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Introduction

Biological dataarebeing produced
at a phenomenal rate [1]. For
example as of August 2000, the
GenBank repository of nucleic acid
sequences contained 8,214,000
entries [2] and the SWISS-PROT
database of protein sequences
contained 88,166 [3]. On average,
these databases are doubling in
size every 15 months[2]. In addition,
since the publication of the H.
influenzae genome [4], complete
sequences for over 40 organisms
have been released, ranging from
450 genes to over 100,000. Add to
this the data from the myriad of
related projects that study gene
expression, determine the protein
structures encoded by the genes,
and detail how these productsinter-
act with one another, and we can
begin to imagine the enormous
quantity and variety of information
that is being produced.

Review

What is bioinformatics? An
Introduction and overview

Abstract: A flood of datameansthat many of thechall engesinbi ol ogy arenow challenges
incomputing. Bioinformatics, theapplication of computational techniquestoanalysethe
information associated with biomolecules on alarge-scale, has now firmly established
itself asadisciplinein molecular biology, and encompassesawiderangeof subject areas
from structural biology, genomics to gene expression studies.

Inthisreview we provide an introduction and overview of the current state of thefield.
Wediscussthe main principlesthat underpin bioinformaticsanalyses, look at thetypes
of biological information and databases that are commonly used, and finally examine
someof thestudiesthat arebeing conducted, particularly withreferencetotranscription

regulatory systems.

Bioinformatics - a definition!

(Molecular) bio — informatics. bioinformaticsis conceptuaising biology in
terms of molecules (in the sense of physical chemistry) and applying
“"informatics techniques" (derived from disciplines such as applied maths,
computer scienceand stati stics) tounder stand and organi se theinformation

practical applications.

associated with these molecules, on alarge scale. In short, bioinformatics
is a management information system for molecular biology and has many

1 As submitted to the Oxford English Dictionary

As a result of this surge in data,
computershavebecomeindispensable
tobiologicd research. Suchanagpproach
isideal becauseof theeasewithwhich
computers can handle large quantities
of dataand probethe complex dynam-
icsobservedinnature. Bioinformatics,
the subject of the current review, is
often defined as the application of
computational techniquestounderstand
andorgani setheinformationassociated
with biological macromolecules. This
uexpected union between the two
subjectsislargely attributed to thefact

that life itself is an information
technology; an organism’s physiology
islargely determined by itsgenes, which
a its most basic can be viewed as
digital information. At the same time,
there have been mgjor advancesinthe
technol ogiesthat supply theinitia data;
Anthony Kerlavageof Celerarecently
cited that an experimenta laboratory
can produce over 100 gigabytes of
dataaday withease[5]. Thisincredible
processing power has been matched
by devel opmentsin computer technol-
ogy; the most important areas of
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improvements have been in the CPU,
disk storage and Internet, alowing
faster computations, better data stor-
age and revolutionalised the methods
for accessing and exchanging data.

Aims of bioinformatics

Theamsof bioinformaticsarethree-
fold. Firg, aitssmplest bioinformatics
organises data in a way that alows
researchers to access existing infor-
mation and to submit new entries as
they areproduced, egtheProtein Data
Bank for 3D macromolecular struc-
tures[6,7]. While data-curation is an
essential task, the information stored
in these databases is essentialy use-
lessuntil andysed. Thusthe purpose of
bioinformetics extends much further.
Thesecond aimisto developtoolsand
resources that aid n the andyss of
data. For example, having sequenced a
paticular protein, it is of interes to
compare it with previoudy characte-
rised sequences. Thisneeds morethan
just a smple text-based search and
programs such as FASTA [8] and
PSI-BLAST [9] must consider what
comprises a hiologicaly significant
match. Devel opment of suchresources
dictates expertise in computational
theory as well as a thorough under-
standing of biology. Thethirdamisto
usethesetoolsto analysethe dataand
interpret the results in a biologicdly
meaningful manner. Traditionally,
biological studies examined individua
systems in detail, and frequently
compared them with a few that are
related. In bioinformatics, we can now
conduct globa analyses of al the
avalable data with the am of un-
covering common principlesthat apply
across many systems and highlight
novel features.

In this review, we provide an intro-
duction to bioinformetics. We focus on
the first and third ams just described,
with particular reference to the key-
wordsunderlinedinthedefinition: infor-
mation,informatics, organisation,

understanding, large-scale and
practical applications. Specificadly,we
discuss the range of data that are
currently being examined, thedatabases
into which they are organised, the types
of andyses that are being conducted
using transcription regulatory systems
as an example, and findly some of the
major practical applications of
bioinformetics.

“...the INFORMATION
associated with these
molecules...”

Tablelligsthetypesof datathat are
andysedinbioinformaticsandtherange
of topics that we congder to fdl within
thefield. Herewetakeabroad view and
include subjects that may not normdly

be liged. We ds0 give gpproximate
vauesdescribing thesizesof databeing
discussed.

We start with an overview of the
sources of information: these may
be divided into raw DNA sequences,
protein sequences, macromolecular
structures, genome sequences, and
other whole genome data. Raw DNA
sequencesarestringsof thefour base-
letterscomprising genes, eechtypicdly
1,000 bases long. The GenBank
repository of nucleic acid sequences
currently holds a totd of 9.5 hillion
basesin8.2millionentries(al database
figuresasof August 2000). Atthenext
level areprotein sequencescomprising
dtrings of 20 amino acid-letters. At
present thereareabout 300,000 known

protein sequences, with a typical

Table 1. Sourcesof dataused in bioinformatics, the quantity of each type of datathat iscurrently
(August 2000) available, and bioinformatics subject areas that utilise this data.

Macromolecular
structure

(~300 amino acids
each)

13,000 structures
(~1,000 atomic
coordinates each)

Data source Data size Bioinformaticstopics
Raw DNA sequence 8.2 million sequences | Separating coding and non-coding regions
(9.5 billion bases) Identification of introns and exons
Gene product prediction
Forensicanalysis
Protein sequence 300,000 sequences Seguence comparison algorithms

Multiple sequence alignments algorithms
Identification of conserved sequence motifs

Secondary, tertiary structure prediction
3D structural alignment algorithms
Protein geometry measurements
Surface and volume shape calculations
Intermolecular interactions

Molecular simulations
(force-field calculations,
molecular movements,
docking predictions)

Metabolic pathways

Genomes 40 complete genomes | Characterisation of repeats
(2.6 million — Structural assignments to genes
3 billion bases each) | Phylogenetic analysis
Genomic-scale censuses
(characterisation of protein content, metabolic pathways)
Linkage analysis relating specific genes to diseases
Gene expression largest: ~20 time Correlating expression patterns
point measurements | Mapping expression data to sequence, structural and
for ~6,000 genes biochemical data
Other data
Literature 11 million citations Digital libraries for automated bibliographical searches

Knowledge databases of datafrom literature

Pathway simulations

84

Y earbook of Medical Informatics 2001




Review Paper

bacterial protein containing approxi-
mately 300 amino acids. Macromo-
lecular structural data represents a
more complex form of information.
Therearecurrently 13,000 entriesin
the Protein Data Bank, PDB, most
of which are protein structures. A
typical PDB file for amedium-sized
protein contains the xyz coordinates
of approximately 2,000 atoms.

