annotation package (“org”) for Homo sapiens (“Hs”),
organized as an AnnotationDbi database package (“db”), using Entrez Gene IDs (“eg”) as
primary key. To get a list of all available key types that we can use to map between, use the
columns() function:

columns(org.Hs.eg.db)

[1] "ACCNUM" "ALIAS" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"
[6] "ENTREZID" "ENZYME" "EVIDENCE" "EVIDENCEALL" "GENENAME"
[11] "GENETYPE" "GO" "GOALL" "IPI" "MAP"
[16] "OMIM" "ONTOLOGY" "ONTOLOGYALL" "PATH" "PFAM"
[21] "PMID" "PROSITE" "REFSEQ" "SYMBOL" "UCSCKG"
[26] "UNIPROT"

Side-note: You can also pull up documentation (i.e. help) with a description of these different
values with the regular help() command, e.g. help("REFSEQ")

The main function we will use from the AnnotationDbi package is called mapIds().

We can use the mapIds() function to add individual columns to our results table. We provide
the row names of our results table as a key, and specify that keytype=ENSEMBL. The column
argument tells the mapIds() function which information we want, and the multiVals argument
tells the function what to do if there are multiple possible values for a single input value. Here
we ask to just give us back the first one that occurs in the database.

res$symbol <- mapIds(org.Hs.eg.db,
keys=row.names(res), # Our genenames
keytype="ENSEMBL", # The format of our genenames
column="SYMBOL", # The new format we want to add
multiVals="first")

head(res)

log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 7 columns

baseMean log2FoldChange lfcSE stat pvalue
<numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000000003 747.194195 -0.3507030 0.168246 -2.084470 0.0371175

22

ENSG00000000005 0.000000 NA NA NA NA
ENSG00000000419 520.134160 0.2061078 0.101059 2.039475 0.0414026
ENSG00000000457 322.664844 0.0245269 0.145145 0.168982 0.8658106
ENSG00000000460 87.682625 -0.1471420 0.257007 -0.572521 0.5669691
ENSG00000000938 0.319167 -1.7322890 3.493601 -0.495846 0.6200029

padj symbol
<numeric> <character>

ENSG00000000003 0.163035 TSPAN6
ENSG00000000005 NA TNMD
ENSG00000000419 0.176032 DPM1
ENSG00000000457 0.961694 SCYL3
ENSG00000000460 0.815849 C1orf112
ENSG00000000938 NA FGR

• Q11. Run the mapIds() function two more times to add the Entrez ID
and UniProt accession and GENENAME as new columns called res$entrez,
res$uniprot and res$genename.

23

Hint (click to expand)

Your code and results should look like the following:

res$entrez <- mapIds(org.Hs.eg.db,
keys=row.names(res),
column="ENTREZID",
keytype="ENSEMBL",
multiVals="first")

res$uniprot <- mapIds(org.Hs.eg.db,
keys=row.names(res),
column="UNIPROT",
keytype="ENSEMBL",
multiVals="first")

res$genename <- mapIds(org.Hs.eg.db,
keys=row.names(res),
column="GENENAME",
keytype="ENSEMBL",
multiVals="first")

head(res)

log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 10 columns

baseMean log2FoldChange lfcSE stat pvalue
<numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000000003 747.194195 -0.3507030 0.168246 -2.084470 0.0371175
ENSG00000000005 0.000000 NA NA NA NA
ENSG00000000419 520.134160 0.2061078 0.101059 2.039475 0.0414026
ENSG00000000457 322.664844 0.0245269 0.145145 0.168982 0.8658106
ENSG00000000460 87.682625 -0.1471420 0.257007 -0.572521 0.5669691
ENSG00000000938 0.319167 -1.7322890 3.493601 -0.495846 0.6200029

