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Cancer Genomics Brief review of cancer fundamentals,  
What is cancer and what causes it?

Mining Cancer 
Genomic Data

Hands-on analysis to identify genomic 
changes in different cancers and identify 

new targets for therapy

Cancer Immunotherapy Hands-on analysis to design personalized 
cancer vaccines and harness the patient’s 

own immune system to fight cancer

Today’s Menu



What is Cancer?
“Cancer is a name given to a collection of related 
diseases, where some of the body’s cells begin 

to divide without stopping and spread into 
surrounding tissue” 

Source: https://www.cancer.gov



What is Cancer?
“Cancer is a name given to a collection of related 
diseases, where some of the body’s cells begin 

to divide without stopping and spread into 
surrounding tissue” 

Source: https://www.cancer.gov

It is estimated that cancer will strike 40% of people at some 
point in their lifetime with frequently devastating effects. 



Cancer is a disease of the Genome

• Caused by changes to genes that 
control the way our cells function, 
especially how they grow and divide.


• A major challenge in treating cancer is 
that every tumor is different: Each 
person’s cancer has a unique 
combination of genetic changes (both 
“driver” & “passenger”). 


• As the cancer continues to grow, 
additional changes will occur.  

Cancer is a disease of the genome 
• Challenge in treating 

cancer: 
– Every patient is different. 
– Every tumour is 

different, even in the 
same patient. 

– Tumours can be highly 
heterogeneous 

– High rate of genomic 
abnormalities (few 
drivers, many passenger) 

Healthy 46 chromosomes 

Example cancer 59 chromosomes 
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Goals of Cancer Genome Research

• Identify changes in the genomes of 
tumors that drive cancer progression


• Identify new targets for therapy


• Select drugs based on the genomics of 
the tumor


• Provide early cancer detection and 
treatment response monitoring 


• Utilize cancer specific mutations to derive 
neoantigen immunotherapy approaches 

Marc Rosenthal

Cancer Genomics



Finding Cancer Drivers



Motivation for adopting a 
genomics approach…

• Cancer is caused by mutations to 
specific genes


• Knowing which genes and proteins 
enables the development of targeted 
treatments


• 1st major Goal: 

Define ALL cancer genes!

A G C T A G A T 



Cancer Genomics

ACTCAGCCCCAGCGGAGGTGAAGGACGTCCTTCCCCAGGAGCCGGTGAGA
AGCGCAGTCGGGGGCACGGGGATGAGCTCAGGGGCCTCTAGAAAGATGTA
GCTGGGACCTCGGGAAGCCCTGGCCTCCAGGTAGTCTCAGGAGAGCTACT
CAGGGTCGGGCTTGGGGAGAGGAGGAGCGGGGGTGAGGCCAGCAGCAGGG
GACTGGACCTGGGAAGGGCTGGGCAGCAGAGACGACCCGACCCGCTAGAA
GGTGGGGTGGGGAGAGCATGTGGACTAGGAGCTAAGCCACAGCAGGACCC
CCACGAGTTGTCACTGTCATTTATCGAGCACCTACTGGGTGTCCCCAGTG
TCCTCAGATCTCCATAACTGGGAAGCCAGGGGCAGCGACACGGTAGCTAG
CCGTCGATTGGAGAACTTTAAAATGAGGACTGAATTAGCTCATAAATGGA
AAACGGCGCTTAAATGTGAGGTTAGAGCTTAGAATGTGAAGGGAGAATGA
GGAATGCGAGACTGGGACTGAGATGGAACCGGCGGTGGGGAGGGGGAGGG
GGTGTGGAATTTGAACCCCGGGAGAGAAAGATGGAATTTTGGCTATGGAG
GCCGACCTGGGGATGGGGAAATAAGAGAAGACCAGGAGGGAGTTAAATAG
GGAATGGGTTGGGGGCGGCTTGGTAACTGTTTGTGCTGGGATTAGGCTGT
TGCAGATAATGGAGCAAGGCTTGGAAGGCTAACCTGGGGTGGGGCCGGGT
TGGGGTCGGGCTGGGGGCGGGAGGAGTCCTCACTGGCGGTTGATTGACAG
TTTCTCCTTCCCCAGACTGGCCAATCACAGGCAGGAAGATGAAGGTTCTG
TGGGCTGCCCCGACCCGCTAGAAGGTGGGGTGGGGAGAGCATGTGGACTA
GGAGCTAAGCCACAGCAGGACCCCCACGAGTTGTCACTGTCATTTATCGA
GCACCTACTGGGTGTCCCCAGTGTCCTCAGATCTCCATAACTGGGAAGCC
AGGGGCAGCGAC

Arrays Parallel Sequencing

Use A Cancer Genomics Approach



Cancer genome sequencing

Which mutations are 
cancer drivers?

