

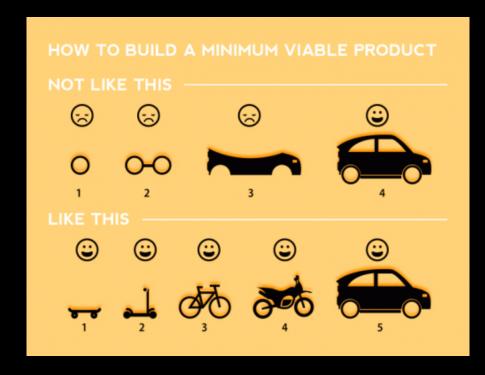
St. Class

Last class revisited...

function()

And some function homework....

Complete Q6. In last days lab supplement


```
library(bio3d)
s1 <- read.pdb("4AKE") # kinase with drug</pre>
s2 <- read.pdb("1AKE") # kinase no drug
s3 <- read.pdb("1E4Y") # kinase with drug
s1.chainA <- trim.pdb(s1, chain="A", elety="CA")</pre>
s2.chainA <- trim.pdb(s2, chain="A", elety="CA")
s3.chainA <- trim.pdb(s1, chain="A", elety="CA")
s1.b <- s1.chainA$atom$b</pre>
s2.b <- s2.chainA$atom$b
s3.b <- s3.chainA$atom$b
plotb3(s1.b, sse=s1.chainA, typ="1", ylab="Bfactor")
plotb3(s2.b, sse=s2.chainA, typ="1", ylab="Bfactor")
plotb3(s3.b, sse=s3.chainA, typ="1", ylab="Bfactor")
```

Recap From Last Time:

- How: Follow a step-by-step procedure to go from working code snippet to refined and tested function.
 - 1. Start with a simple problem and write a working snippet of code.
 - 2. Rewrite for clarity and to reduce duplication
 - 3. Then, and only then, turn into an initial function
 - 4. Test on small well defined input
 - 5. Report on potential problem by failing early and loudly!

. . .

Recap...

Build that skateboard before you build the car.

A limited but functional thing is very useful and keeps the spirits high.

[Image credit: Spotify development team]

Video Recap

- Introduction to machine learning
 - <u>Unsupervised</u>, supervised and reinforcement learning
- Clustering
 - K-means clustering
 - Hierarchical clustering
- Dimensionality reduction, visualization and 'structure' analysis
 - Principal Component Analysis (PCA)

Video Recap

- Introduction to machine learning
 - <u>Unsupervised</u>, supervised and reinforcement learning
- Clustering
 - K-means clustering
 - Hierarchical clustering
- Dimensionality reduction, visualization and 'structure' analysis
 - Principal Component Analysis (PCA)

kmeans()

```
# Generate some example data for clustering
tmp <- c(rnorm(30,-3), rnorm(30,3))
x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```

hclust()

```
# Generate some example data for clustering
tmp <- c(rnorm(30,-3), rnorm(30,3))
x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```

Analyze this same data with hclust()

Demonstrate the use of dist(), hclust(), plot() and cutree() functions to do clustering, Generate dendrograms and return cluster assignment/membership vector...

Video Recap

- Introduction to machine learning
 - <u>Unsupervised</u>, supervised and reinforcement learning
- Clustering
 - K-means clustering
 - Hierarchical clustering
- Dimensionality reduction, visualization and 'structure' analysis
 - Principal Component Analysis (PCA)

A long time ago in a galaxy far, far away....

Following

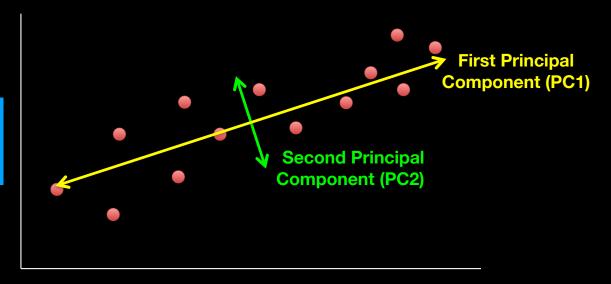
Every linear algebra class

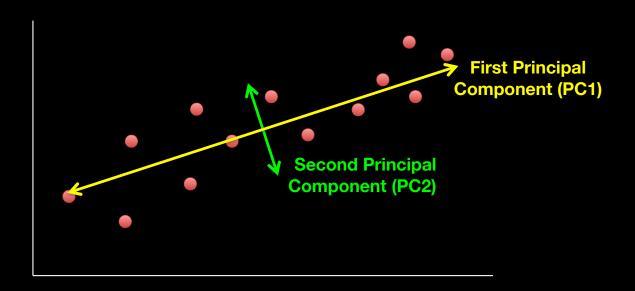
Me: What are eigenvectors

Teacher: You can think of them as an ndimensional kernel subspace

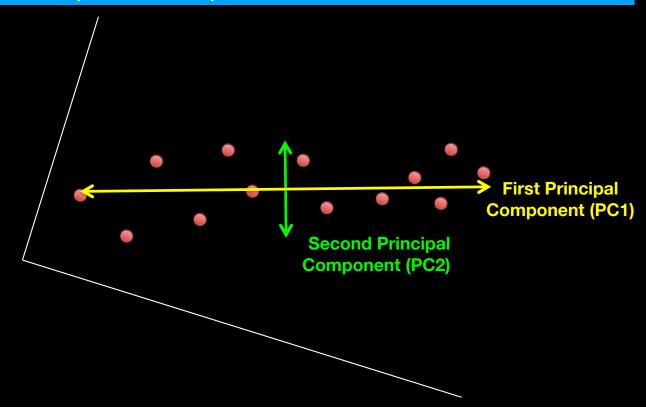
Me: No I can't

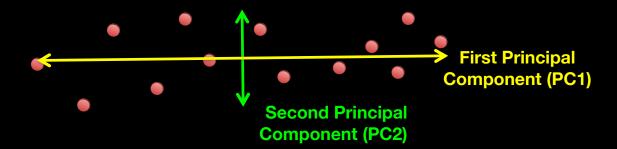
702 Retweets 1,384 Likes

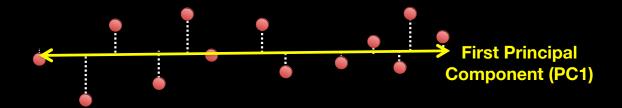


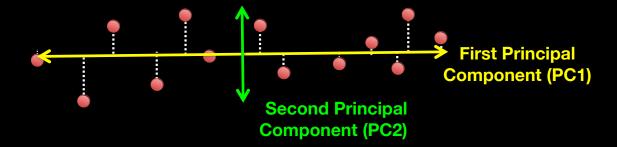

PCA projects the features onto the principal components.