padj symbol entrez uniprot
<numeric> <character> <character> <character>

ENSG00000000003 0.163035 TSPAN6 7105 A0A024RCI0
ENSG00000000005 NA TNMD 64102 Q9H2S6
ENSG00000000419 0.176032 DPM1 8813 O60762
ENSG00000000457 0.961694 SCYL3 57147 Q8IZE3
ENSG00000000460 0.815849 C1orf112 55732 A0A024R922
ENSG00000000938 NA FGR 2268 P09769

genename
<character>

ENSG00000000003 tetraspanin 6
ENSG00000000005 tenomodulin
ENSG00000000419 dolichyl-phosphate m..
ENSG00000000457 SCY1 like pseudokina..
ENSG00000000460 chromosome 1 open re..
ENSG00000000938 FGR proto-oncogene, ..

24

You can arrange and view the results by the adjusted p-value

ord <- order(res$padj)
#View(res[ord,])
head(res[ord,])

log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 10 columns

baseMean log2FoldChange lfcSE stat pvalue
<numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000152583 954.771 4.36836 0.2371268 18.4220 8.74490e-76
ENSG00000179094 743.253 2.86389 0.1755693 16.3120 8.10784e-60
ENSG00000116584 2277.913 -1.03470 0.0650984 -15.8944 6.92855e-57
ENSG00000189221 2383.754 3.34154 0.2124058 15.7319 9.14433e-56
ENSG00000120129 3440.704 2.96521 0.2036951 14.5571 5.26424e-48
ENSG00000148175 13493.920 1.42717 0.1003890 14.2164 7.25128e-46

padj symbol entrez uniprot
<numeric> <character> <character> <character>

ENSG00000152583 1.32441e-71 SPARCL1 8404 A0A024RDE1
ENSG00000179094 6.13966e-56 PER1 5187 O15534
ENSG00000116584 3.49776e-53 ARHGEF2 9181 Q92974
ENSG00000189221 3.46227e-52 MAOA 4128 P21397
ENSG00000120129 1.59454e-44 DUSP1 1843 B4DU40
ENSG00000148175 1.83034e-42 STOM 2040 F8VSL7

genename
<character>

ENSG00000152583 SPARC like 1
ENSG00000179094 period circadian reg..
ENSG00000116584 Rho/Rac guanine nucl..
ENSG00000189221 monoamine oxidase A
ENSG00000120129 dual specificity pho..
ENSG00000148175 stomatin

Finally, let’s write out the ordered significant results with annotations. See the help for
?write.csv if you are unsure here.

write.csv(res[ord,], "deseq_results.csv")

25

9. Data Visualization

Volcano plots

Let’s make a commonly produced visualization from this data, namely a so-called Volcano
plot. These summary figures are frequently used to highlight the proportion of genes that are
both significantly regulated and display a high fold change.

Typically these plots shows the log fold change on the X-axis, and the −𝑙𝑜𝑔10 of the p-value
on the Y-axis (the more significant the p-value, the larger the −𝑙𝑜𝑔10 of that value will be). A
very dull (i.e. non colored and labeled) version can be created with a quick call to plot() like
so:

plot(res$log2FoldChange, -log(res$padj),
xlab="Log2(FoldChange)",
ylab="-Log(P-value)")

−5 0 5

0
50

10
0

15
0

Log2(FoldChange)

−
Lo

g(
P

−
va

lu
e)

To make this more useful we can add some guidelines (with the abline() function) and
color (with a custom color vector) highlighting genes that have padj<0.05 and the absolute
log2FoldChange>2.