Normal cell Cancer cell

Sequencing 
machines

Somatic mutations

Finding Cancer Associated Mutations

Identify all mutations 
specific to tumor cells

Filter out silent 
mutations



Mutations detected:  
Point mutations

T A T
Silent 

(Tyrosine)

T G C
Missense 
(Cystine)

T A G
Nonsense 

(STOP)

T A C

Original (Tyrosine)



Mutations detected:  
Indels

 - - - C T G G T G A T T - - -

 - - - C T G G T G A C T A G T T - - -

 - - - C T G G T A T C A G A C T - - -

C T A G

A T C A

Deletion

Insertion

Reference 
Sequence

Tumor 
Sequence 1

Tumor 
Sequence 2

CTAG deleted

ATCA inserted



Mutations detected:  
Translocations



What can go wrong in cancer genomes? 

Type of change Some common technology to study changes 
DNA mutations WGS, WXS 

DNA structural variations WGS 

Copy number variation (CNV) CGH array, SNP array, WGS 

DNA methylation Methylation array, RRBS, WGBS 

mRNA expression changes mRNA expression array, RNA-seq 

miRNA expression changes miRNA expression array, miRNA-seq 

Protein expression Protein arrays, mass spectrometry 

WGS = whole genome sequencing, WXS = whole exome sequencing 

RRBS = reduced representation bisulfite sequencing, WGBS = whole genome bisulfite sequencing 



Vogelstein et al.  
Science (2013)

N
Ly

Number of somatic 
mutations in 

representative human 
cancers, detected by 

genome-wide 
sequencing studies

Genomics allows us to 
answer the question: 

How many mutations are 
there in typical cancers?  



Vogelstein et al.  
Science (2013)

~50-100 mutations

~4 or 5 
mutations

Cancers in adults have more 
mutations than those in children 



Vogelstein et al.  
Science (2013)

~50-100 mutations

~4 or 5 
mutations

Cancers in adults have more 
mutations than those in children 

Most of these 
mutations are likely 

“passenger” mutations 



Mike Stratton. EMBO Molecular Medicine (2013)



Vogelstein et al.  
Science (2013)

DNA damage from smoking 
and sun exposure…



Genomic approaches can identify the 
genes most commonly mutated in cancer

Arrange all genes in a matrix, ordered by chromosomes



Identifying genes most 
commonly mutated in cancer

Add all data together to see which genes  are most often mutated



Identifying genes most 
commonly mutated in cancer

Add all data together to see which genes  are most often mutated

Are any of these known cancer genes?



Identifying genes most 
commonly mutated in cancer

Many are famous porto-oncogenes, many others are new cancer genes! 



Three Main Types of Cancer Genes:

• Oncogenes, such as Ras, normally function to accelerate 
cell division and growth. They can be mutated to act like 
stuck gas pedals.


• Tumor suppressor genes, such as p53 normal act like 
breaks. Mutations can cause these breaks to fail.


• DNA repair genes, such as BRCA1 & 2, normally function 
to fix minor damage to DNA when it replicates. When 
these genes are mutated, DNA damage can accumulate 
and lead to cancer.



Cell growth and survival genes
Many participate in signaling pathways that promote cell proliferation 

(E.G. EGFR, Ras, BRAF, MEK etc.)
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Regulators of Cell Cycle and Cell Death

Some stimulate 
the cell cycle

Some inhibit 
 the cell cycle

Cyclin D1

CDK4

P53

RB

+ -

Suppressor genesOncogenes



p53 Regulates Cell Division 

• p53 normally shuts down cell division when a cell is 
stressed (e.g. by DNA damage) 


• When DNA is damaged, p53 activates genes that 
stop cell growth or trigger the cell to die.