Scientific euphoria has recently
centred onwhol e genome sequencing.
As with the rav DNA sequences,
genomes consist of strings of base-
letters, ranging from 1.6 million bases
inHaemophilusinfluenzaeto3hillion
in humans. An important aspect of
complete genomes is the distinction
between coding regions and non-
coding regions —junk' repetitive
sequences making up the bulk of base
sequences especialy in eukaryotes.
Wecannow measureexpressionlevels
of amost every genein agiven cell
on a whole-genome leve athough
public availahility of such datais il
limited. Expressionlevel measurements
aremadeunder different environmental
conditions, different stages of the cdll
cycle and different cell typesin multi-
cdlular organisms. Currently thelargest
dataset for yeast has made approxi-
mately 20 time-point measurements
for 6,000 genes [10]. Other genomic-
scdedataincludebiochemica informa:
tiononmetabolicpathways, regulatory
networks, protein-protein interaction
data from two-hybrid experiments,
and systematic knockouts of individ-
ual genes to test the viability of an
organism.

What isapparent fromthislististhe
diverdty in the size and complexity of
different datasets. Thereareinvariably
more sequence-based datathan struc-
tural data because of therelative ease
withwhichthey canbeproduced. This
ispartly relatedtothegreater complex-
ity andinformation-content of individua
structures compared to individual

sequences. Whilemorebiologicd infor-
mation can be derived from a single
structure than a protein sequence, the
lack of depthin the latter is remedied
by analysing larger quantitiesof data.

“... ORGANISE theinforma-
tion on a LARGE SCALE ...”

Redundancy and multiplicity of data

A concept that underpins most
research methods in bioinformatics is
that much of this data can be grouped
together based onbiologicaly meaning-
ful smilarities. For example, sequence
segments are often repeated at
different positions of genomic DNA
[11]. Genescanbeclusteredintothose
withparticular functions(egenzymatic
actions) or according to the metabolic
pathway to which they belong [12],
dthoughhere, snglegenesmay actudly
possess severa functions[13]. Going
further, digtinct proteins frequently
have comparable sequences — orga-
nisms often have multiple copies of a
particular gene through duplication
whiledifferent specieshaveequiva ent
or smilar proteins that were inherited
whenthey diverged fromeach otherin
evolution. At a dtructura levd, we
predict there to be a finite number of
different tertiary structures—estimates
range between 1,000 and 10,000 folds
[14,15] —and protei nsadopt equiva ent
structures even when they differ
greatly in sequence [16]. As aresult,
athough the number of structures in
the PDB hasincreased exponentialy,
therate of discovery of novel foldshas
actually decreased.

Therearecommontermstodescribe
the relationship between pairs of
proteins or the genes from which they
are derived: anaogous proteins have
related folds, but unrel ated sequences,
while homologous proteins are both
sequentially and structuraly similar.
Thetwo categories can sometimes be
difficult to distinguish especidly if the

relationship between the two proteins
isremote[17, 18]. Among homologues,
it is useful to distinguish between
orthologues, proteins in different
species that have evolved from a
common ancestral gene, and
para ogues, proteinsthat arerelated by
geneduplicationwithinagenome[19].
Normally, orthologuesretain the same
function while paralogues evolve
distinct, but related functions [20].

An important concept that arises
from these observations is that of a
finite* partslig” for different organisms
[21,22]): an inventory of proteins
contained withinan organism, arranged
according to different properties such
as gene sequence, protein fold or
function. Taking protein folds as an
example, we mentioned that with a
few exceptions, thetertiary structures
of proteins adopt one of a limited
repertoire of folds. Asthe number of
different foldfamiliesisconsiderably
smaller than the number of gene
families, categorising the proteinsby
fold provides a substantial simplifi-
cation of the contents of a genome.
Similar simplifications can be
provided by other attributes such as
protein function. As such, we expect
thisnotionof afinitepartslisttobecome
increasingly common in the future
genomic anayses.

Clearly, anessentia aspect of mana-
ging this large volume of data lies in
developing methods for assessing
smilaritiesbetweendifferent biomole-
cules and identifying those that are
related. Below, we discuss the major
databases that provide access to the
primary sources of information, and
aso introduce some secondary data-
bases that systematically group the
data (Table 2). These classifications
ease comparisons between genomes
and their products, dlowing theidenti-
fication of common themes between
those that are related and highlighting
features that are unique to some.
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Table 2. List of URLsfor the databases that are cited in the review.

Database URL

Protein sequence

(primary)

SWISS-PROT www.expasy.ch/sprot/sprot-top.html

PIR-International

Protein sequence (composite)
OWL
NRDB

Protein sequence (secondary)
PROSITE

PRINTS

Pfam

M acromolecular

structures

Protein Data Bank (PDB)
Nucleic Acids Database (NDB)
HIV Protease Database
RelLiBase

PDBsum

CATH

SCOP

FSSP

Nucleotide sequences
GenBank

EMBL

DDBJ

Genome sequences
Entrez genomes
GeneCensus

COGs

Integrated databases
InterPro

Sequence retrieval system (SRS)
Entrez

www.mips.biochem.mpg.de/proj/protseqdb

www.bioinf.man.ac.uk/dbbrowser/OWL
www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein

www.expasy.ch/prosite
www.bioinf.man.ac.uk/dbbrowser/PRINTS/PRINTS.html
www.sanger.ac.uk/Pfam/

www.rcsh.org/pdb

ndbserver.rutgers.edu/

www.ncifcrf.gov/CRY S/HIVdb/NEW_DATABASE
www?2.ebi.ac.uk:8081/home.html
www.biochem.ucl.ac.uk/bsm/pdbsum
www.biochem.ucl.ac.uk/bsm/cath
scop.mrc-lmb.cam.ac.uk/scop
www2.embl-ebi.ac.uk/dali/fssp

www.ncbi.nlm.nih.gov/Genbank
www.ebi.ac.uk/embl
www.ddbj.nig.ac.jp

www.nchi.nlm.nih.gov/entrez/query .fcgi?db=Genome
bioinfo.mbb.yale.edu/genome
www.nchi.nlm.nih.gov/COG

www.ebi.ac.uk/interpro
www.expasy.ch/srsb
www.nchi.nlm.nih.gov/Entrez

Protein sequence databases
Protein sequence databases are
categorised as primary, composite or
secondary. Primary databasescontain
over 300,000 protein sequences and
function as a repository for the raw
data. Somemorecommonrepositories,
such as SWISS-PROT [3] and PIR-
International [23], annotate the
sequences as well as describe the
proteins functions, itsdomainstructure
and pod-trandational modifications.
Composite databases such as OWL
[24] and the NRDB [25] compile and
filter sequence data from different
primary databases to produce com-
bined non-redundant setsthat aremore
completethan theindividua databases

and a soinclude protein sequencedata
from the trandated coding regions in
DNA sequence databases (see
below). Secondary databases contain
information derived from protein
sequencesand hel ptheuser determine
whether anew sequence belongsto a
known proteinfamily. One of themost
popular is PROSITE [26], a database
of short sequencepatternsand profiles
that characterisebiol ogicaly significant
stesinproteins. PRINTS[27] expands
on this concept and provides a
compendium of protein fingerprints —
groups of conserved motifs that
characterise a protein family. Matifs
are usualy separated aong a protein
sequence, but may be contiguous in