The motivation is to reduce the features dimensionality while only losing a small amount of information.

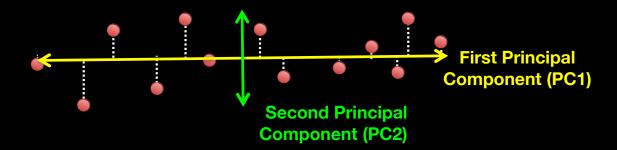

The first principal component (PC) follows a "best fit" through the data points.


Principal components are new low dimensional axis (or surfaces) closest to the observations


Principal components are new low dimensional axis (or surfaces) closest to the observations

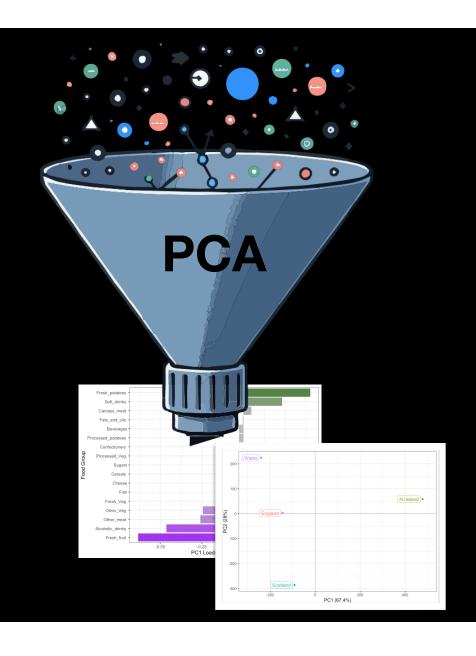

Principal components are new low dimensional axis (or surfaces) closest to the observations

The data have maximum variance along PC1 (then PC2 etc.) which makes the first few PCs useful for visualizing our data and as a basis for further analysis



The data have maximum variance along PC1 (then PC2 etc.) which makes the first few PCs useful for visualizing our data and as a basis for further analysis

The PCs shown here makes the left/right, above/below variation easier to see.


The data have maximum variance along PC1 (then PC2 etc.) which makes the first few PCs useful for visualizing our data and as a basis for further analysis

The PCs shown here makes the left/right, above/below variation easier to see.

Recap: PCA objectives

- To reduce dimensionality
- To visualize multidimensional data
- To choose the most useful variables (features)
- To identify groupings of objects (e.g. genes/samples)
- To identify outliers

Your turn!

<u>WebApp</u>

PCA Lab Sheet

Input: read, View/head,

PCA: prcomp,

Cluster: kmeans, hclust Compare: plot, table, etc.

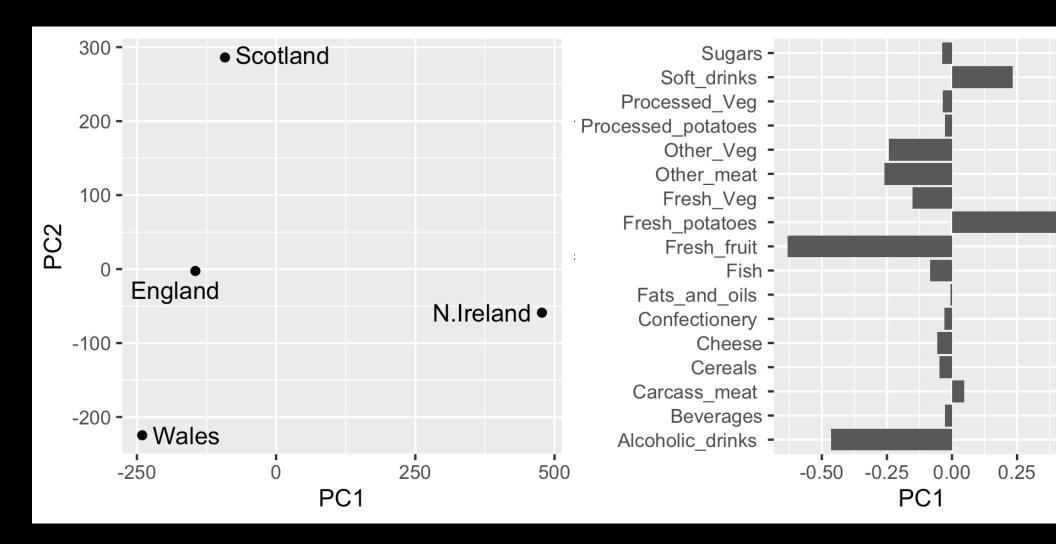
Reference Slides

```
url <- "https://tinyurl.com/UK-foods"
food <- read.csv(url, row.names = 1)</pre>
```

```
url <- "https://tinyurl.com/UK-foods"

food <- read.csv(url, row.names = 1)
pca <- prcomp( t(food) )</pre>
```

```
url <- "https://tinyurl.com/UK-foods"


food <- read.csv(url, row.names = 1)
pca <- prcomp( t(food) )

ggplot(pca$x) +
  aes(PC1, PC2, label=rownames(pca$x)) +
  geom_point() +
  geom_text_repel()</pre>
```

```
url <- "https://tinyurl.com/UK-foods"

food <- read.csv(url, row.names = 1)
pca <- prcomp( t(food) )

ggplot(pca$rotation) +
  aes(PC1, rownames(pca$rotation)) +
  geom_col()</pre>
```



```
> head(mtcars)
                   mpg cyl disp
                                 hp drat
                                                qsec vs am gear carb
Mazda RX4
                  21.0
                            160 110 3.90 2.620 16.46
                  21.0
Mazda RX4 Wag
                            160 110 3.90 2.875 17.02
Datsun 710
                  22.8
                            108
                                 93 3.85 2.320 18.61
Hornet 4 Drive
                  21.4
                            258 110 3.08 3.215 19.44
Hornet Sportabout 18.7
                            360 175 3.15 3.440 17.02
Valiant
                  18.1
                            225 105 2.76 3.460 20.22
```

```
> head(mtcars)
                   mpg cyl disp
                                 hp drat
                                               qsec vs am gear carb
Mazda RX4
                  21.0
                            160 110 3.90 2.620 16.46
Mazda RX4 Wag
                  21.0
                            160 110 3.90 2.875 17.02
Datsun 710
                  22.8
                                 93 3.85 2.320 18.61
                            108
Hornet 4 Drive
                  21.4
                            258 110 3.08 3.215 19.44
Hornet Sportabout 18.7
                            360 175 3.15 3.440 17.02 0 0
                  18.1
                            225 105 2.76 3.460 20.22
Valiant
```