• Thus, p53 guards against changes to cells that 
might lead to tumor formation. 


• It appears necessary to inactivate p53 to develop 
many forms of cancer.  

Cell 
Growth

Other p53 
functions 

(transcription 
factor)

Cell 
Death

Stress

p53

Probably the most famous cancer gene that is mutated in 
about half of all tumors. Often called the ‘guardian of the 
genome’



Hands-on time!
https://bioboot.github.io/bimm143_S18/lectures/#18

Do it Yourself!

Part 1 Only Please

https://bioboot.github.io/bimm143_S18/lectures/#18


Cancer 
Immunotherapy



• Cancers genomes accumulate mutations


• Mutations in coding regions are 
translated in mutated protein sequences


• Mutated peptides can be presented as 
epitopes on MHC to T cells

• Neoepitopes are presumably 
recognized by tumor-infiltrating 
lymphocytes (TILs)


• Neoepitopes are highly tumor-specific!

Coulie et al, Nat Rev Cancer. 2014 Feb;14(2):135-46

Schumacher & Schreiber, Science. 2015 Apr 3;348(6230):69-74



• Vaccination: Introduce or boost an immune response against a 
specific target (antigen)


• Cancer cells contain non-self antigens that could be recognized by T 
cells, but the presence of cancer means this mechanism has failed, 
typically by the tumor suppressing immune responses


• Checkpoint blockade treatments: Block immune suppressive 
mechanisms to boost T cell immune responses against cancer cells.


• Problem: Checkpoint blockade is unspecific, and will also boost 
unwanted autoimmune  responses


• Personalized Cancer Immunotherapy: Boost anti-tumor response 
with vaccine containing peptides corresponding to cancer mutations 
that can be recognized by T cells. 


Q. How can such a vaccine be designed? 



DNA and RNA sequencing identifies tumor 
specific somatic mutations

Which mutations can be recognized by 
the patient’s T cells?  
! Resulting peptides have to bind 
HLA molecules of the patient



DNA Isolation

PCR Primary Amplification
(exons 1-5)

PCR Primary Amplification

Product Purification

Sequencing Reactions
(forward & reverse orientations)

Sequencing Reaction

Precipitation

Utilization of 96 sample
sequencing instrument

Sequencing Analysis

Sequence-Based
Typing

•http://www.ashi-hla.org/publicationfiles/ASHI_Quarterly/25_2_2001/highthrusbt3.htm 

HLA Typing: Targeted sequencing of HLA locus





Hands-on time!
https://bioboot.github.io/bimm143_S18/lectures/#18

Do it Yourself!

Part 2: Designing a personalized cancer vaccine 

https://bioboot.github.io/bimm143_S18/lectures/#18


Bonus Slides  
(For Reference)



 Experimental 
Basis: MHC 
Binding Assay

Sequence IC50
QIVTMFEAL 3.6
LKGPDIYKG 308
NFCNLTSAF 50,000
AQSQCRTFR 38,000
CTYAGPFGM 143
CFGNTAVAK 50,000

...

 List of peptides 
with allele 
specific binding 
affinity

Impossible to measure all 
peptides 

! Predict binding peptides using 
machine learning 

Find function Fi in  
Fi (Sequence) ≈ Affinity 

Many different approaches  
(ANN, SVM, HMM, LP, ... )

F1, F2, F3, ...

Measuring and predicting  MHC:peptide binding

log(IC50) ~ Binding free Energy 

low IC50 ! high affinity
ORF 1 M G Q I V T M F E A L P H I I D E V I N I V I I V L I V I T G I K A V Y N ...
ORF 2 M G L K G P D I Y K G V Y Q F K S V E F D M S H L N L T M P N A C S A N N ...
ORF 3 M H N F C N L T S A F N K K T F D H T L M S I V S S L H L S I D G N S N Y ...
ORF 4 M S A Q S Q C R T F R G R V L D M F R T A F G G K Y M R S G W G W T G S D ...
ORF 5 M H C T Y A G P F G M S R I L L S Q E K T K F F T R R L A G T F T W T L S ...
ORF 6 M K C F G N T A V A K C N V N H D A E F C D M L R L I D Y N K A A L S K F ...
ORF 7 M L M R N H L L D L M G V P Y C N Y S K F W Y L E H A K T G E T S V P K C ...
ORF 8 M N M I T E M L R K D Y I K R Q G S T P L A L M D L L M F S T S A Y L V S ...
ORF 9 M S L S K E V K S F Q W T Q A L R R E L Q S F T S D V K A A V I K D A T N ...