3D-space when the protein is folded.
By using multiple motifs, fingerprints
can encode protein folds and
functionalities more flexibly than
PROSITE. Finally, Pfam[28] contains
alarge collection of multiple sequence
alignmentsand profileHidden Markov
M odel scovering many common protein
domains. Pfam-A comprisesaccurate
manualy compiled aignments while
Pfam-B is an automated clustering of
the whole SWISS-PROT database.
These different secondary databases
haverecently beenincorporatedinto a
single resource named InterPro [29].

Structural databases

Nextwel ook at databasesof macro-
molecular structures. TheProtein Data
Bank, PDB [6,7], provides a primary
archive of all 3D structures for
macromolecules such as proteins,
RNA, DNA and various complexes.
Mogt of the~13,000 structures(August
2000) are solved by x-ray crystallo-
graphy andNM R, but sometheoretical
modelsarea soincluded. Astheinfor-
mation provided in individua PDB
entries can be difficult to extract,
PDBsum[30] providesaseparate Web
page for every structure in the PDB
displaying detailed structural analyses,
schematic diagramsand dataon inter-
actionsbetween different moleculesin
agiven entry. Three major databases
classfy proteins by structure in order
to identify structura and evolutionary
relationships. CATH [31], SCOP[32],
and FSSP databases [33]. All
comprise hierarchical structural
taxonomy where groups of proteins
increasein similarity at lower levels
of the classfication tree. In addition,
numerousdatabasesfocusonparticular
types of macromolecules. These
include the Nucleic Acids Database,
NDB [34], for structures related to
nucleic acids, the HIV protease
database [35] for HIV-1, HIV-2 and
SIV protease structures and their
complexes, and RelLiBase [36] for
receptor-ligand complexes.
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Nucleotide and Genome
sequences

Asdescribed previoudly, thebiggest
excitement currently lies with the
availability of complete genome
sequencesfor different organisms. The
GenBank [2], EMBL [37] and DDBJ
[38] databases contain DNA sequen-
ces for individua genes that encode
protein and RNA products. Much like
the composite protein sequence
database, the Entrez nucleotide
database[39] compilessequence data
from these primary databases.

As whole-genome sequencing is
often conducted through international
collaborations, individual genomesare
published at different sites. The Entrez
genome database [40] bringstogether
al complete and partid genomesin a
singlelocationandcurrently represents
over 1,000 organisms (August 2000).
In addition to providing the raw
nucleotide sequence, information is
presented at severa levels of detail
including: alist of completed genomes,
all chromosomes in an organism,
detailed views of single chromosomes
marking coding and non-coding regions,
and single genes. At each level there
are graphical presentations, pre-
computed analyses and links to other
sections of Entrez. For example,
annotations for single genes include
the translated protein sequence,
sequencedignmentswithsimilar genes
in other genomes and summaries of
the experimentally characterised or
predicted function. GeneCensus [41]
a soprovidesanentry point for genome
andysis with an interactive whole-
genomecomparisonfromanevolution-
ary perspective. The database alows
building of phylogenetictreesbased on
different criteria such as ribosomal
RNA or protein fold occurrence. The
ste also enables multiple genome
comparisons, analysis of single
genomes and retrieva of information
for individua genes. The COGs data
base [20] classifies proteins encoded

in 21 completed genomes on the basis
of sequence smilarity. Members of
thesameCluster of OrthologousGroup,
COG, are expected to have the same
3D domainarchitectureandoften, smi-
lar functions. Themost straightforward
application of thedatabaseisto predict
thefunctionof uncharacterised proteins
throughtheir homol ogy to characterised
proteins, and dso to identify phylo-
genetic patternsof protein occurrence
—for example, whether a given COG
is represented across most or all
organisms or in just a few closdy
related species.

Gene expression data

A most recent source of genomic-
scale data has been from expression
experiments, which quantify the
expression levels of individua genes.
These experiments measure the
amount of MRNA or protein products
that are produced by the cdll. For the
former, there are three main
technologies. the cDNA microarray
[42-44], Affymatrix GeneChip[45] and
SAGE methods[46]. Thefirst method
measures relative levels of mMRNA
abundancebetweendifferent samples,
while the last two measure absolute
levels. Most of the effort in gene
expression analysis has concentrated
on the yeast and human genomes and
asyet, thereisno central repository for
this data. For yeast, the Young [10],
Church[47] and Samson datasets[48]
use the GeneChip method, while the
Stanford cdll cycle [49], diauxic shift
[50] and deletion mutant datasets [51]
use the microarray. Most measure
MRNA levels throughout the whole
yeast cdll cycle, dthough some focus
on a particular stage in the cycle. For
humans, the main application hasbeen
to understand expression in tumour
and cancer cells. The Molecular
Portraits of Breast Tumours [52],
Lymphomaand L eukaemiaMolecular
Profiling [53] projects provide data
from microarray experiments on
human cancer cells.

The technologies for measuring
proteinabundancearecurrently limited
to 2D gel eectrophoresis followed by
mass spectrometry [54]. As gels can
only routinely resolve about 1,000
proteins [55], only the most abundant
can be visualised. At present, data
from these experiments are only
available from the literature [56,57].

Data integration

The most profitable research in
bioinformatics often results from
integrating multiple sources of data
[58]. For instance, the 3D coordinates
of aproteinaremoreuseful if combined
with data about the protein’ sfunction,
occurrence in different genomes, and
interactions with other molecules. In
this way, individua pieces of infor-
mation are put in context with respect
to other data. Unfortunately, it is not
always straightforward to access and
cross-referencethese sourcesof infor-
mation because of differences in
nomenclature and file formats.