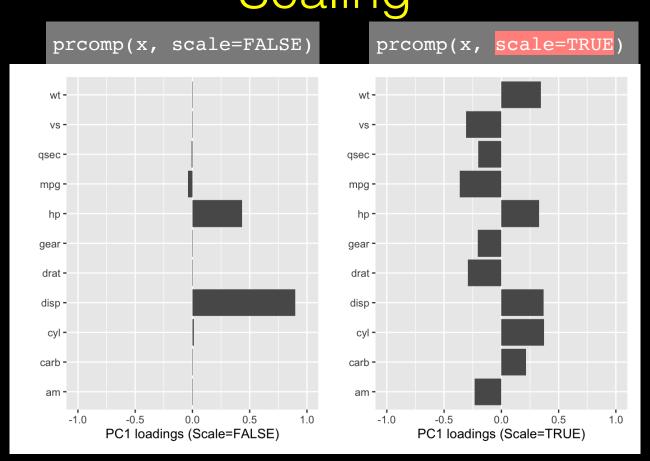
```
# Means and standard deviations vary a lot
> round(colMeans(mtcars), 2)
          cyl
                disp
                               drat
                                         wt
                                                                    gear
                                                                            carb
   mpg
                                              qsec
         6.19 230.72 146.69
                               3.60
                                       3.22 17.85
                                                                           2.81
20.09
                                                     0.44
                                                             0.41
                                                                    3.69
```

```
> head(mtcars)
                   mpg cyl disp
                                 hp drat
                                               qsec vs am gear carb
Mazda RX4
                  21.0
                            160 110 3.90 2.620 16.46
Mazda RX4 Wag
                  21.0
                            160 110 3.90 2.875 17.02
Datsun 710
                  22.8
                                 93 3.85 2.320 18.61
                            108
                  21.4
Hornet 4 Drive
                            258 110 3.08 3.215 19.44
Hornet Sportabout 18.7
                            360 175 3.15 3.440 17.02 0 0
                  18.1
                            225 105 2.76 3.460 20.22
Valiant
```

```
# Means and standard deviations vary a lot
> round(colMeans(mtcars), 2)
   mpg
          cyl
                disp
                          hp
                               drat
                                         wt
                                              qsec
                                                                    gear
                                                                           carb
         6.19 230.72 146.69
                               3.60
                                      3.22 17.85
                                                                           2.81
20.09
                                                     0.44
                                                             0.41
                                                                    3.69
```

```
> head(mtcars)
                   mpg cyl disp
                                 hp drat
                                             wt
                                                qsec vs am gear carb
Mazda RX4
                  21.0
                            160 110 3.90 2.620 16.46
Mazda RX4 Wag
                  21.0
                            160 110 3.90 2.875 17.02
Datsun 710
                  22.8
                                 93 3.85 2.320 18.61
                            108
Hornet 4 Drive
                  21.4
                            258 110 3.08 3.215 19.44
Hornet Sportabout 18.7
                            360 175 3.15 3.440 17.02
Valiant
                            225 105 2.76 3.460 20.22
                  18.1
                                                                     1
# Means and standard deviations vary a lot
> round(colMeans(mtcars), 2)
```

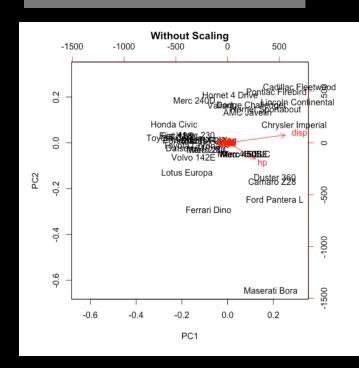
```
cyl
                 disp
                           hp
   mpg
                                 drat
                                           wt
                                                qsec
                                                                       gear
                                                                               carb
                                                          ٧S
                                                                  am
         6.19 230.72 146.69
                                3.60
                                               17.85
                                                                               2.81
20.09
                                        3.22
                                                        0.44
                                                                0.41
                                                                       3.69
> round(apply(mtcars, 2, sd),
                                2)
           cyl
                 disp
                           hp
                                 drat
                                           wt
                                                qsec
                                                          ٧S
                                                                        gear
                                                                               carb
   mpg
                                                                  am
  6.03
         1.79 123.94 68.56
                                 0.53
                                        0.98
                                                1.79
                                                        0.50
                                                                0.50
                                                                       0.74
                                                                               1.62
```

