

Today's Menu

Overview of structural bioinformatics

• Motivations, goals and challenges

Representing, interpreting & modeling protein structure

- Visualizing & interpreting protein structures
- Analyzing protein structures
- Modeling protein structure

Finish last days Lab 09

The PDB archive is the major repository of information about the 3D structures of large biological molecules, including proteins and nucleic acids. Understanding the shape of these molecules helps to understand how they work. This knowledge can be used to help deduce a structure's role in human health and disease, and in drug development. The structures in the PDB range from tiny proteins and bits of DNA or RNA to complex molecular machines like the ribosome composed of many chains of protein and RNA.

In the first section of this lab we will interact with the main US based PDB website (note there are also sites in Europe and Japan)

Visit: http://www.rcsb.org/ and answer the following questions

NOTE: The "Analyze" > "PDB Statistics" > "by Experimental Method and Molecular Type" on the PDB home page should allow you to determine most of these answers.

4. Comparative structure analysis of Adenylate Kinase

The goal of this section is to perform **principal component analysis** (PCA) on the complete collection of Adenylate kinase structures in the protein data-bank (PDB).

Adenylate kinase (often called simply Adk) is a ubiquitous enzyme that functions to maintain the equilibrium between cytoplasmic nucleotides essential for many cellular processes. Adk operates by catalyzing the reversible transfer of a phosphoryl group from ATP to AMP. This reaction requires a rate limiting conformational transition (i.e. change in shape). Here we analyze all currently available Adk structures in the PDB to reveal detailed features and mechanistic principles of these essential shape changing transitions.

1: Introduction to the RCSB Protein

2. Visualizing the HIV-1 protease

Comparative structure analys

Data Bank (PDB)

structure

Setup

structures

[Optional]

PDB statistics

PCA Results

Today's Menu

Overview of structural bioinformatics

• Motivations, goals and challenges

Representing, interpreting & modeling protein structure

- Visualizing & interpreting protein structures
- Analyzing protein structures
- Modeling protein structure
	- Physics based approaches
	- Knowledge based approaches
	- Structure prediction and drug discovery

Key concept:

Potential functions describe a systems energy as a function of its structure

Two main approaches:

- (1). **Physics**-**Based**
- (2). **Knowledge**-**Based**

Two main approaches:

- (1). **Physics**-**Based**
- (2). **Knowledge**-**Based**

For physics based potentials energy terms come from physical theory

 $V(R) = E_{\text{bonded}} + E_{\text{non.bonded}}$

 $V(R) = E_{bonded} + E_{non.bonded}$

Sum of bonded and non-bonded atom-type and position based terms

$$
V(R) = E_{bonded} + E_{non.bonded}
$$

Ebonded is itself a sum of three terms:

$$
V(R) = E_{bonded} + E_{non.bonded}
$$

$$
E_{bonded}
$$
 is itself a sum of three terms:

$$
E_{bond.stretch} + E_{bond. angle} + E_{bond. rotate}
$$

Bond Angle *Ebond*.*angle*

Bond Rotate *Ebond*.*rotate*

Bond Stretch

 $\sum K_i^{bs}(b_i - b_o)$ *bonds*

 $\sum K_i^{br}[1 - cos(n_i\phi_i - \phi_o)]$ *dihedrals* Bond Rotate

 $\sum K_i^{ba}(\theta_i - \theta_o)$ *angles* Bond Rotate

bonds

 $\sum K_i^{bs}(b_i - b_o)$

Bond Angle

Bond Stretch

$$
V(R) = E_{bonded} + E_{non.bonded}
$$

Enon.*bonded* is a sum of two terms:

$$
V(R) = E_{bonded} + E_{non.bonded}
$$

Enon.*bonded* is a sum of two terms:

$$
E_{van. der.Waals} + E_{electrostatic}
$$

Total potential energy

The potential energy can be given as a sum of terms for: Bond stretching, Bond angles, Bond rotations, van der Walls and Electrostatic interactions between atom pairs