26

https://en.wikipedia.org/wiki/Volcano_plot_(statistics)
https://en.wikipedia.org/wiki/Volcano_plot_(statistics)

plot(res$log2FoldChange, -log(res$padj),
ylab="-Log(P-value)", xlab="Log2(FoldChange)")

Add some cut-off lines
abline(v=c(-2,2), col="darkgray", lty=2)
abline(h=-log(0.05), col="darkgray", lty=2)

−5 0 5

0
50

10
0

15
0

Log2(FoldChange)

−
Lo

g(
P

−
va

lu
e)

To color the points we will setup a custom color vector indicating transcripts with large fold
change and significant differences between conditions:

Setup our custom point color vector
mycols <- rep("gray", nrow(res))
mycols[abs(res$log2FoldChange) > 2] <- "red"

inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2)
mycols[inds] <- "blue"

Volcano plot with custom colors
plot(res$log2FoldChange, -log(res$padj),
col=mycols, ylab="-Log(P-value)", xlab="Log2(FoldChange)")

27

Cut-off lines
abline(v=c(-2,2), col="gray", lty=2)
abline(h=-log(0.1), col="gray", lty=2)

−5 0 5

0
50

10
0

15
0

Log2(FoldChange)

−
Lo

g(
P

−
va

lu
e)

For even more customization you might find the EnhancedVolcano bioconductor package
useful (Note. It uses ggplot under the hood):

First we will add the more understandable gene symbol names to our full results object res
as we will use this to label the most interesting genes in our final plot.

BiocManager::install("EnhancedVolcano")

library(EnhancedVolcano)

x <- as.data.frame(res)

EnhancedVolcano(x,
lab = x$symbol,
x = 'log2FoldChange',
y = 'pvalue')

28

CFLARPER3 TLDC2
ARHGEF2 SPARCL1

ALOX15B020406080

−5 0 5 10
 Log2 fold change

 −
Lo

g 1
0

P

NS Log2 FC p−value p − value and log2 FC

EnhancedVolcano

Volcano plot

total = 38694 variables

In the final section below we will find out how to derive biological (and hopefully) mechanistic
insight from the subset of our most interesting genes highlighted in these types of plots.

10. Pathway analysis

OPTIONAL: This and following sections are optional as we will return to these
topics in more detail in class 3 of the course.

Pathway analysis (also known as gene set analysis or over-representation analysis), aims to
reduce the complexity of interpreting gene lists via mapping the listed genes to known (i.e. an-
notated) biological pathways, processes and functions.

29

Side-note: Pathway analysis can actually mean many different things to different
people. This includes analysis of Gene Ontology (GO) terms, protein–protein in-
teraction networks, flux-balance analysis from kinetic simulations of pathways, etc.
However, pathway analysis most commonly focuses on methods that exploit exist-
ing pathway knowledge (e.g. in public repositories such as GO or KEGG), rather
than on methods that infer pathways from molecular measurements. These more
general approaches are nicely reviewed in this paper:

• Khatri, et al. “Ten years of pathway analysis: current approaches and out-
standing challenges.” PLoS Comput Biol 8.2 (2012): e1002375.

Patway analysis with R and Bioconductor

There are many freely available tools for pathway or over-representation analysis. At the time
of writing Bioconductor alone has over 145 packages categorized under gene set enrichment
and over 195 packages categorized under pathways.

30

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002375
http://bioconductor.org/packages/release/BiocViews.html#___GeneSetEnrichment
http://bioconductor.org/packages/release/BiocViews.html#___Pathways

Here we play with just one, the rather old (i.e. well established) GAGE package (which stands
for Generally Applicable Gene set Enrichment), to do KEGG pathway enrichment analysis
on our RNA-seq based differential expression results.

The KEGG pathway database, unlike GO for example, provides functional annotation as well
as information about gene products that interact with each other in a given pathway, how they
interact (e.g., activation, inhibition, etc.), and where they interact (e.g., cytoplasm, nucleus,
etc.). Hence KEGG has the potential to provide extra insight beyond annotation lists of simple
molecular function, process etc. from GO terms.

In this analysis, we check for coordinated differential expression over gene sets from KEGG
pathways instead of changes of individual genes. The assumption here is that consistent
perturbations over a given pathway (gene set) may suggest mechanistic changes.