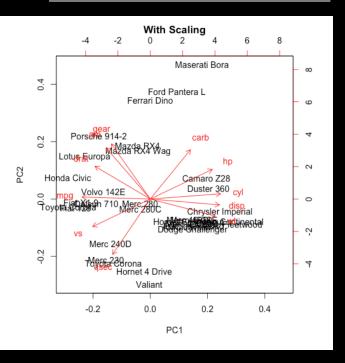

```
> head(mtcars)
                   mpg cyl disp
                                 hp drat
                                             wt
                                                qsec vs am gear carb
Mazda RX4
                  21.0
                            160 110 3.90 2.620 16.46
Mazda RX4 Wag
                  21.0
                            160 110 3.90 2.875 17.02
Datsun 710
                  22.8
                                 93 3.85 2.320 18.61
                            108
Hornet 4 Drive
                  21.4
                            258 110 3.08 3.215 19.44
Hornet Sportabout 18.7
                            360 175 3.15 3.440 17.02
Valiant
                            225 105 2.76 3.460 20.22
                  18.1
                                                                     1
# Means and standard deviations vary a lot
> round(colMeans(mtcars), 2)
```

```
cyl
                 disp
   mpg
                           hp
                                drat
                                          wt
                                                qsec
                                                                       gear
                                                                              carb
                                                          ٧S
                                                                 am
         6.19 230.72 146.69
                                3.60
                                        3.22
                                              17.85
                                                                              2.81
20.09
                                                        0.44
                                                               0.41
                                                                       3.69
> round(apply(mtcars, 2,
                          sd),
                                2)
                disp
                           hp
          cyl
                                drat
                                          wt
                                                qsec
                                                          ٧S
                                                                       gear
                                                                              carb
   mpg
                                                                 am
  6.03
         1.79 123.94
                       68.56
                                0.53
                                        0.98
                                                1.79
                                                        0.50
                                                               0.50
                                                                       0.74
                                                                              1.62
```

```
> head(mtcars)
                   mpg cyl disp
                                  hp drat
                                                 qsec vs am gear carb
Mazda RX4
                  21.0
                             160 110 3.90 2.620 16.46
                  21.0
                             160 110 3.90 2.875 17.02
Mazda RX4 Wag
                  22.8
                                  93 3.85 2.320 18.61
Datsun 710
                             108
                                                                      1
Hornet 4 Drive
                  21.4
                             258 110 3.08 3.215 19.44
                                                                      1
Hornet Sportabout 18.7
                                                                      2
                             360 175 3.15 3.440 17.02 0
                             225 105 2.76 3.460 20.22
Valiant
                  18.1
                                                                      1
# Means and standard deviations vary a lot
> round(colMeans(mtcars), 2)
                disp
   mpg
          cyl
                               drat
                                        wt
                                              qsec
                                                                    gear
                                                                           carb
                                                               am
         6.19 230.72 146.69
                                      3.22 17.85
20.09
                               3.60
                                                     0.44
                                                             0.41
                                                                    3.69
                                                                           2.81
> round(apply(mtcars, 2, sd), 2)
                disp
                          hp
                               drat
   mpg
                                        wt
                                              qsec
                                                       ٧S
                                                                    gear
                                                                           carb
                                                               am
  6.03
         1.79 123.94
                      68.56
                               0.53
                                      0.98
                                              1.79
                                                     0.50
                                                             0.50
                                                                    0.74
                                                                           1.62
```

In general we want to scale and center our data prior to PCA to ensure that each feature contributes equally to the analysis, preventing variables with larger scales from dominating the principal components.

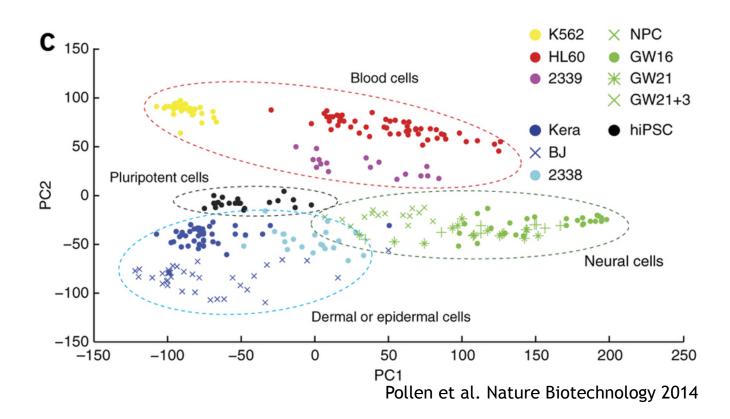

Practical PCA issue: Scaling



Practical PCA issue: Scaling

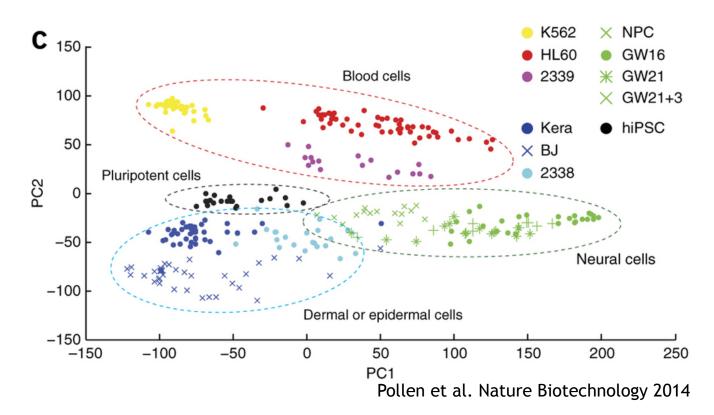
prcomp(x, scale=FALSE)

prcomp(x, scale=TRUE)

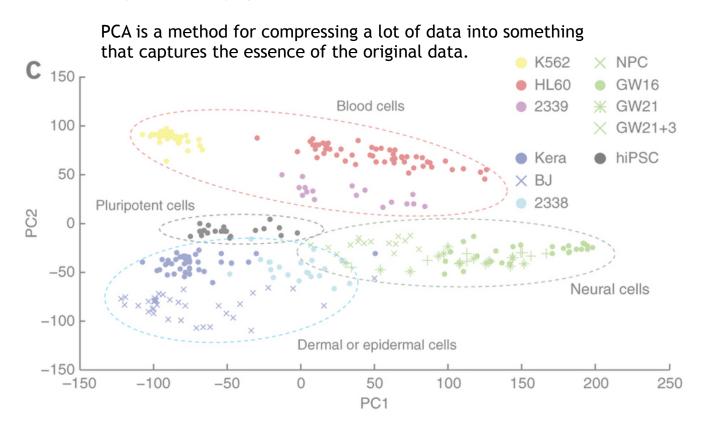

Following slides adapted from the excellent

StatQuest: PCA Clearly Explained By Joshua Starmer

https://youtu.be/ UVHneBUBW0


This PCA plot shows clusters of cell types.

