More on R functic
and packagéﬁ

Lecture

http://thegrantlab.org/bimm143

Recap From Last [ime:

* Covered the When, Why, What and How of writing your

own R functions.

Recap From Last [ime:

» Covered the When, Why, What and How of writing your
own R functions.

= When: \When you find yourself doing the same thing 3
or more times with repetitive code consider writing a
function.

https://www.biostat.wisc.edu/~kbroman/presentations/graphs2017.pdf

Recap From Last [ime:

» Covered the When, Why, What and How of writing your
own R functions.

= When: \When you find yourself doing the same thing 3
or more times with repetitive code consider writing a
function.

- Why:
1. Makes the purpose of the code more clear

- Reduces mistakes from copy/paste

. Makes updating your code easer

Reduces code duplication and facilitates re-use.

AW N

https://www.biostat.wisc.edu/~kbroman/presentations/graphs2017.pdf

Recap From Last [ime:

* Covered the When, Why, What and How of writing your
own R functions.

= What: A function is defined with:

1. A user selected name,

2. A comma separated set of input arguments, and

3. Regular R code tor the function body including an
optional output return value e.q.

Recap From Last [ime:

= How: Follow a step-by-step procedure to go from working
code snippet to refined and tested function.

1. Start with a simple problem and write a working snippet
of code.

2. Rewrite for clarity and to reduce duplication

3. Then, and only then, turn into an initial function

4. Test on small well defined input

5. Report on potential problem by failing early and loudly!

Recap From Last [ime:

= How: Follow a step-by-step procedure to go from working
code snippet to refined and tested function.

1. Start with a simple problem and write a working snippet
of code.

2. Rewrite for clarity and to reduce duplication

3. Then, and only then, turn into an initial function

4. Test on small well defined input

5. Report on potential problem by failing early and loudly!

Recap...

1. Start with a simple problem and write a working snippet
of code.

Build that skateboarad
betore you build the
car.

A limited but
functional thing is
very useful and
keeps the spirits

high.
[Image credit: Spotify development team] [MPA link]

https://docs.google.com/forms/d/e/1FAIpQLSez4_tN42yBa-C3_W7UudnHDoO1dZsK7aYrXo5fYJq5KDKRmg/viewanalytics

Back by popular demand
More examples of how to
write your own functions!

What Is a function

‘ Name (can be almost anything you want)
‘ Arguments (i.e. input to your function)

‘ Body (where the work gets done)

Reuvisit our first example function from last day...
source("http://tinyurl.com/rescale-R")

The functions warning()
and stop()

The functions warning() and stop() are used inside functions to
handle and report on unexpected situations

They both print a user defined message (which you supply as a
character input argument to the warning() and stop() functions).

However, warning() will keep on going with running the function
nody code whereas stop() will terminate the action of the
function.

A common idiom is to use stop(“some message”) to report on
unexpected input type or other problem early in a function, i.e.
fail early and loudly!

source("http://tinyurl.com/rescale-R")

source("http://tinyurl.com/rescale-R")

Suggested steps for writing
your functions

. Start with a simple problem and get a working snippet of code
. Rewrite to use temporary variables (e.g. x, y, df, m etc.)

. Rewrite for clarity and to reduce calculation duplication

. Turn into an initial function with clear useful names

. Test on small well defined input and (subsets of) real input

. Report on potential problem by failing early and loudly!

. Refine and polish

Side-Note: What makes a
good function”

Correct

Understandable (remember that functions are for humans
and computers)

Correct + Understandable = Obviously correct
Use sensible names throughout. What does this code do?

Good names make code understandable with minimal
context. You should strive for self-explanatory names

More examples

 \We want to write a function, called both_na(),
that counts how many positions in two input
vectors, x and vy, both have a missing value

No! Always start with a simple

definition of the problem

 We should start by solving a simple example
problem first where we know the answer.

e Here the answer shou
position has NA in bot

d be 1 as only the third

N Inputs x and .

Tip: Search for existing functionality to get us started...

Get a working snippet of code
first that i1s close to what we want

Then rewrite your snippet as
a first function

e We have a

lTest on various Inputs
(a.k.a. eg|it proofing)

‘unction that wor

situation, but we should pro

IN others.

KS INn at least one

nably check it works

Report on potential problem
by falling early and loudly!

the
cou

he generic warning with recycling behavior of
ast example may not be what you want as it
d be easily missed especially In scripts.

Refine and polish: Make our function
more useful by returning more information

Re-cap: Steps for function writing

. Start with a simple problem and get a working snippet of code
. Rewrite to use temporary variables

. Rewrite for clarity and to reduce calculation duplication

. Turn into an initial function

. Test on small well defined input and (subsets of) real input

. Report on potential problem by failing early and loudly!

. Refine and polish,

. Document and comment within the code on your reasoning.

One last example

Find common genes in two data sets and return
their associated data (from each data set)

N

INntersect

source("http://tinyurl.com/rescale-R")

For more detalls reter to
sections 2-5 In last days
handout!

https://bioboot.github.io/bimmi143_S18/lectures/#6

Remember Section 1B (question 6) is your last days
homework (see also scoring rubric).