Potential energy surface

Evan.*der*.*Waals* + *Eelectrostatic*

Now we can calculate the potential energy surface that fully describes the energy of a molecular system as a function of its geometry

Potential energy surface Manufally Rey concept:

Now we can calculate the potential energy surface that fully describes the energy of a molecular system as a function of its geometry

Now we can calculate the potential energy surface that fully describes the energy of a molecular system as a function of its geometry

Moving Over The Energy Surface

- •**Energy Minimization** drops into local minimum
- **Molecular Dynamics** uses thermal energy to move smoothly over surface
- **Monte Carlo Moves** are random. Accept with probability:

 $exp(-\Delta V/dx)$

Position (x)

PHYSICS-ORIENTED APPROACHES

Weaknesses

Fully physical detail becomes computationally intractable Approximations are unavoidable (Quantum effects approximated classically, water may be treated crudely) Parameterization still required

Strengths

Interpretable, provides guides to design Broadly applicable, in principle at least Clear pathways to improving accuracy

Status

Useful, widely adopted but far from perfect Multiple groups working on fewer, better approxs Force fields, quantum entropy, water effects Moore's law: hardware improving

SIDE-NOTE: **ANTON** SUPERCOMPUTER

SIDE-NOTE: **GPUS** (GRAPHICAL PROCESSING UNITS)

SIDE-NOTE: **TPU** (TENSOR PROCESSING UNITS) FOR AI

POTENTIAL FUNCTIONS DESCRIBE A SYSTEMS **ENERGY** AS A FUNCTION OF ITS STRUCTURE KNOWLEDGE-BASED DOCKING POTENTIALS

Two main approaches:

(1). **Physics**-**Based**

(2). **Knowledge**-**Based**

ENERGY DETERMINES **PROBABILITY** (STABILITY)

Basic idea: Use probability as a proxy for energy

Boltzmann:

 $p(r) \propto e^{-E(r)/RT}$

Inverse Boltzmann: $E(r) = -RT \ln \lceil p(r) \rceil$

Example: ligand carboxylate O to protein histidine N

Find all protein-ligand structures in the PDB with a ligand carboxylate O

- 1. For each structure, histogram the distances from O to every histidine N
- 2. Sum the histograms over all structures to obtain $p(r_0,N)$
- 3. Compute $E(r_{\text{Q-N}})$ from $p(r_{\text{Q-N}})$

KNOWLEDGE-BASED POTENTIALS

Weaknesses

Boltzmann distribution dist Accuracy limited by availability of data

Strengths

Relatively easy to implement Computationally fast

Status

Useful, far from perfect May be at point of diminishing returns (not always clear how to make improvements)

The future? Combining AI and Physics based approaches

AlphaFold Protein Structure Database

About FAQs Downloads

A EMBL-EBI < Services & Research & Training ● About us EMBL-EBI

AlphaFold Protein Structure Database

Developed by DeepMind and EMBL-EBI

.
Search for protein, gene, UniProt accession or organism BETA Search Examples: Free fatty acid receptor 2 At1g58602 Q5VSL9 E. coli Help: AlphaFold DB search help

AlphaFold DB provides open access to protein structure

AlphaFold is an AI system developed by DeepMind that predicts a protein's 3D structure from its amino acid sequence. It regularly achieves accuracy competitive with experiment.

DeepMind and EMBL's European Bioinformatics Institute (EMBL-EBI) have partnered to create AlphaFold DB to make these predictions freely available to the scientific community. The first release covers the human proteome and the proteomes of several other key organisms. In the coming months we plan to expand the database to cover a large proportion of all catalogued proteins (the over 100 million in UniRef90).