This graph was drawn from single-cell RNA-seq. There were about 10,000 transcribed genes in each cell.

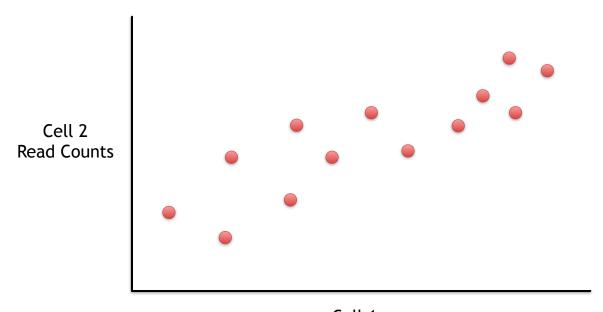

This PCA plot shows clusters of cell types.

Each dot represents a single-cell and its transcription profile The general idea is that cells with similar transcription should cluster.

This PCA plot shows clusters of cell types.

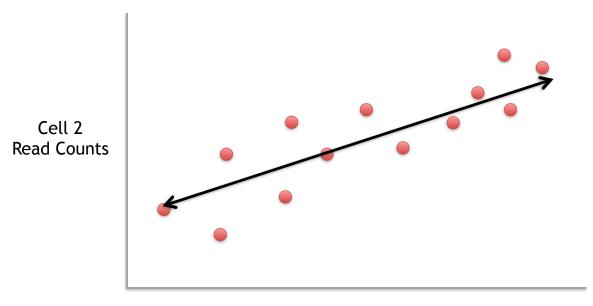
How does transcription from 10,000 genes get compressed to a single dot on a graph?

What does PCA aim to do?


- PCA takes a dataset with a lot of dimensions (i.e. lots of cells) and flattens it to 2 or 3 dimensions so we can look at it.
 - It tries to find a meaningful way to flatten the data by focusing on the things that are different between cells. (much, much more on this later)

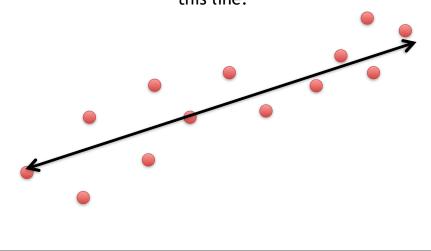
A PCA example

Again, we'll start with just two cells Here's the data:


Gene	Cell1 reads	Cell2 reads
a	10	8
b	0	2
С	14	10
d	33	45
е	50	42
f	80	72
g	95	90
h	44	50
i	60	50
(etc)	(etc)	(etc)

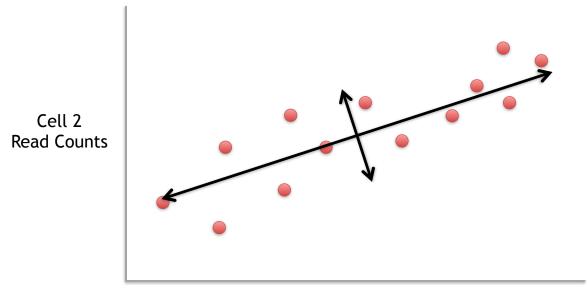
Here is a 2-D plot of the data from 2 cells.

Cell 1 Read Counts


Generally speaking, the dots are spread out along a diagonal line.

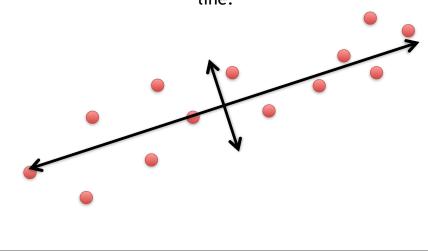
Cell 1 Read Counts

Generally speaking, the dots are spread out along a diagonal line.

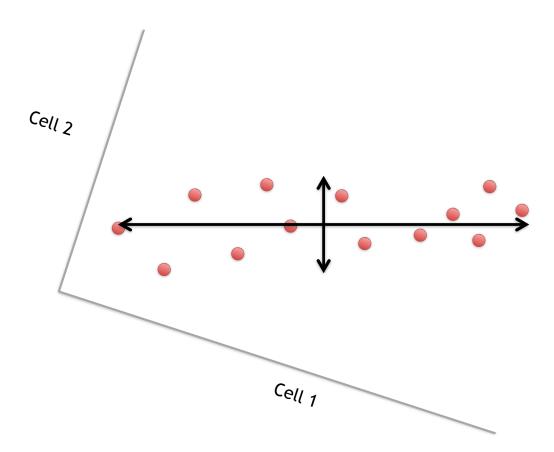

Another way to think about this is that the maximum variation in the data is between the two endpoints of this line.

Cell 2 Read Counts

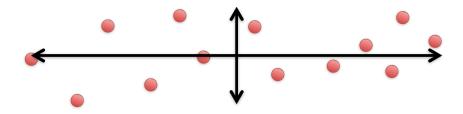
Cell 1 Read Counts


Generally speaking, the dots are also spread out a little above and below the first line.

Cell 1 Read Counts

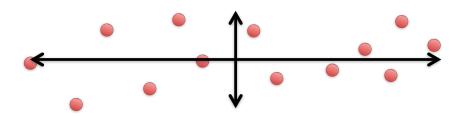

Generally speaking, the dots are also spread out a little above and below the first line.

Another way to think about this is that the 2nd largest amount of variation is at the endpoints of the new line.



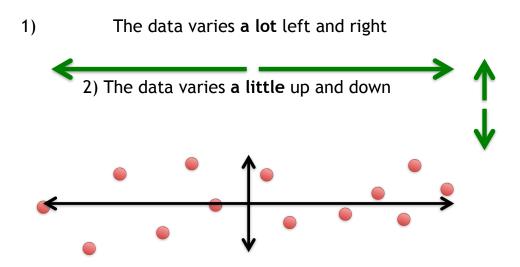
Cell 2 Read Counts

Cell 1 Read Counts


This makes the left/right, above/below variation easier to see.