At a basic levd, this problem is
frequently addressed by providing
external links to other databases, for
example in PDBsum, web-pages for
individua structures direct the user
towards corresponding entries in the
PDB, NDB, CATH, SCOP and
SWISS-PROT. At a more advanced
level, there have been efforts to
integrate access across several data
sources. Oneisthe SequenceRetrieval
System, SRS [59], which alows flat-
file databases to be indexed to each
other; this alows the user to retrieve,
link and access entries from nucleic
acid, protein sequence, protein motif,
protein structure and bibliographic
databases. Another istheEntrezfacility
[39], which provides similar gateways
to DNA and protein sequences,
genome mapping data, 3D macromo-
lecular structures and the PubMed
bibliographic database [60]. A search
for aparticular genein either database
will dlow smooth trangtions to the
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genome it comes from, the protein
sequence it encodes, its structure,
bibliographicreferenceand equivaent
entries for all related genes.

“...UNDERSTAND and
organisetheinformation...”

Having examined the data, we can
discuss the types of andyses that are
conducted. As shown in Table 1, the
broad subject aress in bioinformatics
canbeseparated accordingtothesources
of informationthat areusedinthestudies.
For raw DNA sequences, investigations
involvessparating codingand non-coding
regions, and identification of introns,
exonsandpromoter regionsfor annotaing
genomic DNA [61,62]. For protein se-
quences, andyses include developing
agorithms for sequence comparisons
[63], methods for producing multiple
sequencedignments| 64] ,andsearching
for functionad domains from conserved
sequence moetifs in such dignments.
Invedtigations of sructurd datainclude
prediction of secondary andtertiary pro-
tein structures, producing methods for
3D dructurd dignments| 65,66] ,exami-
ning protein geometries usng distance
and angular measurements, calculations
of surface and volume shapes and ana
lysis of protein interactions with other
subunits, DNA, RNA andsmdler mole-
cules. Thesestudieshavel eadtomol ecu-
lar smulation topics in which structura
dataareusedto caculatetheenergetics
involved in gtabilisng macromolecular
sructures, amulatingmovementswithin
macromolecules, and computing the
energiesinvolved in molecular docking.
The increasing availability of annotated
genomic sequences has resulted in the
introduction of computational genomics
and proteomics — large-scale analyses
of complete genomes and the proteins
that they encode. Research includes
characterisation of protein content and
metabalic pathways between different
genomes, identification of interacting
proteins, assgnment and prediction of

gene products, and large-scad e analyses
of geneexpressionlevels. Someof these
research topicswill be demongtrated in
our example andyss of transcription
regulatory systems.

Other subject areaswehaveincluded
in Table 1 are development of digitd
libraries for automated bibliographica
searches, knowledgebasesof biologica
information from the literature, DNA
anadyssmethodsinforensics, prediction
of nudeic acid gdructures, metabolic
pathway smulations andlinkageandysis
— linking specific genes to different
disease traits.

In addition to finding reationships
between different proteins, much of
bioinformatics involves the andyds of
onetype of datato infer and understand
the observations for another type of
data. Anexampleistheuseof sequence
and structural data to predict the
secondary andtertiary structuresof new
protein sequences| 67]. Thesemethods,
especialy theformer, areoftenbased on
datigticd rules derived from structures,
such asthe propensity for certainamino
acid sequences to produce different
secondary structural e ements. Another
example isthe use of structurd datato
understand a protein’s function; here
sudieshaveinvestigatedthere ationship
different proteinfoldsandtheir functions
[68,69] andandysedsimilaritiesbetween
different binding sitesin the absence of
homology [ 70] . Combinedwithsimilarity
measurements, these studiesprovideus
with an undergtanding of how much
biologicd informeation can beaccurately
transferred between homologous
proteins[71].

The bioinformatics spectrum
Figure 1 summarisesthe main points
we raised in our discussions of
organising and understanding
biologica data — the development of
bicinformatics techniques has dlowed
an expanson of biologicd andyss n
two dimension, depth and breadth. The

firstisrepresented by theverticd axisin
thefigureandoutlinesapossiblegpproach
to therationd drug design process. The
amistotakeasingleproteinandfollow
through an andysis that maximises our
understanding of the protein it encodes.
Starting with a gene sequence, we can
determine the protein sequence with
strong certainty. From there, prediction
agorithms can be used to cdculate the
structure adopted by the protein.
Geometry caculaions can define the
shape of the protein’s surface and
molecular smulationscandeterminethe
force fields surrounding the molecule.
Fndly, usang docking dgorithms one
could identify or design ligandsthet may
bind the protein, paving the way for
designing a drug that specificdly dters
the protein’s function. In practise, the
intermediate steps are 4ill difficult to
achieve accuraely, and they are best
combined withexperimental methodsto
obtain some of the data, for example
characterigngthestructureof theprotein
of interest.

Theaimsof theseconddimension, the
breadth in biologicd anayss, is to
compare a gene with others. Initidly,
ample dgorithms can be used to com-
pare the sequences and structures of a
par of related proteins. With a larger
number of proteins, improvedagorithms
can be used to produce multiple dign-
ments, and extract sequence patternsor
Sructurd templatesthat define afamily
of proteins. Using this data, it is dso
possible to congtruct phylogenetic trees
totracetheevolutionary pathof proteins.
Findly, with even more data, the infor-
mation must be sored in large-scae
databases. Comparisons become more
complex, requiring multiple scoring
schemes, and we are able to conduct
genomic scale censuses that provide
comprehengve datistica accounts of
protein features, such asthe abundance
of paticular sructures or functions in
different genomes. It dso dlows usto
build phylogenetic trees that trace the
evolution of whole organisms.
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Fig. 1. Paradigm shifts during the past couple of decades have taken much of biology away from the laboratory bench and have allowed the
integration of other scientific disciplines, specifically computing. The result is an expansion of biological research in breadth and depth. The
vertical axisdemonstrateshow bioinformaticscanaid rational drug designwithminimal work inthewet lab. Startingwith asinglegenesequence,
wecan determinewith strong certainty, the protein sequence. From there, we can determinethe structure using structure prediction techniques.
With geometry cal culations, wecan further resolvetheprotein’ ssurfaceand through mol ecul ar s mulation determinetheforcefiel dssurrounding
the molecule. Finally docking algorithms can provide predictions of the ligands that will bind on the protein surface, thus paving the way for
thedesign of adrug specificto that molecule. The horizontal axisshowshow theinflux of biological dataand advancesin computer technology
have broadened the scope of biology. Initially withapair of proteins, we can make compari sons between the between sequences and structures
of evolutionary related proteins. With more data, algorithms for multiple alignments of several proteins become necessary. Using multiple
sequences, we can a so create phylogenetic trees to trace the evolutionary devel opment of the proteinsin question. Finally, with the deluge
of datawe currently face, we need to construct large databasesto store, view and deconstruct theinformation. Alignments now become more
complex, requiring sophisticated scoring schemes and there is enough datato compile agenome census—agenomic equivaent of apopulation
census — providing comprehensive statistical accounting of protein featuresin genomes.
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“ ... applying INFORMATICS
TECHNIQUES...”

