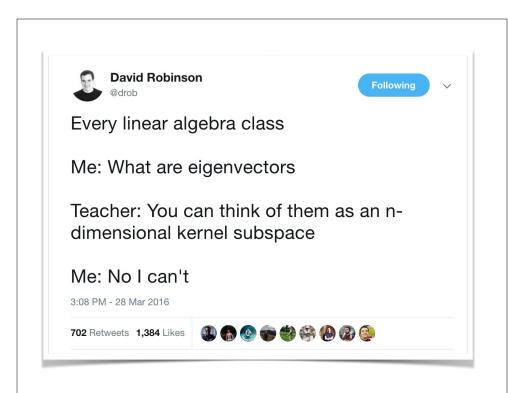


Recap of Lecture 8

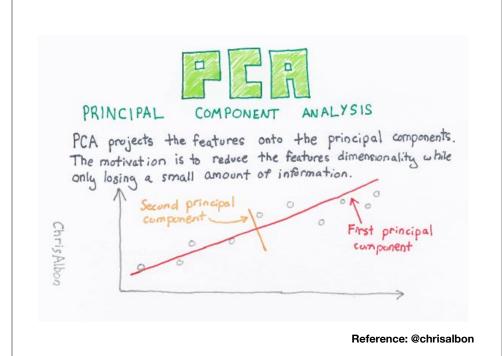

- Introduction to machine learning
 - <u>Unsupervised</u>, supervised and reinforcement learning
- Clustering
 - K-means clustering
 - Hierarchical clustering
- Dimensionality reduction, visualization and 'structure' analysis
 - Principal Component Analysis (PCA)

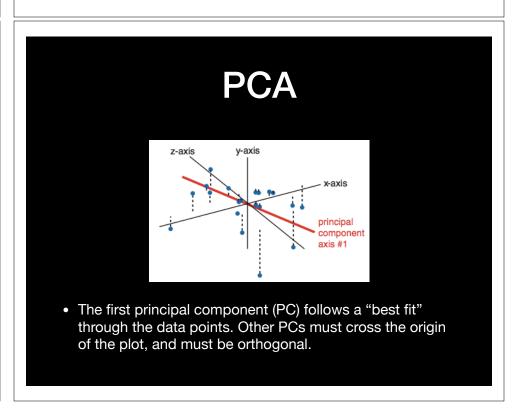
[Muddy Point Feedback Link] :-(

Recap: PCA objectives

- To reduce dimensionality
- To visualize multidimensional data
- To choose the most useful variables (features)
- To identify groupings of objects (e.g. genes/samples)
- To identify outliers

A long time ago in a galaxy far, far away....


PRINCIPAL COMPONENTS


Principal components are the linear combination of features that have the maximum variance out of all linear combinations.

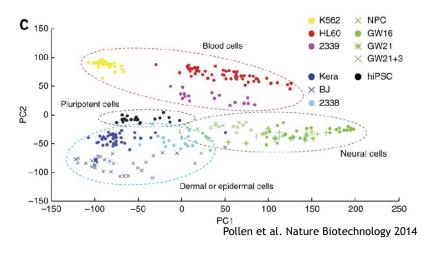
Alternative interpretation: Principal components are low dimensional linear surfaces closest to the observations.

