## TRANSPOSON INSERTION FOLLOWED BY SEQUENCING METHOD TO STUDY INTERACTIONS BETWEEN GENES

Alena Martsul

May 24, 2018

Why is it important to study interactions between genes?

# Usually multiple genes contribute to one specific phenotype (trait)

# Example: You want to construct a yeast strain that grows fast in medium with low pH



Background strain

Strain with improved characteristics

## Example: You want to construct a yeast train that grows fast in medium with low pH



### How can we study interactions between mutations?

## Choosing experimental approach

#### Requirements:

- Simple and reproducible method to introduce mutations
- A method to distinguish mutations and track their frequencies over time
- Reasonable timeline

## Choosing experimental approach

#### Requirements:

- Simple and reproducible method to introduce mutations
- A method to distinguish mutations and track their frequencies over time
- Reasonable timeline

#### Alternative approaches:

- Sampling from the wild
- Mutagenesis (chemical, UV exposure, etc.)
- Use of yeast deletion collections

## Transposon mutagenesis followed by sequencing (TnSeq) method

#### I. Transposon insertion



2. Generation of mutant library



Yeast or bacterial strain

Transposon library

Mutant library



#### 4. Tracking barcode frequency trajectories



#### 5. Estimating fitness effects of mutations



### LET'S PRACTICE!

Dataset description

Model organism:

2 Saccharomyces cerevisiae strains that differ by 5 mutations



Dataset description

Mutations tested:

# ~1000 mutations with different genomic location

# Dataset description

Environment:

# Synthetic complete medium with low pH (3.0)



## Questions we want to answer

Do some of the mutations have different fitness effect?

## If yes, how different this effect can be?

## Data analysis workflow



### What information do fastq files contain?

@NS500672:54:HL775BGXX:1:11101:22716:1042 1:N:0:CCCCGG CCGCCNATGCCCATGCCACAGTTGTTGAGCTTGAGTTCCTGCAGGGTGAAGCAGGCTGAGCTCTTGA GCAGGGCCTCGAA +

First line is the information about the location of the read and specific sequencing machine used:

@<instrument>:<run number>:<flowcell ID>:<lane>:<tile>:<x-pos>:<y-pos>
<read>:<is filtered>:<control number>:<index sequence>

Second line is the nucleotide sequence called

Third line is "+" and can optionally be followed by a repeat of the filename in line I

Fourth line contains the quality score as determined by the sequencer

### How can we check the quality of sequencing data?

### Fastq File – Phred Quality Score

 $Q = -10 Log_{10} P$ 

Quality scores report the probability that the base call is incorrect

| Phred quality scores are logarithmically linked to error probabilities |                                    |                    |  |  |
|------------------------------------------------------------------------|------------------------------------|--------------------|--|--|
| Phred Quality Score                                                    | Probability of incorrect base call | Base call accuracy |  |  |
| 10                                                                     | 1 in 10                            | 90%                |  |  |
| 20                                                                     | 1 in 100                           | 99%                |  |  |
| 30                                                                     | 1 in 1000                          | 99.9%              |  |  |
| 40                                                                     | 1 in 10,000                        | 99.99%             |  |  |
| 50                                                                     | 1 in 100,000                       | 99.999%            |  |  |
| 60                                                                     | 1 in 1,000,000                     | 99.9999%           |  |  |

Field standard is to accept bases with quality >20

| Measure                           | Value                              |  |
|-----------------------------------|------------------------------------|--|
| Filename                          | <pre>good_sequence_short.txt</pre> |  |
| File type                         | Conventional base calls            |  |
| Encoding                          | Illumina 1.5                       |  |
| Total Sequences                   | 250000                             |  |
| Sequences flagged as poor quality | 0                                  |  |
| Sequence length                   | 40                                 |  |
| *GC                               | 45                                 |  |



http://www.bioinformatics.babraham.ac.uk/projects/fastqc/











| Sequence | Count | PValue       | Obs/Exp Max | Max Obs/Exp Position |
|----------|-------|--------------|-------------|----------------------|
| ACCGAAC  | 35    | 1.0615131E-6 | 34.067673   | 33                   |
| ACCGGAC  | 30    | 1.4503141E-5 | 34.06767    | 33                   |
| ACCGGAA  | 55    | 3.092282E-11 | 34.06767    | 33                   |
| GACCGGT  | 20    | 0.0027499169 | 34.06767    | 32                   |
| GACCGGA  | 95    | 0.0          | 34.06767    | 32                   |

## Barcode extraction procedure and mapping



### Can we use barcode raw counts for the analysis?

### LETS CODE!

## Please fill out the assessment below:

https://docs.google.com/forms/d/e/IFAIpQLScenZBfkADH6dgbvTYfoNi5LbvGB4I 7AgdlhGr3ey\_IhSKQYQ/viewform?usp=sf\_link

Thank you!