T cell 
epitope 
mapping

ORF 1 M G Q I V T M F E A L P H I I D E V I N I V I I V L I V I T G I K A V Y N ...
ORF 2 M G L K G P D I Y K G V Y Q F K S V E F D M S H L N L T M P N A C S A N N ...
ORF 3 M H N F C N L T S A F N K K T F D H T L M S I V S S L H L S I D G N S N Y ...
ORF 4 M S A Q S Q C R T F R G R V L D M F R T A F G G K Y M R S G W G W T G S D ...
ORF 5 M H C T Y A G P F G M S R I L L S Q E K T K F F T R R L A G T F T W T L S ...
ORF 6 M K C F G N T A V A K C N V N H D A E F C D M L R L I D Y N K A A L S K F ...
ORF 7 M L M R N H L L D L M G V P Y C N Y S K F W Y L E H A K T G E T S V P K C ...
ORF 8 M N M I T E M L R K D Y I K R Q G S T P L A L M D L L M F S T S A Y L V S ...
ORF 9 M S L S K E V K S F Q W T Q A L R R E L Q S F T S D V K A A V I K D A T N ...

T cell 
epitope 
mapping

Slide from: Bjoern Peters (LIAI)



1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
A -0.3 0.8 -0.3 -0.3 -0.2 -0.3 0.0 0.0 -0.9 -0.3 -0.2 0.1 -0.1 0.2 -0.3 -0.1 -0.4 0.5
C 0.2 0.9 0.0 0.3 -0.5 -0.1 0.1 0.2 0.4 0.3 0.4 0.0 0.4 0.2 0.3 0.2 0.5 0.3
D 0.8 0.9 -0.4 -0.3 0.3 0.2 0.4 0.3 0.6 0.8 0.4 0.6 0.3 0.7 0.4 0.8 0.6 1.1
E 0.6 -0.4 0.7 -0.2 0.1 -0.4 -0.2 -0.2 -0.5 0.3 0.3 0.4 -0.1 0.5 0.1 0.3 0.1 0.4
F -1.3 0.5 -0.5 0.1 -0.1 0.0 -0.3 -0.4 -0.8 0.4 0.7 -0.5 -0.5 -0.6 -0.3 -0.4 0.2 -1.5
G -0.2 0.1 0.3 -0.1 0.0 0.4 0.3 -0.1 0.2 0.2 0.4 0.2 -0.1 -0.1 0.3 0.5 -0.2 -0.1
H 1.1 0.9 -0.1 0.4 0.1 0.2 0.0 0.2 0.8 -0.3 0.1 0.1 -0.1 0.2 -0.1 -0.3 -0.1 0.0
I -0.4 -0.7 -0.4 0.1 -0.1 -0.4 -0.5 0.5 -1.4 -0.4 -0.7 -0.3 0.3 -0.4 -0.3 0.3 -0.2 -1.4
K -0.3 0.0 1.1 0.1 0.1 0.6 0.9 0.2 0.9 -0.7 0.9 0.5 -0.1 0.1 0.1 0.8 0.2 0.3
L 0.0 -1.9 -0.4 -0.2 0.0 -0.2 0.0 -0.1 -1.1 -0.4 -0.7 -0.3 0.5 -0.4 0.1 -0.7 0.1 -0.9
M -0.7 -1.2 -0.7 0.2 -0.6 0.0 0.0 0.0 -0.8 -0.6 -1.0 -0.5 -0.3 -0.1 0.0 0.2 -0.2 -0.4
N -0.1 0.3 0.1 -0.3 -0.1 -0.3 0.0 0.2 0.7 0.2 0.4 -0.4 -0.3 0.2 -0.2 -0.4 -0.1 0.4
P 1.2 0.5 0.6 -0.3 0.4 0.0 -0.4 -0.5 0.7 0.6 0.5 0.4 0.5 0.2 0.2 0.3 -0.4 0.9
Q 0.4 -1.1 0.0 -0.1 0.4 -0.2 -0.3 0.2 0.7 0.0 -0.7 -0.1 0.0 -0.2 0.4 -0.3 0.0 0.4
R -0.2 0.9 1.0 0.3 0.1 0.4 0.7 0.0 0.9 -0.7 0.9 0.2 0.1 -0.1 0.1 0.2 0.1 0.1
S -0.3 0.1 0.1 -0.4 0.1 0.3 -0.2 -0.1 0.2 -0.3 -0.5 0.0 0.0 0.0 -0.3 0.1 -0.4 0.7
T -0.2 -0.5 0.1 0.4 0.1 -0.5 0.2 0.0 -0.1 0.3 -1.2 0.3 0.0 0.6 -0.3 0.1 -0.4 0.9
V -0.1 -0.9 -0.1 0.2 0.0 -0.3 0.1 0.1 -1.9 -0.1 -0.5 0.0 0.0 -0.3 -0.4 -0.8 -0.2 -0.2
W 0.0 0.7 -0.5 -0.2 -0.1 0.2 -0.3 -0.1 0.4 0.5 0.3 -0.5 0.0 -0.5 0.2 -0.4 0.6 -0.8
Y -0.3 0.2 -0.6 0.2 0.0 0.4 -0.4 -0.3 0.8 0.2 0.3 -0.5 -0.4 -0.1 0.0 -0.5 0.2 -0.9