ChrisAlbon

Reference: @chrisalbon

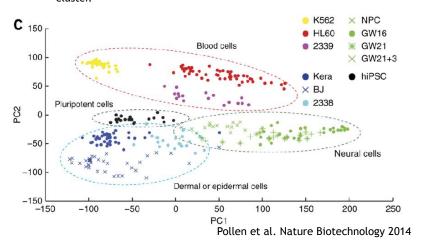
Practical PCA issue: Scaling

```
> data(mtcars)
> head(mtcars)
                 mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4
                21.0
                     6 160 110 3.90 2.620 16.46 0 1
                      6 160 110 3.90 2.875 17.02
Mazda RX4 Wag
                21.0
Datsun 710
                22.8
                      4 108 93 3.85 2.320 18.61 1 1
Hornet 4 Drive
                     6 258 110 3.08 3.215 19.44 1 0
                     8 360 175 3.15 3.440 17.02 0 0
                18.1 6 225 105 2.76 3.460 20.22 1 0
 Means and standard deviations vary a lot
 round(colMeans(mtcars), 2)
        cyl disp
                           drat
                                   wt qsec
                                                VS
                                                       am
                                                            gear
                                                                  2.81
       6.19 230.72 146.69
                           3.60
                                3.22 17.85
                                              0.44
                                                     0.41
                                                           3.69
> round(apply(mtcars, 2, sd), 2)
                                                                  carb
        cyl disp
                   hp drat
                                   wt qsec
                                                ٧S
                                                            gear
       1.79 123.94 68.56
                           0.53
                                 0.98 1.79
                                              0.50
                                                     0.50
                                                           0.74
                                                                  1.62
```

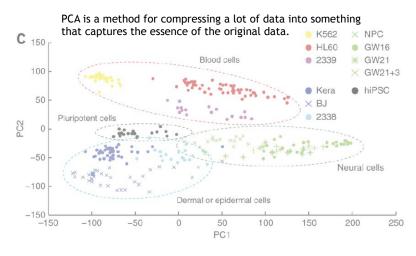


Your turn!

Unsupervised Learning Mini-Project

Input: read, View/head, PCA: prcomp, Cluster: kmeans, hclust Compare: plot, table, etc. Reference Slides


This PCA plot shows clusters of cell types.

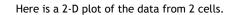
This graph was drawn from single-cell RNA-seq. There were about 10,000 transcribed genes in each cell.

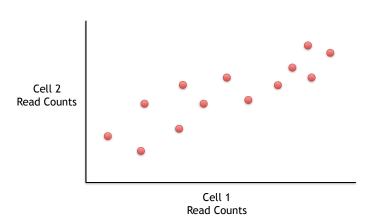

This PCA plot shows clusters of cell types.

Each dot represents a single-cell and its transcription profile The general idea is that cells with similar transcription should cluster.

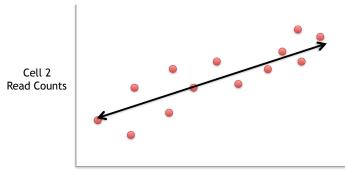
This PCA plot shows clusters of cell types.

How does transcription from 10,000 genes get compressed to a single dot on a graph?

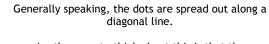

What does PCA aim to do?

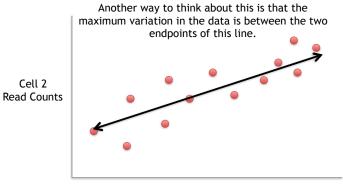

- PCA takes a dataset with a lot of dimensions (i.e. lots of cells) and flattens it to 2 or 3 dimensions so we can look at it.
 - It tries to find a meaningful way to flatten the data by focusing on the things that are different between cells. (much, much more on this later)
- This is sort of like flattening a Z-stack of microscope images to make a single 2-D image for publication.

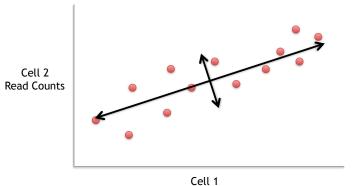
A PCA example


Again, we'll start with just two cells Here's the data:

Gene	Cell1 reads	Cell2 reads
a	10	8
b	0	2
С	14	10
d	33	45
е	50	42
f	80	72
g	95	90
h	44	50
i	60	50
(etc)	(etc)	(etc)

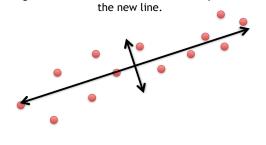





Cell 1 Read Counts

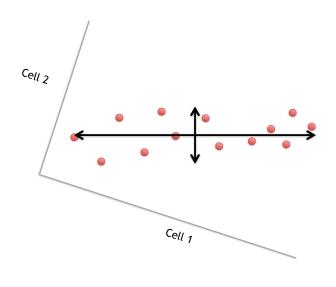
Cell 1 Read Counts

Generally speaking, the dots are also spread out a little above and below the first line.

