Fundamentals of
database searching

Aligning novel sequences with previously characterized genes or proteins provides important
insights into their common attributes and evolutionary origins. The principles underlying the

computational tools that can be used to evaluate sequence alignments are discussed.

Efficient DNA sequencing methods frequently used convention is that the
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make it much easier to obtain infor- higher the score the better the align-

mation on the amino acid sequence of ment. There are many possible defini-
proteins than on their structures or func- tions of alignment score, but the most
tions. The sequences of homologous common is simply the sum of scores

proteins can diverge greatly over time, specified for the aligned pairs of letters,

even though the structure or function

of the proteins change little. Thus, much

can be inferred about an uncharacterized protein when
significant sequence similarity is detected with a well-
studied protein. This has been a key motivation for the
comparison of DNA and protein sequences. Other goals
of sequence comparison include phylogenetic recon-
struction and the detection of genes and regulatory re-
gions (see the article by David Haussler on pp. 12-15).

Global and local sequence alignment

Alignments provide a powerful way to compare related
sequences, but can be used in an attempt to capture dif-
ferent facts. The alignment of two residues could reflect
a common evolutionary origin, or could try to represent
common structural roles, which might not always be
congruent with evolutionary history. Here, I examine
the evolutionary view.

Alignments are generally restricted to describing
the most common mutations: insertions, deletions and
single-residue substitutions. Insertions or deletions are
represented by null characters, added to one sequence
and aligned with letters in the other; substitutions are
represented by the alignment of two different letters.
Sequences can be compared by either global or local
alignment, depending on the purpose of the compari-
son (see Fig. 1). Global alignment forces complete align-
ment of the input sequences, whereas local alignment
aligns only their most similar segments. The method used
depends upon whether the sequences are presumed to
be related over their entire lengths or to share only iso-
lated regions of homology. Although global and local
alignment algorithms are reasonably similar, the sta-
tistics needed to assess their output are very different.

Alignment scores

To select from the vast number of possible alignments,
the standard procedure is to assign them scores; the most
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and letters with nulls, of which an align-

ment consists. A substitution score is
chosen for each pair of letters that can be aligned; the
complete set of these scores is called a substitution
matrix [PAM (Ref. 1) and BLOSUM (Ref. 2) are
the most popular for protein sequence comparisons].
Additionally, scores are chosen for gaps, which consist
of one or more adjacent nulls in one sequence aligned
with letters in the other. Because a single mutational
event can insert or delete more than one residue, a long
gap should be penalized only slightly more than a short
gap. Accordingly, affine gap costs, which charge a
relatively large penalty for the existence of a gap, and a
smaller penalty for each residue it contains, have
become the most widely used gap scoring system.

The practical effectiveness of sequence comparison
depends critically upon the choice of appropriate substi-
tution and gap scores. For ungapped local alignments,
a complete theory exists describing which substitution
scores best distinguish alignments representing true bio-
logical relationships from chance similarities. In brief,
the score for aligning a given pair of residues i and j
depends on the fraction ¢, of ‘true alignment’ positions
in which these paired residues tend to appear’. Thus,
defining a good substitution matrix comes down to
estimating the target frequencies q; accurately.

After some thought, it is apparent that the desired
target frequencies depend upon the degree of evo-
lution divergence between the related sequences of
interest. Thus, what is really required is not a single
matrix, but rather a series of matrices tailored to varying
degrees of evolutionary divergence'™. This is precisely
the perception underlying the construction of the PAM
and BLOSUM series of amino acid substitution matri-
ces. These matrices are generally used unmodified for
gapped local and global alignment. There is no widely
accepted theory for selecting gap costs, and their choice
has generally been guided by trial and error®.
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Fig. 1. Two protein alignments. (a) An optimal global alignment of human cytochrome ¢
(105 residues; SWISS-PROT accession number PO0001) and Rhodopseudomonas palustris
cytochrome ¢, (114 residues; SWISS-PROT accession number P00090). (b) An optimal
local alignment of the human cystic fibrosis transmembrane conductance regulator (1480
residues; SWISS-PROT accession number P13569) and Escherichia coli nickel transport
ATP-binding protein NIKD (253 residues; SWISS-PROT accession number P33593). Scores
for both alignments are calculated using the BLOSUM62 amino acid substitution matrix?,
and affine gap costs’ that assign the score —(11 + k) to a gap of length k.The global align-
ment, with score 131, is required to include the whole of the two input sequences and is
constructed using the Needleman-Wunsch algorithm®. The local alignment, with score 89,
involves only those segments of the two input sequences that optimize the score and is
constructed using the Smith-Waterman algorithm® On the central line of each alignment,
characters indicate identical amino acids and ‘+’ signs indicate similar amino acids (i.e. those
whose alignment receives a positive score).