The distinct subject areas we
mention require different types of
informaticstechniques. Briefly, for deta
organisation, the first biological
databases were simple flat files.
However with the increasing amount
of information, relational database
methods with Web-page interfaces
have become increasingly popular. In
sequence analysis, techniquesinclude
string comparison methods such as
text search and 1-dimensiond aign-
ment agorithms. Motif and pattern
identification for multiple sequences
depend onmachinelearning, clustering
and data-mining techniques. 3D
structura analysis techniques include
Euclidean geometry calculations
combined with basc application of
physica chemistry, graphical repre-
sentations of surfaces and volumes,
and structural comparison and 3D
matching methods. For molecular
simulations, Newtonian mechanics,
quantum mechanics, molecular me-
chanics and electrostatic calculations
are applied. In many of these areas,
the computational methods must be
combinedwithgood statistical anayses
inorder toprovideanobjectivemeasure
for the significance of the results.

Transcription regulation —a case
study in bioinformatics
DNA-binding proteinshaveacentra
role in al aspects of genetic activity
within an organism, participating in
processessuchastranscription, packa-
ging, rearrangement, replication and
repair. In this section, we focus on the
studies that have contributed to our
understanding of transcription regula-
tion in different organisms. Through
this example, we demondtrate how
bioinformaticshasbeenusedtoincrease
our knowledge of biological systems
and also illustrate the practical
applications of the different subject
areasthat werebriefly outlined earlier.

We start by considering structural
andysesof how DNA-binding proteins
recognise particular base sequences.
Later, we review several genomic
studies that have characterised the
nature of transcription factors in
different organisms, and the methods
that have been used to identify regula-
tory binding sites in the upstream
regions. Findly, weprovideanoverview
of gene expression analysesthat have
been recently conducted and suggest
future uses of transcription regulatory
analysestorationalisetheobservations
madein gene expression experiments.
All the results that we describe have
been found through computational
studies.

Structural studies

Asof August 2000, therewere 379
structuresof protein-DNA complexes
in the PDB. Analyses of these
structures have provided valuable
insight into the stereochemical
principles of binding, including how
particular base sequences are
recognized and how theDNA structure
is quite often modified on binding.

A structurad taxonomy of DNA-
binding proteins, similar to that
presented in SCOP and CATH, was
first proposed by Harrison [72] and
periodicaly updated to accommodate
new structuresasthey aresolved[73].
The classification consists of a two-
tier system: the first level collects
proteins into eight groups that share
gross structural features for DNA-
binding, and the second comprises 54
familiesof proteinsthat arestructurally
homologous to each other. Assembly
of such a system simplifies the
comparison of different binding
methods; it highlights the diversity of
protein-DNA complex geometries
foundin nature, but aso underlinesthe
importanceof interactionsbetweena -
helices and the DNA maor groove,
the main mode of binding in over haf
the protein families. Whilethe number

of structures represented in the PDB
doesnot necessarily reflect therelative
importance of the different proteinsin
the cell, it isclear that helix-turn-hdlix,
zZinc-coordinating and leucine zipper
motifs are used repeatedly. This
provides compact frameworks that
present the a-helix on the surfaces of
structurally diverseproteins. Atagross
leve, it is possble to highlight the
differences between transcription
factor domains that “just” bind DNA
and those involved in catalysis [74].
Although there are exceptions, the
former typically approach the DNA
from a single face and dot into the
grooves to interact with base edges.
The latter commonly envelope the
substrate, using complex networks of
secondary structures and loops.

Focusing on proteinswitha -helices,
the structures show many variations,
both in amino acid sequences and
detailed geometry. They have clearly
evolved independently in accordance
with therequirementsof thecontextin
whichthey arefound. Whileachieving
a close fit between the a-heix and
major groove, thereisenoughflexibility
to allow both the protein and DNA to
adopt distinct conformations. However,
severd studiesthat andysedthebinding
geometries of a-helicesdemonstrated
that most adopt fairly uniform confor-
mations regardless of protein family.
They are commonly inserted in the
major groove sideways, with their
lengthwise axis roughly paralle to the
dope outlined by the DNA backbone.
Most start with the N-terminusin the
grooveand extend out, compl eting two
tothreeturnswithin contacting distance
of the nucleic acid [75,76].

Giventhesmilar binding orientations,
itissurprisngtofindthet theinteractions
between eachaminoacid positionalong
the a-helices and nuclectides on the
DNA vary considerably between
different protein families. However,
by classfyingtheaminoacidsaccording

0
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tothesizesof their sdechains, weare
able to rationalise the different
interactions patterns. The rules of
interactions are based on the simple
premisethat for agivenresidueposition
on a-hdlicesin smilar conformations,
small amino acids interact with
nucleotides that are close in distance
and large amino acids with those that
arefurther [76,77]. Equivalent studies
for binding by other structural motifs,
like b-hairpins, have also been
conducted [78]. When considering
these interactions, it is important to
remember that different regionsof the
protein surfacea so provideinterfaces
with the DNA.

This brings usto look at the atomic
level interactions between individua
amino acid-base pairs. Such analyses
are based on the premise that a
sgnificant proportion of specificDNA-
binding could be rationdised by a
universal code of recognition between
amino acids and bases, ie whether
certain protein residues preferably
interact with particular nucleotides
regardlessof thetypeof protein-DNA
complex[79]. Studieshaveconsidered
hydrogenbonds, vander Wad scontacts
and water-mediated bonds [80-82].
Results showed that about 2/3 of all
interactions are with the DNA
backbone and that their main role is
oneof sequence-independent stabilisa
tion. Incontragt, i nteractionswith bases
display some strong preferences,
including theinteractionsof arginineor
lysine with guanine, asparagine or
glutamine with adenine and threonine
with thymine. Such preferences were
explained through examination of the
stereochemistry of theamino acid side
chainsand baseedges. Alsohighlighted
were more complex types of inter-
actions where single amino acids
contact more than one base-step
smultaneoudy, thusrecognisingashort
DNA sequence. These results
suggested that universal specificity,
onethat isobserved acrossall protein-

DNA complexes, indeed exists.
However, many interactions that are
normally considered to benon-specific,
suchasthosewiththe DNA backbone,
can a so provide specificity depending
onthecontext inwhichthey aremade.

Armed with an understanding of
protein structure, DNA-binding motifs
andsidechaingtereochemistry,amajor
application has been the prediction of
binding ether by proteins known to
containaparticular motif, or thosewith
structures solved in the uncomplexed
form. Most common are predictions
for a-hdix-mgor groove interactions
—giventhe amino acid sequence, what
DNA sequence would it recognise
[77,83]. In a different approach,
molecular smulation techniques have
been used to dock whole proteins and
DNAs on the basis of force-field
cd culations around the two molecules

[84,85].