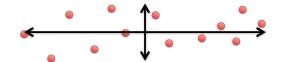


Read Counts

Generally speaking, the dots are also spread out a little above and below the first line.


Another way to think about this is that the 2nd largest amount of variation is at the endpoints of the new line.

Cell 2 Read Counts


Cell 1 Read Counts

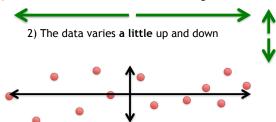
If we rotate the whole graph, the two lines that we drew make new X and Y axes.

If we rotate the whole graph, the two lines that we drew make new X and Y axes.

This makes the left/right, above/below variation easier to see.

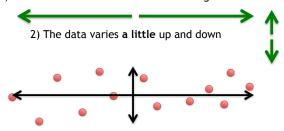
If we rotate the whole graph, the two lines that we drew make new X and Y axes.

This makes the left/right, above/below variation easier to see.


1) The data varies **a lot** left and right

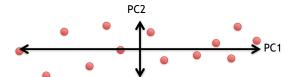
If we rotate the whole graph, the two lines that we drew make new X and Y axes.

This makes the left/right, above/below variation easier to see.

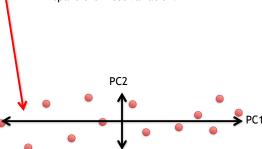

1) The data varies **a lot** left and right

If we rotate the whole graph, the two lines that we drew make new X and Y axes.

This makes the left/right, above/below variation easier to see.

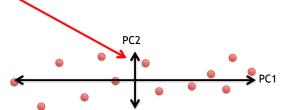

1) The data varies **a lot** left and right

Note: All of the points can be drawn in terms of left/right + up/down, just like any other 2-D graph.

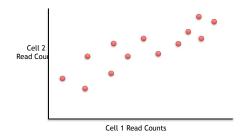

That is to say, we do not need another line to describe "diagonal" variation - we've already captured the two directions that can have variation.

These two "new" (or "rotated") axes that describe the variation in the data are "Principal Components" (PCs)

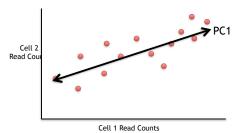
These two "new" axes that describe the variation in the data are "Principal Components" (PCs)


PC1 (the first principal component) is the axis that spans the most variation.

These two "new" axes that describe the variation in the data are "Principal Components" (PCs)

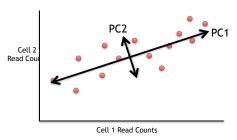

PC1 (the first principal component) is the axis that spans the most variation.

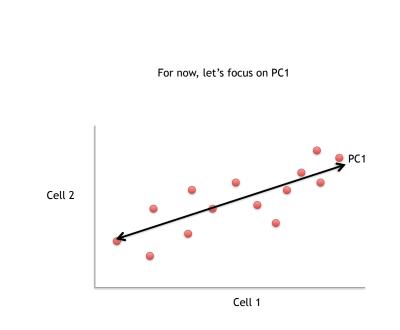
PC2 is the axis that spans the second most variation.

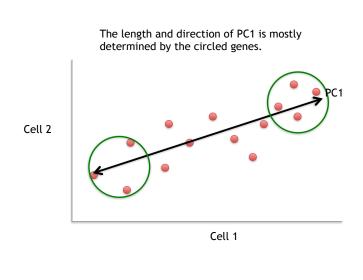

General ideas so far...