Alignment algorithms and database searches
After defining the score of an arbitrary alignment, one
is faced with finding the optimal (i.e. highest scoring)
alignment, or alignments, of two sequences. Fortunately,
given additive scores as discussed above, a set of rela-
tively efficient dynamic programing algorithms is
available for this task. The first described in the biological
literature was the Needleman—Wunsch algorithm
for global alignment’. Subsequently, a slight variant was
proposed, termed the Smith—Waterman algorithm,
which can find the optimal local alignment of two
sequences’. Both these algorithms require time propor-
tional to the product of the lengths of the sequences
being compared. Originally, neither could deal with
affine gap costs, but both can now be modified to do so
with only a small constant-factor decrease in speed’.

Because similarities between DNA and protein se-
quences often span only segments of the sequences in-
volved, the most popular database similarity search pro-
grams are based on the Smith—Waterman local alignment
algorithm®. However, without special-purpose hard-
ware or massively parallel machines the time required by
Smith—Waterman renders it too slow for most users.
The FASTA (http://www2.ebi.ac.uk/fasta3/) (Ref. 8)
and BLAST (http://www.ncbi.nlm.nih.gov/BLAST)
(Refs 9-11) programs therefore use heuristic strategies
to concentrate their efforts on the sequence regions most
likely to be related. Rapid exact-match procedures first
identify promising regions, and only then is Smith—
Waterman invoked. This approach permits FASTA and
BLAST to run 10-100 times faster than full-blown
Smith—Waterman, at the cost of overlooking an oc-
casional similarity.

Some of the adjustable parameters of FASTA and
BLAST control the details of their heuristics and thus

influence the trade-oft between speed and sensitivity.
The eftectiveness of any alignment program depends
upon the scoring systems it employs”*. Most impor-
tantly, protein similarities corresponding to true homol-
ogies are almost always easier to distinguish from chance
than their corresponding DNA similarities, so coding
DNA should always be conceptually translated to pro-
tein before performing a search. The practical use of
database search programs is discussed in the article by
Steven Brenner on pp. 9-12.

The statistics of alignment scores

To test the biological relevance of a global or local align-
ment of two sequences, one needs to know how great
an alignment score can be expected to occur by chance.
In this context, ‘chance’ can mean the comparison of:
(1) real but unrelated sequences; (2) real sequences that
are shuffled to preserve compositional properties; or (3)
sequences that are generated randomly based upon a
DNA or protein sequence model.

Very little of practical value is known about the ran-
dom distribution of global alignment scores. One of the
few ways to evaluate the significance of such a score is to
generate an empirical score distribution from the align-
ment of many ‘random’ sequences of the same lengths as
the two sequences being compared'?. From this distri-
bution, the Z value (the number of standard deviations
from the mean) for the alignment score of interest can
then be estimated. Importantly, it should not be assumed
that the score distribution 1s normal; indeed, its general
form is unknown. Therefore, an accurate significance
estimate cannot currently be derived from the Z value.

Fortunately, much more is known about the statis-
tics of local alignment scores. Under reasonable assump-
tions, the random score distribution for optimal un-
gapped local alignments can be proved to follow an
extreme value distribution'>'". Such a proof is
unavailable for gapped local alignments, but compu-
tational experiments strongly suggest that the same
type of distribution applies'’. An essential property of
the extreme value distribution is that its right-hand tail
decays exponentially in x, as opposed to x” for the nor-
mal distribution. Improperly assuming a normal distri-
bution for optimal local alignment scores can thus
result in gross exaggerations of statistical significance.

Current versions of the FASTA and BLAST search
programs report the raw scores of the alignments
they return, as well as assessments of their statistical
significance, based upon the extreme value distribution.
Most simply, these assessments take the form of E values.
The E value for a given alignment depends upon its
score, as well as the lengths of both the query sequence
and the database searched. It represents the number of
distinct alignments with equivalent or superior score
that might have been expected to have occurred purely
by chance. Thus an E value of five is not statistically
significant, whereas an E value of 0.01 is. BLAST also
reports bit scores, which are scaled versions of the raw
scores''. A bit score takes into account the statistical
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parameters™' " of the scoring system employed, and is
therefore more informative than a raw score for

describing the quality of an alignment.