The Sections 2 to 5 are there for your benefit.

https://bioboot.github.io/bimm143_S18/lectures/#6

CRAN &
Bioconductor

Major repositories tor R packages
that extend R functionality

CRAN: Comprehensive R
Archive Network

e CRAN is a network of mirrored servers around the
world that administer and distribute R itself, R
documentation and R packages (basically add on
functionality!)

* There are currently ~11,700 packages on CRAN In
the areas of finance, bioinformatics, machine
learning, high performance computing, multivariate
statistics, natural language processing, efc. etc.

https://cran.r-project.org/

Side-note: R packages come
In all shapes and sizes

R packages can be of variable quality and often there are
multiple packages with overlapping functionality.

Refer to relevant publications, package
citations, update/maintenance history,
documentation quality and your own tests!

L€ The journal has sufficient experience with CRAN
and Bioconductor resources to endorse their use by
authors. We do not yet provide any endorsement
for the suitability or usefulness of other solutions.??

From: “Credit for Code”. Nature Genetics (2014), 46:1

cran.r-project.org

Availablae Packages
Curreritly, the CRAN package repos:tory features §952 ava:lable packages.

Table of available packzges, sorted by date of publication

CRAN

Mirrors o) [} vailable packzges, sorted by name
What's ngw’?’

'Izsk Views Installation of Packages

Search

Plecase type help("INSTALL") Of Lelo("install. veckaces™) 10 R for information on how to ins:all packages from th:s repository. The
Abiat R menual R Installation and Administration (also conteined in tae R base sources) explains the process in detail.
The R Journal CRAN Task Views allow you (o browse packages by topic and provide lools (0 dutomadically install 4l packages for special areas of
interest. Currenily, 33 views dre available.

Software
R Sources Package Cheocock Results

All packages are tested repularly on machines mnring Deb an GNU/ . inux, Fedora, OS X, Solaris and Windows.

The results &re summarized in the check summary (some timings are also available). Additional details for Windows checking and
building can be found in the Windows check summary.

Documientation
Mznuals
FAQs

Contr:burad

Writing Your Own Packages

The marual Writing R Extensions (alsc conrtained in the R base sources) explains how 10 write new pacxages and how (o contribute them
0 CRAN.

Repository Policies

Tiwe manud. CRAN Repository Policv [PDF] describes e policies in place for he CRAN packapge repository.

https://cran.r-project.org
https://cran.r-project.org

Installing a package

RStudio > Tools > Install Packages

> install.packages('bio3d")
> library("bio3d")

Bioconductor

R packages and utilities for working with
high-throughput genomic data

http://bioconductor.org

http://bioconductor.org

— Fir0002/Flagstaffotos

More pragmatic:
Bioconductor is a software
repository of R packages
with some rules and guiding
principles.

Version 3.3 had 1211 software
packages.

Bioconductor has
emphasized

Reproducible Research
since Iits start, and has been
an early adapter and driver
of tools to do this.

“Bioconductor: open software development for
computational biology and bioinformatics”
Gentleman et al
Genome Biology 2004, 5:R80

“Orchestrating high-throughput genomic
analysis with Bioconductor”

Huber et al

Nature Methods 2015, 12:115-121

Installing a
ploconductor package

> source(https://bioconductor.org/biocLite.R")
> biocLite()

> biocLite("GenomicFeatures")

See: http://www.bioconductor.org/install/

http://www.bioconductor.org/install/

Your Turn: Form a group of 3,
pick a package to explore and install,
Report back to the class.

ggplot?2, bio3d, rgl, rentrez, igraph,
blogdown, shiny, msa, phylosead

Questions to answer:

* How does it extend R functionality? (i.e. What can you do with it that you
could not do before?)

 How is it's documentation, vignettes, demos and web presence?

* Can you successtully follow a tutorial or vignette to get started quickly with
the package?

* Can you find a GitHub or Bitbucket site for the the package with a regular
heartbeat?

| Collaborative Google Doc Link |

https://docs.google.com/document/d/1kXO8Z0kYPOois6AixmAu3HVcbUEWKU2KfyZjLdk9C3w/edit?usp=sharing

summary

R is a powerful data programming language and
environment for statistical computing, data analysis and
graphics.

Introduced R syntax and major R data structures

Demonstrated using R for exploratory data analysis and
graphics.

Exposed you to the why, when, and how of writing your
own R functions.

Introduced CRAN and Bioconductor package repositories.

[Muddy Point Assessment Link]

https://goo.gl/forms/N35hmj7uCYgnHMwA3

| earning Resources

TryR. An excellent interactive online R tutorial for beginners,
< http://tryr.codeschool.com/ >

RStudio. A well designed reference card for RStudio.
< https://help.qgithub.com/categories/bootcamp/ >

DataCamp. Online tutorials using R in your browser.
< https://www.datacamp.com/ >

R for Data Science. A new O'Reilly book that will teach you
how to do data science with R, by Garrett Grolemund and
Hadley Wickham.

< http://r4ds.had.co.nz/ >

http://tryr.codeschool.com/
http://www.rstudio.com/wp-content/uploads/2016/01/rstudio-IDE-cheatsheet.pdf
https://www.datacamp.com/
http://r4ds.had.co.nz/