Once we have a list of enriched pathways from gage we will use the pathview package to
draw pathway diagrams, coloring the molecules in the pathway by their degree of up/down-
regulation.

First we need to do our one time install of these required bioconductor packages:

Run in your R console (i.e. not your Rmarkdown doc!)
BiocManager::install(c("pathview", "gage", "gageData"))

Now we can load the packages and setup the KEGG data-sets we need. The gageData package
has pre-compiled databases mapping genes to KEGG pathways and GO terms for common
organisms. kegg.sets.hs is a named list of 229 elements. Each element is a character vector
of member gene Entrez IDs for a single KEGG pathway.

library(pathview)
library(gage)
library(gageData)

data(kegg.sets.hs)

Examine the first 2 pathways in this kegg set for humans
head(kegg.sets.hs, 2)

$`hsa00232 Caffeine metabolism`
[1] "10" "1544" "1548" "1549" "1553" "7498" "9"

$`hsa00983 Drug metabolism - other enzymes`
[1] "10" "1066" "10720" "10941" "151531" "1548" "1549" "1551"
[9] "1553" "1576" "1577" "1806" "1807" "1890" "221223" "2990"
[17] "3251" "3614" "3615" "3704" "51733" "54490" "54575" "54576"

31

https://bioconductor.org/packages/release/bioc/html/gage.html
http://www.genome.jp/kegg/pathway.html
http://bioconductor.org/packages/release/bioc/html/pathview.html

[25] "54577" "54578" "54579" "54600" "54657" "54658" "54659" "54963"
[33] "574537" "64816" "7083" "7084" "7172" "7363" "7364" "7365"
[41] "7366" "7367" "7371" "7372" "7378" "7498" "79799" "83549"
[49] "8824" "8833" "9" "978"

The main gage() function requires a named vector of fold changes, where the names of the
values are the Entrez gene IDs.

Note that we used the mapIDs() function above to obtain Entrez gene IDs (stored
in res$entrez) and we have the fold change results from DESeq2 analysis (stored in
res$log2FoldChange).

foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)

7105 64102 8813 57147 55732 2268
-0.35070302 NA 0.20610777 0.02452695 -0.14714205 -1.73228897

Now, let’s run the gage pathway analysis.

Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)

See help on the gage function with ?gage. Specifically, you might want to try changing
the value of same.dir. This value determines whether to test for changes in a gene set
toward a single direction (all genes up or down regulated) or changes towards both directions
simultaneously (i.e. any genes in the pathway dysregulated). Here, we’re using the default
same.dir=TRUE, which will give us separate lists for pathways that are upregulated versus
pathways that are down-regulated.

Now lets look at the object returned from gage().

attributes(keggres)

$names
[1] "greater" "less" "stats"

It is a list with three elements, “greater”, “less” and “stats”.

You can also see this in your Environmnet panel/tab window of RStudio or use the R command
str(keggres).

32

Like any list we can use the dollar syntax to access a named element, e.g. head(keggres$greater)
and head(keggres$less).

Lets look at the first few down (less) pathway results:

Look at the first three down (less) pathways
head(keggres$less, 3)

p.geomean stat.mean p.val
hsa05332 Graft-versus-host disease 0.0004250461 -3.473346 0.0004250461
hsa04940 Type I diabetes mellitus 0.0017820293 -3.002352 0.0017820293
hsa05310 Asthma 0.0020045888 -3.009050 0.0020045888

q.val set.size exp1
hsa05332 Graft-versus-host disease 0.09053483 40 0.0004250461
hsa04940 Type I diabetes mellitus 0.14232581 42 0.0017820293
hsa05310 Asthma 0.14232581 29 0.0020045888

Each keggres$less and keggres$greater object is data matrix with gene sets as rows sorted
by p-value.

The top three Kegg pathways indicated here include Graft-versus-host disease, Type I diabetes
and the Asthma pathway (with pathway ID hsa05310).