The reason that both methods have
only been met with limited successis
because even for apparently ssimple
cases like a-hdix-binding, there are
many other factors that must be
considered. Comparisons between
bound and unbound nucleic acid
structures show that DNA-bending is
acommonfeatureof complexesformed
withtranscriptionfactors[ 74, 86]. This
and other factors such aselectrostatic
and cation-mediatedinteractionsassist
indirect recognition of the nucleotide
sequence, athough they are not well
understood yet. Therefore, it is now
clear that detailed rules for specific
DNA-binding will be family specific,
but with underlying trends such asthe
arginine-guanine interactions.

Genomic studies

Due to the wedlth of biochemica
datathat areavailable, genomicstudies
in bioinformatics have concentrated
on modd organisms, and the andys's
of regulatory systems has been no
exception. [dentificationof transcription

factorsin genomesinvariably depends
on similarity search strategies, which
assume a functional and evolutionary
relationship between homologous
proteins. In E. coli, studieshave sofar
estimated a total of 300 to 500
transcription regulators [87] and
PEDANT [88], a database of auto-
matically assigned gene functions,
shows that typically 2-3% of
prokaryotic and 6-7% of eukaryotic
genomes comprise DNA-binding
proteins. As assgnments were only
compl etefor 40-60% of genomesasof
August 2000, thesefiguresmost likely
underestimate the actual number.
Nonetheless, they already represent a
largequantity of proteinsanditisclear
that there are more transcription
regulators in eukaryotes than other
species. Thisisunsurprising, consider-
ing the organisms have developed a
relatively sophisticated transcription
mechanism.

Fromtheconclusonsof thestructura
studies, the best strategy for charac-
terisng DNA-binding of the putative
transcriptionfactorsineach genomeis
togroupthemby homology andanayse
the individua families. Such classfi-
cations are provided in the secondary
sequence databases described earlier
and aso those that specialise in
regulaory proteinssuchasRegulonDB
[89] and TRANSFAC [90]. Of even
greater useistheprovisionof structural
assignments to the proteins, given a
transcriptionfactor, itishe pful toknow
the structural motif that it uses for
binding, therefore providing us with a
better understanding of how it recog-
nises the target sequence. Structural
genomics through bioinformatics
assigns structures to the protein
productsof genomesby demonstrating
smilarity toproteinsof known structure
[91]. These studies have shown that
prokaryotic transcription factors most
frequently contain helix-turn-helix
motifs [87,92] and eukaryotic factors
contain homeodomain type helix-turn-

Y earbook of Medical Informatics 2001

91



Review Paper

helix, zincfinger or leucinezipper matifs.
Fromtheproteinclassficationsineach
genome, it isclear that different types
of regulatory proteins differ in abun-
dance and families significantly differ
in size. A study by Huynen and van
Nimwegen [93] has shown that mem-
bers of a single family have smilar
functions, but as the requirements of
this function vary over time, so does
thepresenceof eachgenefamilyinthe
genome.

Most recently, using a combination
of sequence and structural data, we
examined the conservation of amino
acid sequencesbetweenrelated DNA-
binding proteins, and the effect that
mutations have on DNA sequence
recognition. The dructural families
described above were expanded to
include proteins that are related by
sequence similarity, but whose
structures remain unsolved. Again,
members of the same family are
homologous, and probably derivefrom
acommon ancestor.

Amino acid conservations were
caculated for the multiple sequence
alignments of each family [94].
Generdly, aignment positions that
interact with the DNA are better
conserved than the rest of the protein
surface, dthough the detailed patterns
of conservation are quite complex.
Residuesthat contact the DNA back-
bonearehighly conservedinall protein
families, providing a set of stabilisng
interactions that are common to al
homologousproteins. Theconservation
of alignment positions that contact
bases, and recognise the DNA se-
guence, are more complex and could
be rationalised by defining a 3-class
model for DNA-binding. First, protein
families that bind non-specifically
usualy contain severa conserved base-
contacting residues; without exception,
interactions are made in the minor
groove where there is little discrim-
ination between base types. The

contactsarecommonly usedtostabilise
deformations in the nucleic acid
structure, particularly in widening the
DNA minor groove. The second class
comprise families whose members al
target the same nucleotide sequence;
here, base-contacting positions are
absolutely or highly conserved dlowing
related proteins to target the same
sequence.

Thethird, and most interesting, class
comprises families in which binding
isalso specific but different members
bind distinct base sequences. Here
protein residues undergo frequent
mutations, and family members can
bedividedinto subfamiliesaccording
totheamino acid sequences at base-
contacting positions; those in the
same subfamily are predicted to bind
the same DNA sequence and those
of different subfamilies to bind
distinct sequences. On the whole,
the subfamilies corresponded well
with the proteins' functions and
membersof thesamesubfamilieswere
found to regulate similar transcription
pathways. The combined anaysis of
sequenceand structural datadescribed
by this study provided an insght into
how homologous DNA-binding
scaffoldsachievedifferent specificities
by ateringtheir amino acid sequences.
In doing 0, proteins evolved distinct
functions, therefore alowing structur-
aly related transcription factors to
regulateexpression of different genes.
Therefore, the relative abundance of
transcription regul atory familiesina
genome depends, not only on the
importance of a particular protein
function, but also in the adaptability
of the DNA-binding motifs to
recognise distinct nucleotide
sequences. This, in turn, appears to
be best accommodated by simple
binding motifs, suchasthezincfingers.

Given the knowledge of the tran-
scription regulators that are contained
ineach organism, and anunderstanding
of how they recognise DNA

sequences, itisof interest to searchfor
their potential binding sites within
genome sequences [95]. For
prokaryotes, most analyses have
involved compiling data on experi-
mentally known binding sites for
particular proteins and building a
consensus sequencethat incorporates
any variaionsinnucleotides. Additiona
sites are found by conducting word-
matching searches over the entire
genomeand scoring candidate sitesby
smilarity [96-99]. Unsurprisingly, most
of the predicted sitesarefound in non-
coding regions of the DNA [96] and
the results of the studies are often
presented in databases such as
RegulonDB [89]. The consensus
searchapproachisoftencomplemented
by comparative genomic studies
searching upstream regions of
orthologous genes in closdly related
organisms. Through suchanapproach,
it was found that at least 27% of
known E. coli DNA-regulatory motifs
areconserved inoneor moredistantly
related bacteria [100].

