BIMM 143 Unsupervised Learning II Lecture 10

> Barry Grant UC San Diego

http://thegrantlab.org/bimm143

Recap of Lecture 8

- Introduction to machine learning
 - <u>Unsupervised</u>, supervised and reinforcement learning
- Clustering
 - K-means clustering
 - Hierarchical clustering
- Dimensionality reduction, visualization and 'structure' analysis
 - Principal Component Analysis (PCA)

Reminder: DataCamp homework

A long time ago in a galaxy far, far away....

David Robinson @drob

Every linear algebra class

Me: What are eigenvectors

Teacher: You can think of them as an ndimensional kernel subspace

Me: No I can't

3:08 PM - 28 Mar 2016

702 Retweets 1,384 Likes

PCA projects the features onto the principal components.

The motivation is to reduce the features dimensionality while only losing a small amount of information.

PCA projects the features onto the principal components.

The motivation is to reduce the features dimensionality while only losing a small amount of information.

Principal components are new low dimensional axis (or surfaces) closest to the observations

Principal components are new low dimensional axis (or surfaces) closest to the observations

Principal components are new low dimensional axis (or surfaces) closest to the observations

The data have maximum variance along PC1 (then PC2 etc.) which makes the first few PCs useful for visualizing our data and as a basis for further analysis

Recap: PCA objectives

- To reduce dimensionality
- To visualize multidimensional data
- To choose the most useful variables (features)
- To identify groupings of objects (e.g. genes/samples)
- To identify outliers

Practical PCA issue: Scaling

> data(mtcare)

<pre>> head(mtcars)</pre>												
	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb	
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4	
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4	
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1	
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1	
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2	
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1	
<pre># Means and stand</pre>	lard de	eviat	tions	vary	/ a lo	ot						
<pre>> round(colMeans(</pre>	mtcars	s), 2	2)									
mpg cyl c	lisp	h	o dr	rat	w	t qse	ec	vs		am	gear	carb
20.09 6.19 230	.72 14	46.69	93.	.60	3.22	2 17.8	85 0	.44	0	9.41	3.69	2.81
<pre>> round(apply(mto</pre>	ars, 🕻	2, so	d), 2))								
mpg cyl c	lisp	h	o dr	rat	w	t qse	ec	vs		am	gear	carb
6.03 1.79 123	8.94 6	58.56	6 0.	53	0.98	8 1.	79 0	.50	(0.50	0.74	1.62

Practical PCA issue: Scaling

prcomp(x, scale=TRUE)

prcomp(x, scale=FALSE)

Without Scaling

PC1

Your turn!

Do it Louiser

Unsupervised Learning Mini-Project

Input: read, View/head, PCA: prcomp, Cluster: kmeans, hclust Compare: plot, table, etc.

Reference Slides

This PCA plot shows clusters of cell types.

This graph was drawn from single-cell RNA-seq. There were about 10,000 transcribed genes in each cell.

This PCA plot shows clusters of cell types.

Each dot represents a single-cell and its transcription profile The general idea is that cells with similar transcription should cluster.

This PCA plot shows clusters of cell types.

How does transcription from 10,000 genes get compressed to a single dot on a graph?

What does PCA aim to do?

- PCA takes a dataset with a lot of dimensions (i.e. lots of cells) and flattens it to 2 or 3 dimensions so we can look at it.
 - It tries to find a meaningful way to flatten the data by focusing on the things that are different between cells. (much, much more on this later)

A PCA example

Again, we'll start with just two cells Here's the data:

Gene	Cell1 reads	Cell2 reads
a	10	8
b	0	2
С	14	10
d	33	45
е	50	42
f	80	72
g	95	90
h	44	50
i	60	50
(etc)	(etc)	(etc)

Here is a 2-D plot of the data from 2 cells.

Cell 1 Read Counts

Generally speaking, the dots are spread out along a diagonal line.

Generally speaking, the dots are also spread out a little above and below the first line.

Generally speaking, the dots are also spread out a little above and below the first line.

Another way to think about this is that the 2nd largest amount of variation is at the endpoints of the new line. Cell 2 **Read Counts**

This makes the left/right, above/below variation easier to see.

This makes the left/right, above/below variation easier to see.

This makes the left/right, above/below variation easier to see.

Note: All of the points can be drawn in terms of left/right + up/down, just like any other 2-D graph.

That is to say, we do not need another line to describe "diagonal" variation - we've already captured the two directions that can have variation.

These two "new" (or "rotated") axes that describe the variation in the data are "Principal Components" (PCs)

These two "new" axes that describe the variation in the data are "Principal Components" (PCs)

PC1 (the first principal component) is the axis that spans the most variation.