This makes the left/right, above/below variation easier to see.

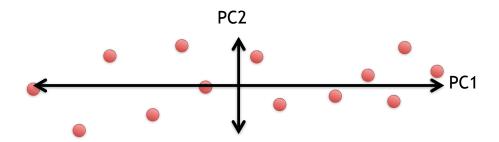
1) The data varies **a lot** left and right



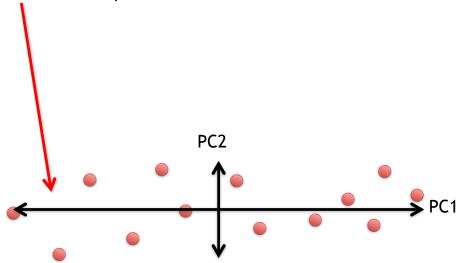
This makes the left/right, above/below variation easier to see.

1) The data varies a lot left and right

2) The data varies a little up and down

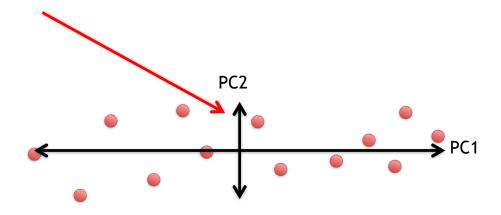

This makes the left/right, above/below variation easier to see.

Note: All of the points can be drawn in terms of left/right + up/down, just like any other 2-D graph.

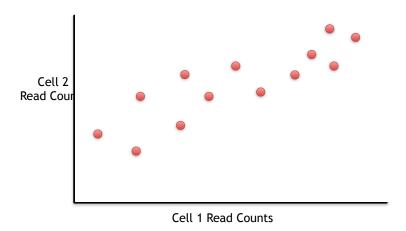

That is to say, we do not need another line to describe "diagonal" variation - we've already captured the two directions that can have variation.

These two "new" (or "rotated") axes that describe the variation in the data are "Principal Components" (PCs)

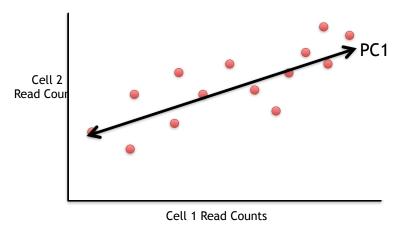
These two "new" axes that describe the variation in the data are "Principal Components" (PCs)


PC1 (the first principal component) is the axis that spans the most variation.

These two "new" axes that describe the variation in the data are "Principal Components" (PCs)

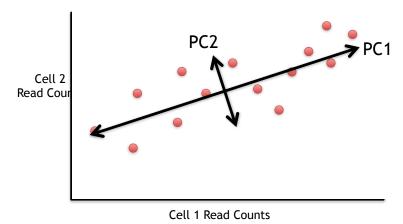

PC1 (the first principal component) is the axis that spans the most variation.

PC2 is the axis that spans the second most variation.

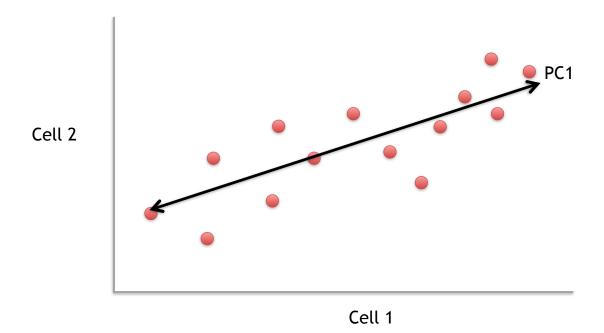

General ideas so far...

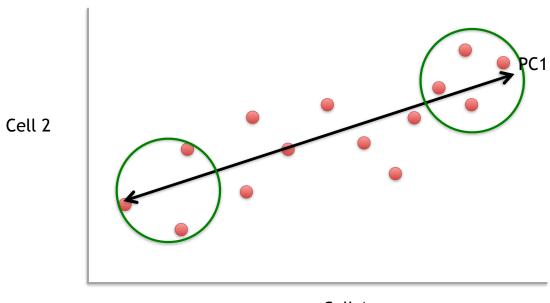
• For each gene, we plotted a point based on how many reads were from each cell.

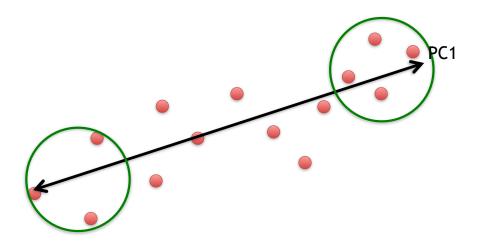
General ideas so far...


• For each gene, we plotted a point based on how many reads were from each cell.

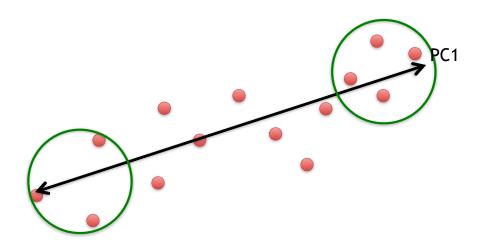
• PC1 captures the direction where most of the variation is.

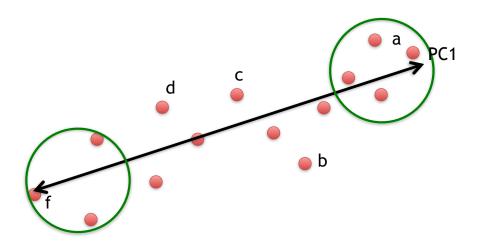

General ideas so far...


• For each gene, we plotted a point based on how many reads were from each cell.