Now, let’s try out the pathview() function from the pathview package to make a pathway
plot with our RNA-Seq expression results shown in color.
To begin with lets manually supply a pathway.id (namely the first part of the "hsa05310
Asthma") that we could see from the print out above.

pathview(gene.data=foldchanges, pathway.id="hsa05310")

This downloads the pathway figure data from KEGG and adds our results to it. Here is the
default low resolution raster PNG output from the pathview() call above:

33

https://bioconductor.org/packages/release/bioc/html/pathview.html

Note how many of the genes in this pathway are perturbed (i.e. colored) in our results.

You can play with the other input arguments to pathview() to change the display in various
ways including generating a PDF graph. For example:

A different PDF based output of the same data
pathview(gene.data=foldchanges, pathway.id="hsa05310", kegg.native=FALSE)

Q12. Can you do the same procedure as above to plot the pathview figures
for the top 2 down-reguled pathways?

If you are interested in delving further into pathway analysis you are welcome to check out
the optional additional lab session focusing on this topic where we utilize KEGG, GO and
Reactome to analyze a different RNA-Seq experiment from start to finish.

OPTIONAL: Plotting counts for genes of interest

DESeq2 offers a function called plotCounts() that takes a DESeqDataSet that has been run
through the pipeline, the name of a gene, and the name of the variable in the colData that
you’re interested in, and plots those values. See the help for ?plotCounts. Let’s first see what
the gene ID is for the CRISPLD2 gene using:

34

https://bioboot.github.io/bimm143_S20/class-material/lab-15-bimm143.html

i <- grep("CRISPLD2", res$symbol)
res[i,]

log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 1 row and 10 columns

baseMean log2FoldChange lfcSE stat pvalue
<numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000103196 3096.16 2.62603 0.267444 9.81899 9.32747e-23
padj symbol entrez uniprot

<numeric> <character> <character> <character>
ENSG00000103196 3.36344e-20 CRISPLD2 83716 A0A140VK80

genename
<character>

ENSG00000103196 cysteine rich secret..

rownames(res[i,])

[1] "ENSG00000103196"

Now, with that gene ID in hand let’s plot the counts, where our intgroup, or “interesting
group” variable is the “dex” column.

plotCounts(dds, gene="ENSG00000103196", intgroup="dex")

35

10
00

50
00

ENSG00000103196

group

no
rm

al
iz

ed
 c

ou
nt

control treated

That’s just okay. Keep looking at the help for ?plotCounts. Notice that we could have
actually returned the data instead of plotting. We could then pipe this to ggplot and make
our own figure. Let’s make a boxplot.

Return the data
d <- plotCounts(dds, gene="ENSG00000103196", intgroup="dex", returnData=TRUE)
head(d)

count dex
SRR1039508 774.5002 control
SRR1039509 6258.7915 treated
SRR1039512 1100.2741 control
SRR1039513 6093.0324 treated
SRR1039516 736.9483 control
SRR1039517 2742.1908 treated

We can mow use this returned object to plot a boxplot with the base graphics function box-
plot()

boxplot(count ~ dex , data=d)

36

control treated

10
00

30
00

50
00

dex

co
un

t

As the returned object is a data.frame it is also all setup for ggplot2 based plotting. For
example:

library(ggplot2)
ggplot(d, aes(dex, count, fill=dex)) +
geom_boxplot() +
scale_y_log10() +
ggtitle("CRISPLD2")

37

1000

3000

5000

control treated
dex

co
un

t dex

control

treated

CRISPLD2

Which plot do you prefer? Maybe time to learn more about ggplot via the available DataCamp
course ;-) Of course there are many other interesting genes that our results have highlighted
and you could now explore these further using the same approach outlined above.