These two "new" axes that describe the variation in the data are "Principal Components" (PCs)

PC1 (the first principal component) is the axis that spans the most variation.

PC2 is the axis that spans the second most variation.

General ideas so far...

• For each gene, we plotted a point based on how many reads were from each cell.

General ideas so far...

• For each gene, we plotted a point based on how many reads were from each cell.

• PC1 captures the direction where most of the variation is.

General ideas so far...

• For each gene, we plotted a point based on how many reads were from each cell.

• PC1 captures the direction where most of the variation is.

• PC2 captures the direction with the 2nd most variation.

For now, let's focus on PC1

Cell 2

We can score genes based on how much they influence PC1.

We can score genes based on how much they influence PC1.

Gene	Influence on PC1
a	high
b	low
С	low
d	low
е	high
f	high
•••	•••

Some genes have more influence on PC1 than others.

Gene	Influence on PC1
a	high
b	low
С	low
d	low
е	high
f	high
•••	•••

С

b

Some genes have more influence on PC1 than others.

Gene	Influence on PC1	In numbers
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
е	high	13
f	high	-14
•••	•••	

C1

Genes with little influence on PC1 get values close to zero, and genes with more influence get numbers further from zero.

values close to zero, and genes with more influence get numbers further from zero.

Genes that influence PC2

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1
•••	•••	

Our two PCs

PC1

PC2

Gene	Influence on PC1	ln numbers
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
е	high	13
f	high	-14
•••	•••	

Gene	Influence on PC2	ln numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
e	low	0.2
f	low	-0.1
•••	•••	

Combining the read counts for all genes in a cell to get a single value.

PC2

numbers

10

-12

0.2

-0.1

PC1

Gene	Influence on PC1	In numbers	Gene	Influence on PC2	In nu
a	high	10	a	medium	3
b	low	0.5	b	high	10
С	low	0.2	С	high	8
d	low	-0.2	d	high	-12
e	high	13	e	low	0.2
f	high	-14	f	low	-0
•••	•••]	•••	

Combining the read counts for all genes in a cell to get a single value.

The	original counts	read		PC1			PC2	
Gene	Cell1	Cell2	Gene	Influence	In	Gene	Influence	In
a	10	8		ONPET	numbers		ONPCZ	numbers
b	0	`	a	high	10	a	medium	3
D	0	۷	b	low	0.5	b	high	10
С	14	10	C	low	0.2	C	high	8
Ч	22	45			0.2			•
u	55	-13	d	low	-0.2	d	high	-12
е	50	42	е	high	13	е	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90	•••	•••		•••	•••	
h	44	50						

60

etc

etc

50

etc

Combining the read counts for all genes in a cell to get a single value.

The	original counts	read		PC1			PC2	
Gene	Cell1	Cell2	Gene	Influence	ln numbers	Gene	Influence	ln numbers
a	10	8		bigh	10	2	modium	number 5
h	0	2	d	IIIgII	10	d	medium	3
2			b	low	0.5	b	high	10
C	14	10	С	low	0.2	С	high	8
d	33	45	d	low	-0.2	d	high	-12
е	50	42	е	high	13	е	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90	•••			•••	•••	
h	44	50						
i	60	50	-	Z		V		
etc	etc	etc	Cell1 PC1	l score = (re	ad count * ir	nfluence) +	. for all gen	es

Combining the read counts for all genes in a cell to get a single value.

The	The original read counts		PC1			PC2			
Gene	Cell1	Cell2	Gene	Influence	ln numbers	Gene	Influence	ln numbers	
a	10	8	a	high	10	а	medium	3	
b	0	2	h			b	high	10	
С	14	10			0.0		hiah	0	
	22	45	С	low	0.2	С	nign	ð	
G	33	40		low	-0.2	d	high	-12	
е	50	42	е	high	13	e	low	0.2	
f	80	72	f	high	-14	f	low	-0.1	
g	95	90				•••	•••		
h	44	50							
i	60	50		Z	\checkmark				

Cell1 PC1 score = (10 * 10) + ...

etc

etc

etc

Combining the read counts for all genes in a cell to get a single value.

The	The original read counts		PC1			PC2		
Gene	Cell1	Cell2	Gene	Influence	ln numbers	Gene	Influence	In numbers
a	10	8	а	high	10	2	medium	3
b	0	2	α			a		5
6	1 /	10	b	low	0.5	b	high	10
Ĺ	14		с	low	0.2	С	high	8
d	33	45	d	low	-0.2	d	high	-12
е	50	42	е	high	13	е	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90	•••			•••	•••	
h	44	50				L		
i	60	50		, , , , ,				
etc	etc	etc	Cell1 PC1	score = (10)) * 10) + (0 * 0).5) +		

Combining the read counts for all genes in a cell to get a single value.