HLA A*3201HLA A*0201

Calculate scoring matrix from affinities

 N peptides with 
measured binding 

affinities
log (IC50) Peptide
0.50 FQPQNGSFI
0.72 ISVANKIYM
2.37 RVYEALYYV
3.42 FQPQSGQFI
3.46 LYEKVKSQL
4.07 FKSVEFDMS
4.18 FQPQNGQFH
4.24 VLMLPVWFL
4.39 YMTLGQVVF
4.40 EDVKNAVGV
4.90 VFYEQMKRF

… 
Offset: 4.3

Machine learning PSSM = Minimize the difference between predicted and 
measured binding affinities by varying the matrix values

Slide from: Bjoern Peters (LIAI)



Genetic and genomic approaches 
can identify a cancers molecular 

signature to usefully stratify 
tumors for treatment



Stratify tumors based on molecular patterns

Good prognosis
Favorable response

Bad prognosis
Unfavorable response Increased toxicity



Stratify tumors based on molecular patterns



TCGA Pan-Cancer project



For example, breast cancer may be classified into various types based upon 
which proteins are expressed on the surface of the tumor cells. Breast tumors 
that express human epidermal growth factor 2 (HER2), estrogen receptor (ER), 

and progesterone receptor (PR), or are triple negative (do not express HER2, ER, 
or PR) behave differently and have different prognoses. Tumors that are HER2 

positive are treated with medications that bind to HER2 (e.g. trastuzumab, 
lapatinib) and inhibit its activity. ER and PR are hormone receptors, and ER/PR 

positive tumors are treated with antihormonal therapies (e.g. tamoxifen and 
aromatase inhibitors). Triple negative tumors have the poorest prognosis and are 
unlikely to respond to HER2-targeted therapies or antihormonal therapies. Such 

cancers are usually treated very aggressively with chemotherapy. 

As more has been learned about the molecular signature of various cancer 
subtypes, therapies that are specifically targeted to those signatures have been 

developed. Conventional chemotherapy acts on all rapidly dividing cells and 
does not distinguish between cancer cells and normal cells.



(trastuzumab, lapatinib) 
(tamoxifen and aromatase inhibitors)

(aggressive chemotherapy)



Readings to find out more…



• Calling cancer's bluff with neoantigen vaccines 

• Can genomics help detect early cancer and 
monitor treatment effectiveness? 