Masking regions of restricted composition

Many DNA and protein sequences contain regions of
highly restricted nucleic acid and amino acid composition
and regions of short elements repeated many times'”.
The standard alignment models and scoring systems
were not designed to capture the evolutionary processes
that led to these low-complexity regions. As a result,
two sequences containing compositionally biased regions
can receive a very high similarity score that reflects this
bias alone. For many purposes, these regions are un-
interesting and can obscure other important similari-
ties. Therefore, programs that filter low-complexity
regions from query or database sequences will often

turn a useless database search into a valuable one'.

Multiple sequences

Global and local pairwise sequence comparison and
alignment can be generalized to multiple sequences.
From multiple alignments, profiles [related to hidden
Markov models (HMMs)] can be abstracted and these
can greatly enhance the sensitivity of database search
methods to evolutionarily distant and subtle sequence
relationships''. As discussed by Sean Eddy on pp. 15-18

Practical

and by Kay Hofmann on pp. 1821, this area is increas-
ingly becoming the focus of algorithm and database
development for biological sequence comparison.

Dedication
This article is dedicated to Dr Bruce W. Erickson,
friend and mentor.
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database searching

Sequence comparisons need to be performed as carefully as wet-lab procedures, in terms of

both experimental design and interpretation. The basic requirements of database searching, the

factors that can affect the search results and, finally, how to interpret the results are discussed.

More sequences have been putatively
characterized by database searches than
by any other single technology. For
good reason: programs like BLAST
are fast and reliable. However, se-
quence comparison procedures should
be treated as experiments analogous to
standard laboratory procedures. Their use deserves the
same care both in the design of the experiment and in
the interpretation of results.
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The database search experiment

Design of a BLAST database search
requires consideration of what infor-
mation is to be gained about the query
sequence of interest. The main con-
straint is that database searching can only
reveal similarity. However, from this
similarity, homology (i.e. evolutionary relationship) can
be inferred and, from that, one might be able to infer
function. Although the former inference is now reliable
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Box |. Database searching: basic considerations

Think about every step

Search a large current database

Compare as protein rather than DNA

Filter query for low-complexity regions

Interpret scores with E values

Recognize that most homologs are not found by pairwise sequence comparison
Consider slower and more powerful methods, but use iterative programs with
great caution

for carefully performed sequence comparison, the sec-
ond 1s still fraught with challenges. Box 1 provides some
guidelines for performing reliable and sensitive database
searches.

Planning a good experiment requires an under-
standing of the method being applied. Fundamentally,
database searches are a simple operation: a query se-
quence is locally aligned with each of the sequences
(called targets) in a database. Most programs, such as
BLAST (Ref. 1) and FASTA (Ref. 2), use heuristics to
speed up the alignment procedure, while the Smith-
Waterman algorithm® (implemented, for example, in
SSEARCH) rigorously compares the query sequence
with each target in the database.

A score 1s computed from each alignment, and the
query—target pairs with the best scores are then
reported to the user. Typically, statistics are used to help
improve the interpretation of these scores. A more
detailed description of the process can be found in the
article by Stephen Altschul on pp. 7-9. Although BLAST
is the most widely used tool for sequence comparison,
many other programs can help identify, confirm and
interpret distant evolutionary relationships.

Databases, programs and comparison types
Formulation of the experiment begins with a decision
about what types of sequences to compare: DNA, pro-
tein or DNA as protein. If the sequence under consid-
eration is a protein or codes for a protein, then the
search should probably take place at the protein level,
because proteins allow one to detect far more distant
homology than does DNA*". For example, in DNA
comparisons, there is noise from the rapidly mutated
third-base position in each codon and from comparisons
of noncoding frames (although this latter issue still
arises in DN A-as-protein searches). In addition, amino
acids have chemical characteristics that allow degrees of
similarity to be assessed rather than simple recognition
of identity or non-identity. For these reasons, DNA
versus DNA comparison (using the blastn program) is
typically only used to find identical regions of sequence
in a database. One would carry out such a search to
discover whether the gene has been previously se-
quenced and to determine where it is expressed or
where splice junctions occur. In short, protein-level
searches are valuable for detecting evolutionarily re-
lated genes, while DNA searches are best for locating
nearly identical regions of sequence.