Session Information

The sessionInfo() prints version information about R and any attached packages. It’s a
good practice to always run this command at the end of your R session and record it for the
sake of reproducibility in the future.

sessionInfo()

R version 4.1.2 (2021-11-01)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

38

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] gageData_2.32.0 gage_2.44.0
[3] pathview_1.34.0 EnhancedVolcano_1.12.0
[5] ggrepel_0.9.3 org.Hs.eg.db_3.14.0
[7] AnnotationDbi_1.56.2 ggplot2_3.4.4
[9] dplyr_1.1.2 gt_0.10.0
[11] DESeq2_1.34.0 SummarizedExperiment_1.24.0
[13] Biobase_2.54.0 MatrixGenerics_1.6.0
[15] matrixStats_0.63.0 GenomicRanges_1.46.1
[17] GenomeInfoDb_1.30.1 IRanges_2.28.0
[19] S4Vectors_0.32.4 BiocGenerics_0.40.0
[21] BiocManager_1.30.22 labsheet_0.1.2

loaded via a namespace (and not attached):
[1] bitops_1.0-7 bit64_4.0.5 ash_1.0-15
[4] RColorBrewer_1.1-3 httr_1.4.7 Rgraphviz_2.38.0
[7] tools_4.1.2 utf8_1.2.3 R6_2.5.1
[10] vipor_0.4.5 KernSmooth_2.23-21 DBI_1.1.3
[13] colorspace_2.1-0 withr_2.5.1 tidyselect_1.2.0
[16] ggrastr_1.0.2 ggalt_0.4.0 bit_4.0.5
[19] compiler_4.1.2 extrafontdb_1.0 graph_1.72.0
[22] cli_3.6.1 xml2_1.3.4 DelayedArray_0.20.0
[25] labeling_0.4.3 KEGGgraph_1.54.0 scales_1.2.1
[28] proj4_1.0-12 genefilter_1.76.0 commonmark_1.9.0
[31] digest_0.6.31 rmarkdown_2.25 XVector_0.34.0
[34] pkgconfig_2.0.3 htmltools_0.5.5 extrafont_0.19
[37] fastmap_1.1.1 maps_3.4.1 rlang_1.1.1
[40] rstudioapi_0.15.0 RSQLite_2.3.1 generics_0.1.3
[43] farver_2.1.1 jsonlite_1.8.4 BiocParallel_1.28.3
[46] RCurl_1.98-1.12 magrittr_2.0.3 GO.db_3.14.0
[49] GenomeInfoDbData_1.2.7 Matrix_1.5-1 Rcpp_1.0.10
[52] ggbeeswarm_0.7.2 munsell_0.5.0 fansi_1.0.4
[55] lifecycle_1.0.3 yaml_2.3.7 MASS_7.3-60
[58] zlibbioc_1.40.0 grid_4.1.2 blob_1.2.4
[61] parallel_4.1.2 crayon_1.5.2 lattice_0.21-8
[64] Biostrings_2.62.0 splines_4.1.2 annotate_1.72.0

39

[67] KEGGREST_1.34.0 locfit_1.5-9.7 knitr_1.44
[70] pillar_1.9.0 markdown_1.11 geneplotter_1.72.0
[73] XML_3.99-0.14 glue_1.6.2 evaluate_0.22
[76] png_0.1-8 vctrs_0.6.2 Rttf2pt1_1.3.12
[79] gtable_0.3.4 cachem_1.0.8 xfun_0.39
[82] xtable_1.8-4 survival_3.5-5 tibble_3.2.1
[85] beeswarm_0.4.0 memoise_2.0.1

40

	1. Background
	Outline

	2. Bioconductor setup
	DESeq2 Required Inputs

	3. Import countData and colData
	4. Toy differential gene expression
	5. Setting up for DESeq
	Importing data

	6. Principal Component Analysis (PCA)
	7. DESeq analysis
	Getting results

	8. Adding annotation data
	9. Data Visualization
	Volcano plots

	10. Pathway analysis
	Patway analysis with R and Bioconductor
	OPTIONAL: Plotting counts for genes of interest

	Session Information