Mean pLDDT 85.57

nature .
NEWS CAREERS COMMENTARY JOURNALS \checkmark Explore content \times About the journal \times Publish with us \times Subscribe $nature$ > $news$ > $article$ NEWS 30 November 2020

'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures Google's deep-learning program for determining the 3D shapes of proteins stands to

transform biology, say scientists

BBC O Sign in Home News Sport Reel Worklife Travel **NEWS**

ate | Video | World | US & Canada | UK | Business | Tech | Science | St One of biology's biggest mysteries 'largely solved' by AI

By Helen Briggs
BBC science correspondent

'The game has changed.' AI triumphs at solving

 \overline{C} covin-19

protein structures

-
In milestone, software predictions finally match structures calculated from experimental data

30 NOV 2020 - RY ROBERT F SERVICE

Search jobs **A** Sign in Guardian

Science

DeepMind AI cracks 50-year-old problem of protein folding

Program solves scientific problem in 'stunning advance' for
understanding machinery of life

Protein Folding Problem

For a given sequence, find structure with lowest free energy

Rosetta - Protein "folding" with Energy function + fragments recombination

David Baker

nature

https://doi.org/10.1038/s41586-021-03819-2

Results from CASP14 (Critical Assessment of protein Structure Prediction)

Accelerated Article Preview

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli & Demis Hassabis

Start with a single sequence

Search against a database of sequences Generate a multiple sequence alignment

Use coevolution as restraints in folding simulations!

Use coevolution as restraints in folding simulations!

By measuring **coevolution**, we can infer **contacts**!

Review - How to read a contact/distance matrix?

Contact map

XRAY Contacts

How to read a contact map

XRAY Contacts

How to read a contact map

XRAY Contacts

Overlay of predicted contacts on real contacts The origin of contacts

XRAY Contacts

Predicted Contacts

<u>.Y</u> Monomer Homo-dimer Mediated Conformational Change

Anishchenko, I., **Ovchinnikov, S.,** Kamisetty, H. and Baker, D., 2017. Origins of coevolution between residues distant in protein 3D structures. *PNAS*, *114*(34), pp.9122-9127.

Slide Credit: Sergey Ovchinnikov (@sokrypton)

How to solve this problem?

- Enumerate folds and see which matches contacts best
- Try different number (or combination) of restraints
- Lots of sampling with ambiguous restraints

● Use NN to filter/enhance contacts before trying to fold

Alphafold2

citations: bit.ly/3Mr8351

Alphafold2

Alphafold2

Alphafold2

Alphafold2

Alphafold2

seq **DB** MSA Module Sequence | MSA ("Evoformer") Structure Module **.** (refinement) $\begin{array}{c} \text{initial} \\ \text{XYZ} \end{array} \rightarrow \begin{array}{c} \overline{Q} & \overline{Q} & \longrightarrow \end{array}$ xyz PSSM **CITY REP** pdb **DB** Templates

Alphafold2

Alphafold2 - New Critical detail Recycling

Alphafold2

Accelerated Article Preview

Highly accurate protein structure prediction with AlphaFold

Received: 11 May 2021

Accepted: 12 July 2021 **Accelerated Article Preview Published** online 15 July 2021

Cite this article as: Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature https://doi.org/10.1038/ s41586-021-03819-2 (2021).

AlphaFold Protein Structure Database

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Bergha Sebastian Bodenstein, David Silver, Oriol Vinvals, Andrew W. Senior, Koray Kavukcuoglu, **Pushmeet Kohli & Demis Hassabis**

This is a PDF file of a peer-reviewed paper that has been accepted for publication.

Services

O About us

Search

 $BETA$

FAOS

EMBL-EBI

Downloads

Hypothesis:

AlphaFold uses input MSA/Templates to "solve" the global search problem. The rest of the model refines the structure using the learned energy potential.

AlphaFold is an AI system developed by DeepMind that predicts a protein's 3D structure from its amino acid sequence. It regularly achieves accuracy competitive with experiment.