The original read counts			PC1			PC2		
Gene	Cell1	Cell2	Gene	Influence on PC1	ln numbers	Gene	Influence on PC2	In numbers
a L	10	8	а	high	10	a	medium	3
D	0	2 10	b	low	0.5	b	high	10
<u>C</u>	14	10	С	low	0.2	С	high	8
d	33	45	d	low	-0.2	d	high	-12
е	50	42	е	high	13	е	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90	•••	•••		•••	•••	
h	44	50						

60

etc

etc

50

etc

Cell1 PC1 score = (10 * 10) + (0 * 0.5) + ... etc... = 12

Combining the read counts for all genes in a cell to get a single value.

The original read

IIIC	counts		PC1			PC2		
Gene	Cell1	Cell2	Gene	Influence	ln 	Gene	Influence	In
a	10	8		on PC1	numbers		on PCZ	numbers
b		2	а	high	10	a	medium	3
D	0	2	b	low	0.5	b	high 🥖	10
С	14	10	С	low	0.2	С	high	8
d	33	45	d	low	-0.2	d	high	-12
е	50	42	e	high	13	e	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90		•••			•••	
h	44	50						
i	60	50				• •		
etc	etc	etc	Cell1 PC1	1 score = (1() * 10) + (0 *	0.5) + etc.	= 12	
			Cell1 PC2	2 score = (10) * 3) +			

Combining the read counts for all genes in a cell to get a single value.

The	The original read counts		PC1			PC2		
Gene	Cell1	Cell2	Gene	Influence	ln numbers	Gene	Influence	In numbers
a	10	8		bigh	10	2	modium	רושכרי ז
h	0	2	a	nign	10	a	mealum	3
2		-	b	low	0.5	b	high	10
С	14	10	С	low	0.2	С	high	8
d	33	45	d	low	-0.2	d	high	-12
е	50	42	е	high	13	е	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90						
h	44	50						
i	60	50						
etc	etc	etc	Cell1 PC1	score = (10)* 10) + (0 * (0.5) + etc.	= 12	
			Cell1 PC2	0) +				

Combining the read counts for all genes in a cell to get a single value.

The	original counts	read	PC1			PC2		
Gene	Cell1	Cell2	Gene	Influence	ln numbers	Gene	Influence	In numbers
a	10	8	a	high	10	а	medium	3
b	0	2	u h		0.5	u b	high	10
C	14	10	D	luw	0.5	D	IIIgII	10
			C	low	0.2	С	high	8
d	33	45	d	low	-0.2	d	high	-12
е	50	42	е	high	13	е	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90	•••	•••		•••	•••	
h	44	50						

60

etc

etc

50

etc

Cell1 PC1 score = (10 * 10) + (0 * 0.5) + ... etc... = 12

Cell1 PC2 score = (10 * 3) + (0 * 10) + ... etc... = 6

Cell1 PC1 score = (10 * 10) + (0 * 0.5) + ... etc... = 12 Cell1 PC2 score = (10 * 3) + (0 * 10) + ... etc... = 6

Now calculate scores for Cell2

Now calculate scores for Cell2 Cell2 PC1 score = (8 * 10) + (2 * 0.5) + ... etc... = 2 Cell2 PC2 score = (8 * 3) + (2 * 10) + ... etc... = 8

If we sequenced a third cell, and its transcription was similar to cell 1, it would get scores similar to cell 1's.

If we sequenced a third cell, and its transcription was similar to cell 1, it would get scores similar to cell 1's.

Hooray! We know how they plotted all of the cells!!!

Back to lab Focus on Section 3 to 6...

Do it Louiseir

Unsupervised Learning Mini-Project

Input: read, View/head, PCA: prcomp, Cluster: kmeans, hclust Compare: plot, table, etc.

[<u>Muddy Point Assessment</u>]

BONUS: Predictive Modeling with PCA Components

Do it Louiser

We can use our PCA and clustering models to predict the potential malignancy of new samples:

Predicting Malignancy Of New samples

url <- "https://tinyurl.com/new-samples-CSV"
new <- read.cov(url)</pre>

npc <- predict(wisc.pr, newdata=new)</pre>

plot(wisc.pr\$x[,1:2], col= (diagnosis+1))
points(npc[,1], npc[,2], col="blue", pch=16)

Do it Lourseir