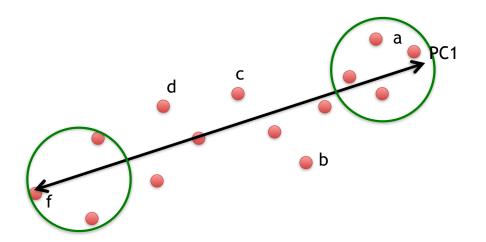

- PC1 captures the direction where most of the variation is.
- PC2 captures the direction with the 2nd most variation.

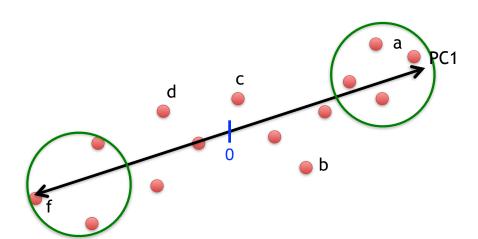
For now, let's focus on PC1




Cell 1

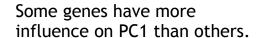
We can score genes based on how much they influence PC1.

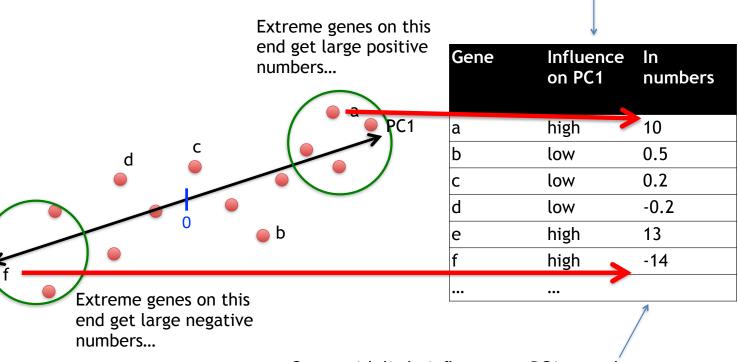

The length and direction of PC1 is mostly determined by the circled genes.


We can score genes based on how much they influence PC1.

Gene	Influence on PC1
a	high
b	low
С	low
d	low
е	high
f	high
•••	•••

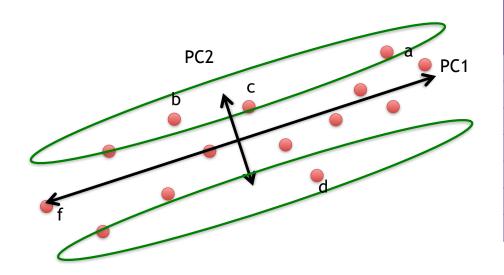
Some genes have more influence on PC1 than others.


Gene	Influence on PC1
a	high
b	low
С	low
d	low
е	high
f	high
•••	•••



Some genes have more influence on PC1 than others.

Gene	Influence on PC1	
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
е	high	13
f	high	-14
•••	•••	


Genes with little influence on PC1 get values close to zero, and genes with more influence get numbers further from zero.

Genes with little influence on PC1 get values close to zero, and genes with more influence get numbers further from zero.

Genes that influence PC2

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1
•••	•••	

Our two PCs

PC1 PC2

Gene	Influence on PC1	In numbers
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
е	high	13
f	high	-14
•••	•••	

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1
•••	•••	

Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

PC1 PC2

Gene	Influence on PC1	In numbers
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
е	high	13
f	high	-14
•••	•••	

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1
•••	•••	

Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

The original read counts

PC1

PC2

Gene	Cell1	Cell2
a	10	8
b	0	2
С	14	10
d	33	45
е	50	42
f	80	72
g	95	90
h	44	50
i	60	50
etc	etc	etc

Gene	Influence on PC1	In numbers
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
е	high	13
f	high	-14
•••	•••	

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1
•••	•••	

Combining the read counts for all genes in a cell to get a single value.

The original read counts

PC1

Gene	Cell1	Cell2	Gene	Influence on PC1	In numbers	Gene	Influence on PC2	In numbers
a	10	8		biab	10		m a dium	2
b	0	7	a	high	10	a	medium	3
		_	b	low	0.5	b	high	10
С	14	10	С	low	0.2	С	high	8
d	33	45	đ	low	-0.2	d	high	-12
е	50	42	е	high	13	е	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90	•••			•••	•••	
h	44	50			\			
i	60	50		1 22000 (120	ad count * infl	V	امر مال ممرد	
etc	etc	etc	Cell'i PC	score = (rea	ad count * infl	uence) + t	or all genes	

Combining the read counts for all genes in a cell to get a single value.

The original read counts

PC1

Gene	Cell1	Cell2
a	10	8
b	0	2
С	14	10
d	33	45
е	50	42
f	80	72
g	95	90
h	44	50
i	60	50
etc	etc	etc

Gene	Influence on PC1			
a	high	10		
b	low	0.5		
С	low	0.2		
đ	low	-0.2		
е	high	13		
f	high	-14		
•••				
		↓		
Cell1 PC1 score = (10 * 10) +				

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1
•••	•••	

Combining the read counts for all genes in a cell to get a single value.

The original read counts

PC1

Gene	Cell1	Cell2	Gene	Influence on PC1	In numbers	Gene	Influence on PC2	In numbers
a	10	8		اه د ماه	10			2
b	0	2	a	high	10	a	medium	3
			b	low	0.5	b	high	10
С	14	10	С	low	0.2	С	high	8
d	33	45	d	low	-0.2	d	high	-12
е	50	42	е	high	13	е	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90	•••			•••	•••	
h	44	50			\ \			
i	60	50	Call1 PC	1 score - (10	* 10) + (0 * 0.	5) +		
etc	etc	etc	Cellife	1 30016 - (10	10) T (0 0.	J) T		

Combining the read counts for all genes in a cell to get a single value.

The original read counts

PC1

Gene	Cell1	Cell2
a	10	8
b	0	2
С	14	10
d	33	45
е	50	42
f	80	72
g	95	90
h	44	50
i	60	50
etc	etc	etc

Gene	Influence on PC1	In numbers
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
е	high	13
f	high	-14
•••	•••	

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1
•••	•••	

Combining the read counts for all genes in a cell to get a single value.