• The increasing cost of cancer therapies

https://bioboot.github.io/bimm194_W18/readings/ 

Your Turn

Read and share your thoughts on the following 
class Readings

https://bioboot.github.io/bimm194_W18/readings/


1. Predict consequences of mutations
ACTGCCTACGTCTCACCGTCGACTTCAAATCGCTTAACCCGTACTCCCATGCTACTGCATCTCGGGTTAACTC
GACGTTTTTCATGCATGTGTGCACCCCAATATATATGCAACTTTTGTGCACCTCTGTCACGCGCGAGTTGGCA
CTGTCGCCCCTGTGTGCATGTGCACTGTCTCTCGCTGCACTGCCTACGTCTCACCGTCGACTTCAAATCGCTT
AACCCGTACTCCCATGCTACTGCATCTCGGGTTAACTCGACGTTTTGCATGCATGTGTGCACCCCAATATATA
TGCAACTTTTGTGCACCTCTGTCACGCGCGAGTTGGCACTGTCGCCCCTGTGTGCATGTGCACTGTCTCTCGA

Map mutations into genome annotations to 
predict its possible effect

Tools to annotate consequences of mutations

ANNOVAR

snpEff

VAGrENT

annTools

ASOoVIREnsembl VEP



2. Assess the functional impact of nsSNVs

ATC GAA GCA CGT
Met Glu Ala Gly

nsSNVs = non-synonymos Single Nucleotide Variant (missense)

ATC GAC GCA CGT
Met Asp Ala Gly

Computational methods to assess the functional impact of nsSNVs

MutationTaster

SIFT
PolyPhen2

Condel
CHASM

PMut

SNPs&GO

SNPeffect

MutPred

MutationAssessor

CanPredict

LogRe

transFIC



Which mutations are 
cancer drivers?

Normal cell Cancer cell

Sequencing 
machines

Somatic mutations

Patient cohort

3. Identify cancer drivers from somatic mutations

Find signals of selection 
across tumors



Cancer is an evolutionary process

Yates and Campbell et al, Nat Rev Genet 2012



How to differentiate drivers from passengers?

ACTGCCTACGTCTCACCGTCGACTTCAAATCGCTTAACCCGTACTCCCATGCTACTGC
ATCTCGGGTTAACTCGACGTTTTTCATGCATGTGTGCACCCCAATATATATGCAACTT
TTGTGCACCTCTGTCACGCGCGAGTTGGCACTGTCGCCCCTGTGTGCATGTGCACTGT
CTCTCGCTGCACTGCCTACGTCTCACCGTCGACTTCAAATCGCTTAACCCGTACTCCC
ATGCTACTGCATCTCGGGTTAACTCGACGTTTTGCATGCATGTGTGCACCCCAATATA
TATGCAACTTTTGTGCACCTCTGTCACGCGCGAGTTGGCACTGTCGCCCCTGTGTGCA
TGTGCACTGTCTCTCGAGTTTTGCATGCATGTGTGCACTGTGCACCTCTGTTACGTCT



How to differentiate drivers from passengers?

ACTGCCTACGTCTCACCGTCGACTTCAAATCGCTTAACCCGTACTCCCATGCTACTGC
ATCTCGGGTTAACTCGACGTTTTTCATGCATGTGTGCACCCCAATATATATGCAACTT
TTGTGCACCTCTGTCACGCGCGAGTTGGCACTGTCGCCCCTGTGTGCATGTGCACTGT
CTCTCGCTGCACTGCCTACGTCTCACCGTCGACTTCAAATCGCTTAACCCGTACTCCC
ATGCTACTGCATCTCGGGTTAACTCGACGTTTTGCATGCATGTGTGCACCCCAATATA
TATGCAACTTTTGTGCACCTCTGTCACGCGCGAGTTGGCACTGTCGCCCCTGTGTGCA
TGTGCACTGTCTCTCGAGTTTTGCATGCATGTGTGCACTGTGCACCTCTGTTACGTCT

Find signals of positive 
selection across tumour 
re-sequenced genomes



Recurrence

Identify genes mutated more frequently than background mutation rate

MuSiC-SMG / MutSigCV

Mutation

Signals of positive selection

Signals of positive selection

Mutation clustering

Mutation

OncodriveCLUST

Tamborero et al., Bioinformatics 2013



PIK3CA is recurrently mutated in the same residue in breast tumours

H1047L

PIK3CA

Protein position
0 1047
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0



http://www.intogen.org/mutations/analysis

Gonzalez-Perez et al, Nature Methods 2013