The detection of regulatory sitesin
eukaryotes poses a more difficult
problem because consensus sequences
tend to be much shorter, variable, and
dispersed over very large distances.
However, initial studies in S.
cerevisiae provided an interesting
observation for the GATA proteinin
nitrogen metabolism regulation.
While the 5 base-pair GATA
consensus sequenceisfound almost
everywhere in the genome, a sngle
isolated binding Ste is insufficient to
exert the regulatory function [101].
Thereforespecificity of GATA activity
comes from the repetition of the
consensus sequence within the
upstream regions of controlled genes
in multiple copies. An initial study has
used this observation to predict new
regulatory sitesby searching for over-
represented oligonudeatides in non-
coding regions of yeast and worm
genomes [102,103].
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Having detected the regulatory
binding sSites, there is the problem of
defining the genes that are actually
regulated, commonly termed regulons.
Generally, binding sitesareassumedto
be located directly upstream of the
regulons; however there are different
problemsassoci ated with thisassump-
tion depending on the organism. For
prokaryotes, it is complicated by the
presence of operons, it is difficult to
locate the regulated gene within an
operon since it can lie severa genes
downstream of the regulatory se-
quence. It is often difficult to predict
the organisation of operons [104],
especidly to define the gene that is
found at the head, and thereis often a
lack of long-rangeconservationingene
order betweenrelated organisms[105].
The problem in eukaryotes is even
moresevere; regulatory sitesoften act
in both directions, binding dtes are
usudly distant from regulons because
of large intergenic regions, and
transcription regulation is usudly a
result of combined action by multiple
transcriptionfactorsinacombinatorial
manner.

Despite these problems, these
studies have succeeded in confirming
the transcription regulatory pathways
of well-characterised systemssuch as
the heat shock response system [99].
In addition, it is feasible to experi-
mentally verify any predictions, most
notably using gene expression data.

Gene expression studies

Many expression studies have so
far focused on devisng methods to
cluster genes by similarities in
expression profiles. Thisisin order to
determine the proteins that are
expressed together under different
cellular conditions. Briefly, the most
common methods are hierarchical
clustering, self-organising maps, and
K-means clustering. Hierarchical
methods originally derived from
agorithms to congtruct phylogenetic

trees, and group genes in a “bottom-
up” fashion; geneswiththemostsimilar
expression profiles are clustered first,
and those with more diverse profiles
are included iteratively [106-108]. In
contrast, the self-organising map 109,
110] and K-means methods [111]
employ a“top-down” approachinwhich
the user pre-defines the number of
clusters for the dataset. The clusters
areinitially assigned randomly, and the
genes are regrouped iteratively until
they are optimally clustered.

Giventhesemethods, itisof interest
to relate the expression data to other
attributes such as structure, function
and subcellular localisation of each
geneproduct. Mappingtheseproperties
provides an insight into the
characteristics of proteins that are
expressed together, and also suggest
someinteresting conclusionsabout the
overdl biochemistry of the cell. In
yead, shorter proteinstend to bemore
highly expressed than longer proteins,
probably because of the relative ease
with which they are produced [112].
Looking a the amino acid content,
highly expressed genes are generdly
enriched in aanine and glycine, and
depleted in asparagine; these are
thought to reflect the requirements of
aminoacidusageintheorganism, where
synthesis of aanine and glycine are
energetically less expensive than
asparagine. Turning to protein
structure, expressionlevelsof the TIM
barrel and NTP hydrolase folds are
highest, while those for the leucine
Zipper, zincfinger and transmembrane
helix-containing folds arelowest. This
relatesto thefunctionsassociated with
thesefolds; the former are commonly
involved in metabolic pathways and
the latter in signaling or transport
processes[113]. Thisisaso reflected
in the relationship with subcelular
localisations of proteins, where
expression of cytoplasmic proteinsis
high, but nuclear and membrane
proteins tend to be low [114,115].

More complex relationships have
also been assessed. Conventional
wisdom is that gene products that
interact witheach other aremorelikely
tohavesimilar expression profilesthan
if they do not [116,117]. However, a
recent study showed that thisrelation-
ship is not so smple [118]. While
expression profilesaresimilar for gene
products that are permanently associ-
ated, for exampleinthelargeribosomal
subunit, profilesdiffer significantly for
products that are only associated
transiently, including those belonging
to the same metabolic pathway.

Asdescribed below, oneof themain
driving forces behind expression
analysishasbeentoanalysecancerous
cel lines[119]. In generdl, it has been
shown that different cell lines (eg
epithelial and ovarian cells) can be
digtinguished on the basis of their
expression profiles, and that these
profiles are maintained when cellsare
transferred from an in vivo to an in
vitro environment [120]. Thebasisfor
their physiologica differences were
apparent in the expression of specific
genes; for example, expression levels
of gene products necessary for
progression through the cell cycle,
especially ribosomal genes, corrdlated
well withvariationsincdl proliferation
rate. Comparative analysis can be
extended to tumour cdls, in which the
underlying causes of cancer can be
uncovered by pinpointing areas of
biological variations compared to
normal cells. For example in breast
cancer, genesrelated to cell prolifera-
tion and the IFN-regulated signal
transduction pathway were found to
be upregulated [52,121]. One of the
difficulties in cancer treatment has
been to target specific therapies to
pathogenetically distinct tumour types,
in order to maximise efficacy and
minimisetoxicity. Thus, improvements
in cancer classifications have been
central to advances in cancer treat-
ment. Althoughthedistinction between
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differentformsof cancer—for example
subclasses of acute leukaemia — has
been well established, it is ill not
possibletoestablishaclinica diagnosis
onthebasisof asingletest. Inarecent
study, acute myeloid leukaemia and
acute lymphoblastic leukaemia were
successfully distinguished based onthe
expression profiles of these cells[53].
Astheapproach doesnot requireprior
biological knowledgeof thediseases, it
may provide a generic strategy for
classifying all types of cancer.

Clearly, an essential aspect of
understanding expresson data lies in
understanding the basis of transcription
regulation. However, andyssinthisarea
isdill limited to preliminary andyses of
expressionlevesinyeast mutantslacking
key components of the transcription
initiation complex [10,122].

‘... many PRACTICAL
APPLICATIONS...”

Here, wedescribesomeof themajor
uses of bioinformatics.

Finding Homologues

As described earlier, one of the
driving forces behind bioinformaticsis
the search for similarities between
different biomolecules. Apart from
enabling systematic organisation of
data, identification of protein homol-
ogues has some direct practical uses.
Themost obviousistransferringinfor-
mation between related proteins. For
example, given apoorly characterised
protein, it is possble to search for
homol oguesthat are better understood
and with caution, apply some of the
knowledge of the latter to the former.
Specifically with structural data,
theoretical models of proteins are
usually based onexperimentaly solved
structures of close homologues[123].
Similar techniques are used in fold
recognition in which tertiary structure
predictionsdepend onfinding Sructures

of remote homologues and checking
whether the prediction isenergetically
viable [124]. Where biochemica or
structurd dataarelacking, studiescould
be made in low-level organisms like
yeast and the results applied to
homologues in higher-level organisms
such as humans, where experiments
are more demanding.