Next, it is necessary to select a database to search
against. For homology searches, the most commonly

searched database on the NCBI (National Center for
Biotechnology Information) website is the nr database.
The nr protein database combines data from several
sources, removes the redundant identical sequences and
yields a collection with nearly all known proteins. The
NCBI nr database is frequently updated in order to
incorporate as many sequences as possible. Obviously, a
search will not identify a sequence that has not been
included in the database and, as databases are growing so
rapidly, it is essential to use a current database. Several
specialized databases are also available, each of which is
a subset of the nr database. E-value statistics (discussed
below) are affected by database size, so, if you are inter-
ested in searching for proteins of known structure, it is
best to just search the smaller pdb database.

One might also wish to search DNA databases at the
protein level. Programs can do so automatically by first
translating the DNA 1n all six reading frames and then
making comparisons with each of these conceptual trans-
lations. The nr DNA database, which contains most
known DNA sequences except GSSs, EST's, STSs and
HTGSs, is useful to search when hunting new genes;
the identified genes in this database would already be
in the protein nr database. Searches against the GSS,
EST, STS and HTGS databases can find new homolo-
gous genes and are especially useful for learning about
expression data or genome map location.

Because of the different combinations of queries and
database types, there are several variants of BLAST (see
Table 1). Note that it is desirable to use the newest ver-
sions of BLAST, which support gapped alignments
(see the article by Stephen Altschul on pp. 7-9). The
older versions are slower, detect fewer homologs and
have problems with some statistics. The programs can
be run over the World Wide Web (WWW) and can be
downloaded from an ftp site to run locally. Another
option is to use the FASTA package”. The FASTA pro-
gram can be slower but more effective than BLAST.
The package also contains SSEARCH, an implemen-
tation of the rigorous Smith—Waterman algorithm,
which is slow but the most sensitive. As described in
the article by Sean Eddy on pp. 15-18, iterative pro-
grams such as PSI-BLAST require extreme care in
their operation because they can provide very mislead-
ing results; however, they have the potential to find
more homologs than purely pairwise methods.

Filtering

The statistics for database searches assume that unrelated
sequences will look essentially random with respect to
each other. However, certain patterns in sequences violate
this rule. The most common exceptions are long runs
of a small number of different residues (such as a poly-
alanine tract). Such regions of sequence could spuri-
ously obtain extremely high match scores. For this reason,
the NCBI BLAST server will automatically remove such
sections in proteins (replacing them with an X) using
the SEG program’ if ‘default filtering’ is selected.
DNA sequences will be similarly masked by DUST.
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Table |. BLAST variants for different searches?

Program Query Database Comparison Common use

blastn DNA DNA DNA level Seek identical DNA sequences and splicing patterns

blastp Protein  Protein Protein level ~ Find homologous proteins

blastx DNA Protein Protein level ~ Analyze new DNA to find genes and seek homologous proteins
tblastn Protein  DNA Protein level  Search for genes in unannotated DNA

tblastx DNA DNA Protein level ~ Discover gene structure

*Similar variant programs are available for FASTA. Protein-level searches of DNA sequences are performed by comparing translations

of all six reading frames.

Although these programs automatically remove the
majority of problematic matches, some problems invari-
ably slip through; moreover, valid hits might be missed
if part of the sequence is masked. Therefore, it might be
helptul to try using different masking parameters.

Other sorts of filtering are also often desirable. For
example, iterative searches are prone to contami-
nation by regions of proteins that resemble coiled coils
or transmembrane helices. The problem is that a pro-
tein that is similar only in these general characteristics
might match initially. The profile then emphasizes
these inappropriate characteristics, eventually causing
many spurious hits. Heavily cysteine-rich proteins can
also obtain anomalous high scores. Especially if these
characteristics are not filtered, it is necessary to review
the alignment results carefully to ensure that they have
not led to incorrect matches.