The original read counts

PC1

Gene	Cell1	Cell2	Gene	Influence on PC1	In numbers	Gen	е	Influence on PC2	In numbers
a	10	8			10				
b	0	2	a	high	10	a		medium	B
		<u> </u>	b	low	0.5	b		high	10
С	14	10	С	low	0.2	С		high	8
d	33	45	d	low	-0.2	d		high	-12
e	50	42	d	high	13	е		low	0.2
f	80	72	f	high	-14	f		low	-0.1
g	95	90		•••				•••	
h	44	50							
i	60	50	Calla DC1	(10	* 10) . (6) * () E) .	oto	12	
etc	etc	etc	Celli PCi	score = (10	* 10) + (0 * 0).5) +	. etc	= 12	
			Cell1 PC2	: score = (10	* 3) +				

Combining the read counts for all genes in a cell to get a single value.

The original read counts

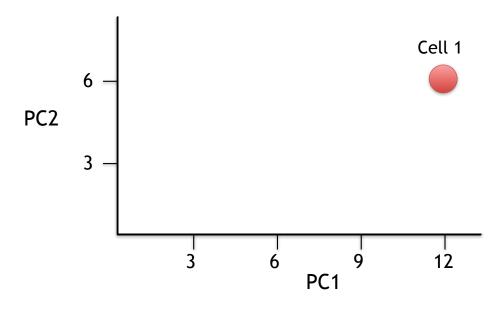
PC1

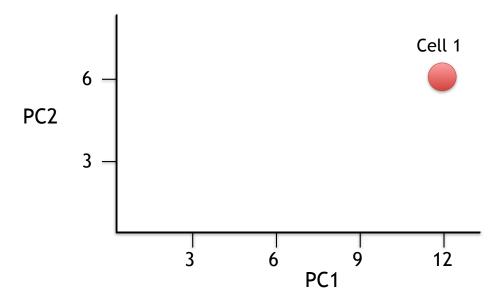
Gene	Cell1	Cell2
a	10	8
b	0	2
С	14	10
d	33	45
e	50	42
f	80	72
g	95	90
h	44	50
i	60	50
etc	etc	etc

Gene	Influence on PC1	
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
8	high	13
f	high	-14

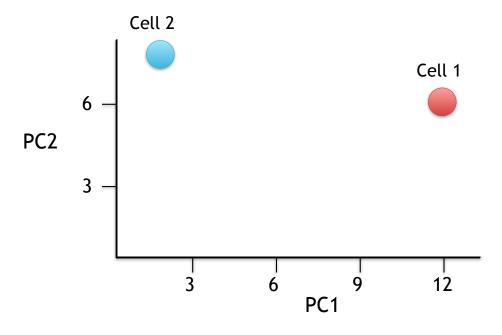
Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1
•••	/	

Combining the read counts for all genes in a cell to get a single value.

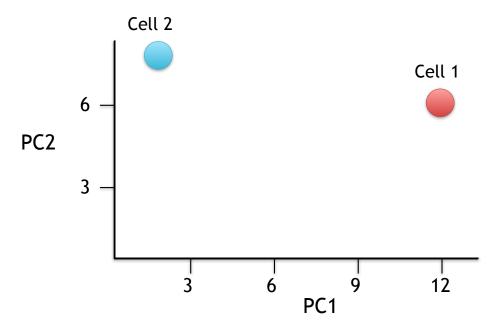

The original read counts

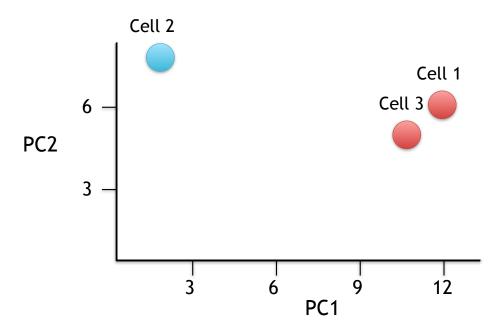

PC1

Gene	Cell1	Cell2
a	10	8
b	0	2
С	14	10
d	33	45
е	50	42
f	80	72
g	95	90
h	44	50
i	60	50
etc	etc	etc

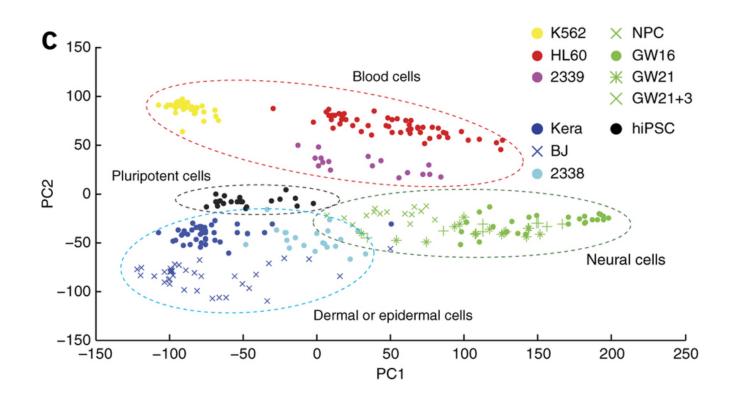

Gene	Influence on PC1	In numbers
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
е	high	13
f	high	-14
•••	•••	

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1
•••	•••	




Now calculate scores for Cell2

Now calculate scores for Cell2



If we sequenced a third cell, and its transcription was similar to cell 1, it would get scores similar to cell 1's.

If we sequenced a third cell, and its transcription was similar to cell 1, it would get scores similar to cell 1's.

Hooray! We know how they plotted all of the cells!!!

Homework:

Unsupervised Learning Mini-Project

Input: read, View/head,

PCA: prcomp,

Cluster: kmeans, hclust Compare: plot, table, etc.

BONUS: Predictive Modeling with PCA Components

We can use our PCA and clustering models to predict the potential malignancy of new samples:

```
## Predicting Malignancy Of New samples

url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)

plot(wisc.pr$x[,1:2], col= (diagnosis+1))
points(npc[,1], npc[,2], col="blue", pch=16)</pre>
```

[Muddy Point Assessment]