An equivalent approach is aso
employed in genomics. Homologue-
finding is extensvely used to confirm
coding regions in newly sequenced
genomes and functiona data is fre-
quently transferredtoannotateindivid-
ual genes. On a larger scale, it aso
smplifiestheproblem of understanding
complex genomesby analysing smple
organisms first and then applying the
same principles to more complicated
ones — this is one reason why early
structural genomics projects focused
on Mycoplasma genitalium[91].

Ironically, the same idea can be
applied in reverse. Potentia drug
targets are quickly discovered by
checking whether homologues of
essentia microbia proteinsaremissing
inhumans. Onasmaller scae, structura
differences between similar proteins
may be harnessed to design drug
moleculesthat specificaly bind to one
structure but not another.

Rational Drug Design
Oneof theearliest medical applica-

tions of bioinformatics has been in

aiding rational drug design. Figure 2
outlinesthecommonly cited approach,

taking the MLH1 gene product as an
exampledrugtarget. MLH1isahuman
gene encoding a mismatch repair

protein (mmr) Situated on the short
arm of chromosome 3[125]. Through
linkage analysis and its smilarity to
mmr genes in mice, the gene has
beenimplicatedin nonpolyposiscolo-

rectal cancer[126]. Giventhenucle-

otide sequence, the probable amino
acid sequence of the encoded protein

can be determined using trandation
software. Sequence searchtechniques
can then be used to find homologuesin
model organisms, and based on
sequence sSmilarity, it is posshble to
model the structure of the human
proteinonexperimentally characterised
structures. Finaly, docking agorithms
could design moleculesthat could bind
the modd structure, leading the way
for biochemical assays to test their
biologica activity ontheactud protein.

L ar ge-scale censuses

Although databases can efficiently
store al the information related to
genomes, structures and expression
datasets, itisuseful to condenseadl this
informationinto understandabl etrends
and factsthat users can readily under-
stand. Broad generaisations help
identify interesting subject areas for
further detailed andysis, and place
new observationsin aproper context.
This enables one to see whether they
are unusud in any way.

Through these large-scale
censuses, one can address anumber
of evolutionary, biochemical and
biophysical questions. For example,
are specific protein folds associated
with certain phylogenetic groups?
How common are different folds
within particular organisms? And to
what degree are fol dssharedbetween
related organisms? Doesthisextent of
sharing parallel measures of
relatedness derived from traditional
evolutionary trees?Initid studiesshow
that the frequency of folds differs
greatly between organisms and that
thesharing of foldsbetween organisms
does in fact follow traditional
phylogenetic classifications [21,41].
We can also integrate data on protein
functions;, given that the particular
proteinfoldsareoftenrel atedtospecific
biochemica functions [68, 69], these
findings highlight the diversity of
metabolic pathways in different
organisms [20,105].

A
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Fig.2. Aboveisaschematic outlining how scientistscan usebioinformaticstoaidrational drugdiscovery. MLH1isahuman geneencodingamismatch
repair protein (mmr) situated on the short arm of chromosome 3. Through linkage analysisand its similarity tommr genesinmice, thegenehasbeen
implicated in nonpolyposis colorectal cancer. Given the nucleotide sequence, the probable amino acid sequence of the encoded protein can be
determined using trandation software. Sequence search techniques can be used to find homologues in model organisms, and based on sequence
similarity, it is possible to model the structure of the human protein on experimentally characterised structures. Finally, docking algorithms could
design molecules that could bind the model structure, leading the way for biochemical assaysto test their biological activity on the actual protein.

Aswe discussed earlier, one of the
most exciting new sourcesof genomic
information is the expression data.
Combiningexpressoninformationwith
structural andfunctional classifications
of proteins we can ask whether the
high occurrence of a protein fold in a
genomeisindicativeof highexpression
levds[112]. Further genomicscaedata
that we can congder in large-scae
surveys include the subcellular

locdisations of proteins and ther inter-
actions with each other [127-129]. In
conjunction with structural data, we can
thenbegintocompileamapof dl protein-
protein interactions in an organism.

Further applicationsin medical
sciences

Most recent applications in the
medical sciences have centred on
gene expression analysis[130]. This

usudly involvescompiling expression
data for cells affected by different
diseases [131], eg cancer [53,132,
133] and ateriosclerosis [134], and
comparing the measurementsagainst
normal expression levels. Identifi-
cation of genes that are expressed
differently in affected cellsprovides
a basis for explaining the causes of
illnessesand highlightspotential drug
targets. Using theprocessdescribed
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in Figure 2, one would design
compounds that bind the expressed
protein, or perhapsmoreimportantly,
thetranscription regulator has caused
thechangein expressionlevels. Given
alead compound, microarray experi-
ments can then be used to evaluate
responses to pharmacological inter-
vention, [135,136] and aso provide
early tests to detect or predict the
toxicity of trial drugs.

Further advances in bioinformatics
combinedwithexperimental genomics
for individuals are predicted to
revolutionalisethefutureof hedlthcare.
A typica scenario for a patient may
start with post-natal genotyping to
assess susceptibility or immunity from
specific diseases and pathogens. With
thisinformation, aunigque combination
of vaccines could be prescribed, mini-
misingthehealthcarecostsof unneces-
sary treatments and anticipating the
ondaught of diseases later in life.
Regular lifetime screenings could lead
to guidance for nutrition intake and
early detectionsof any illnesses[137].
In addition, drug-based treatments
could be tailored specificaly to the
patient and disease, thus providing the
most effective course of medication
withminimal side-effects[138]. Given
the present rate of development, such
ascenario in healthcare appearsto be
possible in the not too distant future.

Conclusions

With the current deluge of data,
computational methods have become
indispensable to biologica investiga
tions. Originaly developed for the
anadysisof biologica sequences, bioin-
formatics now encompasses a wide
range of subject areasincluding struc-
tura biology, genomics and gene ex-
pression studies. In this review, we
provided anintroduction and overview
of the current state of field. In
particular, we discussed the types of
biological information and databases
that are commonly used, examined
some of the studies that are being

conducted — with reference to trans-
criptionregulatory systems—andfinaly
looked at several practical applications
of the field.

Two principa approaches underpin
al dudies in bioinformatics. Firs is
that of comparing and grouping the
dataaccordingtobiologicaly meaning-
ful smilarities and second, that of
analysing onetype of datato infer and
understand the observationsfor another
type of data. These approaches are
reflected in the main aims of thefield,
which are to understand and organise
the information associated with biolo-
gical moleculeson alarge scale. Asa
result, bioinformatics has not only
provided greater depth to biologica
investigations, but added thedimension
of breadth aswell. Inthisway, we are
able to examine individua systemsin
detaill and aso compare them with
those that are related in order to
uncover common principlesthat apply
across many systems and highlight
unusual features that are unique to
some.
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