Alignment, algorithmic and output parameters
Three other sets of parameters also affect search results,
but they rarely require careful consideration by most
users. First, the matrix and gap parameters determine how
similarity between two sequences is determined. When
two residues in a protein are aligned, programs use the
matrix to determine whether the amino acids are similar
(and thus receive a positive score) or very difterent. The
default matrix for BLAST is called BLOSUMG62 (Ref. 6),
and the programs will not currently operate reliably with
other matrices. The gap parameters determine how
much an alignment is penalized for having gaps: the
existence parameter is a fixed cost for having a gap and
the per-position cost is a cost dependent upon the length
(i.e. the number of residues). Typically, there is a large
cost associated with introducing a gap and a small addi-
tional cost such that longer gaps are worse. It is rarely
very beneficial to change these from their defaults.

The second set of parameters determines the
heuristics that BLAST uses. By altering these numbers,
it is possible to make the program run slower and be
more sensitive, or to run faster at the cost of missing
more homologs. The complexity of these parameters in
BLAST precludes extensive description here. Currently,
it 1s very rare for users to alter these options from the
defaults. The FASTA program has one such parameter,
called ktup, that a user will often want to set. Searches
with ktup = 1 are slower, but more sensitive, than
BLAST; ktup = 2 s fast, but less effective.

A third set of parameters regulates how many results
are reported. By default, the programs will report only
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matches with an E value (described below) up to 10.
The total number of matches is limited to the best 500,
and detailed information with the alignment is pro-
vided for up to 100 pairs. To retrieve more matches,
these numbers can be increased.

Interpretation of results

Interpretation of the results of a sequence database
search involves first evaluating the matches to determine
whether they are significant and therefore imply homol-
ogy. The most effective way of doing this is through use
of statistical scores or E values. The E values are more
useful than the raw or bit scores, and they are far
more powerful than percentage identity (which is best
not even considered unless the identity is very high)’.
Fortunately, the E values from FASTA, SSEARCH and
NCBI gapped BLAST seem to be accurate and are there-
fore easy to interpret (see Ref. 7).

The E value of a match should measure the
expected number of sequences in the database that
would achieve a given score by chance. Therefore, in
the average database search, one expects to find ten
random matches with E values below 10; obviously, such
matches are not significant. However, lacking better
matches, sequences with these scores might provide
hints of function or suggest new experiments. Scores
below 0.01 would occur by chance only very rarely and
are therefore likely to indicate homology, unless biased
in some way. Scores of near 1le—50 (1 X 107°% are
now seen frequently, and these offer extremely high con-
fidence that the query protein is evolutionarily related
to the matched target in the database.

Inferring function from the homologous matched
sequences is a problematic process. If the score is
extremely good and the alignment covers the whole of
both proteins, then there is a good chance that they
will share the same or a related function. However, it
is dangerous to place too much trust in the query hav-
ing the same function as the matched protein; func-
tions do diverge, and organismal or cellular roles can
alter even when biochemical function is unchanged.
Moreover, a significant fraction of functional anno-
tations in databases are wrong, so one needs to be care-
ful. There are other complexities; for example, if only
a portion of the proteins align, they might share a
domain that only contributes one aspect of the over-
all function. It is often the case that all of the highest-
scoring hits align to one region of the query, and
matches to other regions need to be sought much lower
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BLAST Web site
http://www.ncbi.nlm.nih.gov/BLAST/

BLAST FTP site
ftp://ncbi.nlm.nih.gov/blast/

FASTA at EBI
http://www2.ebi.ac.uk/fasta3/

FASTA FTP site
ftp://ftp.virginia.edu/pub/fasta

Sequence search site
http://sss.stanford.edu/sss/

in the score ranking. For this reason, it is necessary to
consider carefully the overlap between the query and
each of the targets.

Database search methods are also limited because
most homologous sequences have diverged too far to
be detected by pairwise sequence comparison meth-
ods’. Thus, failure to find a significant match does not
indicate that no homologs exist in the database; rather,
it suggests that either more-powerful computational
methods (such as those described by Sean Eddy on
pp- 15-18 and by Kay Hofmann on pp. 18-21) or
experiments would be necessary to locate them.

Conclusion

One should neither have excessive faith in the results
of a BLAST run nor blithely disregard them. The
BLAST programs are well-tested and reliable indi-
cators of sequence similarity, and their underlying
principles are straightforward. Complexities added by
the fast algorithms typically need not be carefully
considered, because the program and its parameters
have been optimized for hundreds of thousands of
daily runs. If one is careful about posing the database
search experiment and interprets the results with care,
sequence comparison methods can be trusted to pro-
vide an incomparable wealth of biological information
rapidly and easily.
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