DeepMind and EMBL's European Bioinformatics Institute (EMBL-EBI) have partnered to create AlphaFold DB to make these predictions freely available to the scientific community. The first release covers the human proteome and the proteomes of several other key organisms. In the coming months we plan to expand the database to cover a large proportion of all catalogued proteins (the over 100 million in UniRef90).

Q8I3H7: May protect the malaria parasite against attack by Mean pLDDT 85.57

AlphaFold DB provides open access to protein structure

EMBL-EBI

AlphaFold

Protein Structure Database

Developed by DeepMind and EMBL-EBI

Examples: Free fatty acid receptor 2 | At1g58602 | Q5VSL9 | E. coli | Help: | AlphaFold DB search help

earch for protein, gene, UniProt accession or organism

Seach UniProt with AlphaFold

https://www.uniprot.org/blast

Seach UniProt with AlphaFo[®] **UniProt with AlphaFd ^{Of} it below to the internal part of the United States of the United States States (Second)**

https://www.ebi.ac.uk/Tools/sss/fasta/

PROTEIN DATABASES

2 Databases Selected

UniProt Knowledgebase (The UniProt Knowledgebase includes UniProtKB/Swiss-Prot and UniProtKB/TrEMBL)

- UniProtKB/Swiss-Prot (The manually annotated section of UniProtKB)
- UniProtKB/Swiss-Prot isoforms (The manually annotated isoforms of UniProtKB/Swiss-Prot) \bullet

Search for your Find-a-gene project sequence in AlphaFold DB

- UniProtKB/TrEMBL (The automatically annotated section of UniProtKB) \bullet
- UniProtKB Reference Proteomes plus Swiss-Prot
- UniProtKB COVID-19 \bullet
- ▶ UniProtKB Taxonomi

▶ UniProt Clusters

▶ Patents

▼ Structures

• • Protein Structure Sequences (PDBe protein structure sequences)

AlphaFold DB

UniProtKB PDB

Other Protein Databases

https://www.ebi.ac.uk/Tools/sss/fasta/

PROTEIN DATABASES 2 Databases Selected

UniProt Knowledgebase (The UniProt Knowledgebase includes UniProtKB/Swiss-Prot and UniProtKB/TrEMBL)

- · UniProtKB/Swiss-Prot (The manually annotated section of UniProtKB)
- UniProtKB/Swiss-Prot isoforms (The manually annotated isoforms of UniProtKB/Swiss-Prot) \bullet
- □ UniProtKB/TrEMBL (The automatically annotated section of UniProtKB) \bullet
- IniProtKB Reference Proteomes plus Swiss-Prot
- · UniProtKB COVID-19
- ▶ UniProtKB Taxonomi ▶ UniProt Clusters
- Search for your Find-a-gene project sequence in alpha fold DB

Or : "KIN-14Q"

X Clear Selection

Or: Q8W3K0

▶ Patents

Do it Yourself!

X Clear Selection

- ▼ Structures
- 7 Protein Structure Sequences (PDB
- **AlphaFold DB**
- □ UniProtKB PDB
- **Other Protein Databases**

AlphaFold low confidence regions

- AlphaFold produces a per-residue confidence score (pLDDT) between 0 and 100 that is written to the Bfactor column.
- To remove low confidence regions (with low pLDDT scores)

https://github.com/sokrypton/ColabFold

Evolutionary scale modeling (ESM)

For short monomeric proteins (< 400 amino acids) consider using the new **ESMFold**

https://esmatlas.com/

[No need for GPU & comparatively fast]

Alternative: Language Models

- AlphaFold (and related methods) need to search through large protein databases to identify related sequences.
- They require a large group of evolutionarily related sequences as input so that they can extract the patterns that are linked to structure.
- ESM-fold uses a language model that learns these evolutionary patterns during its training on protein sequences, enabling faster structure prediction from a single sequence.

ColabFold

Making Protein folding accessible via Google Colab colored by chain colored by pLDDT

github.com/sokrypton/ColabFold https://github.com/sokrypton/ColabFold