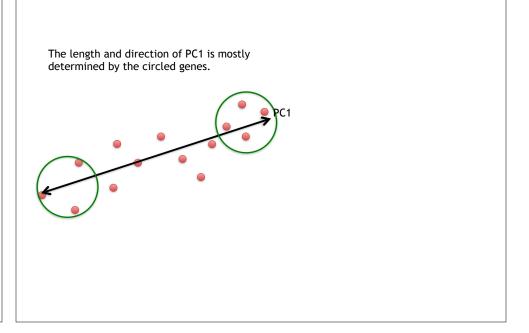
• For each gene, we plotted a point based on how many reads were from each cell.

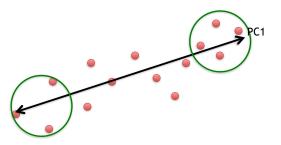
General ideas so far...

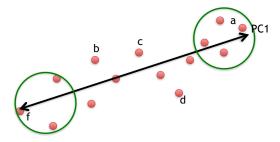

• For each gene, we plotted a point based on how many reads were from each cell.


• PC1 captures the direction where most of the variation is.


General ideas so far...

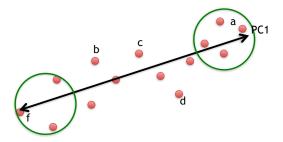

• For each gene, we plotted a point based on how many reads were from each cell.


- PC1 captures the direction where most of the variation is.
- PC2 captures the direction with the 2nd most variation.



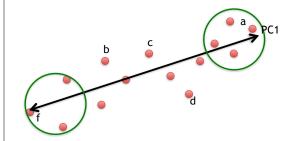
The length and direction of PC1 is mostly determined by the circled genes.

We can score genes based on how much they influence PC1.


The length and direction of PC1 is mostly determined by the circled genes.

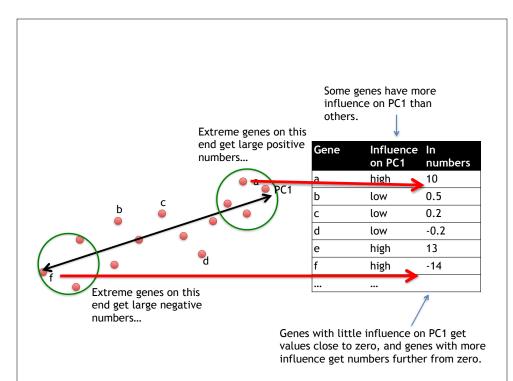
We can score genes based on how much they influence PC1.

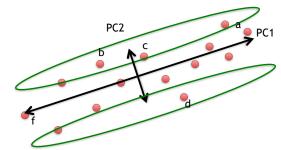
Gene	Influence on PC1
a	high
b	low
С	low
d	low
е	high
f	high


The length and direction of PC1 is mostly determined by the circled genes.

Some genes have more influence on PC1 than others.

Influence on PC1
high
low
low
low
high
high


The length and direction of PC1 is mostly determined by the circled genes.


Some genes have more influence on PC1 than others.

Gene	Influence on PC1	In numbers
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
e	high	13
f	high	-14

Genes with little influence on PC1 get values close to zero, and genes with more influence get numbers further from zero.

Genes that influence PC2

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1
	•••	

Our two PCs

PC2 PC1

Gene	Influence on PC1	
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
е	high	13
f	high	-14

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1
•••	•••	

Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

PC2 PC1

Gene	Influence on PC1	
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
е	high	13
f	high	-14

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1
•••		

Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

The original read counts

PC1

PC2

Gene	Cell1	Cell2
a	10	8
b	0	2
С	14	10
d	33	45
е	50	42
f	80	72
g	95	90
h	44	50
i	60	50
etc	etc	etc

Gene	Influence on PC1	In numbers
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
е	high	13
f	high	-14

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1
	•••	

Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

The original read counts

PC1

PC2

Gene a	Cell1	Cell2 8	Gene	Influence on PC1	In numbers	0	Gene	Influence on PC2	In numbers
-	_	0	a	high	10	ā	a	medium	3
b	0		b	low	0.5	t)	high	10
С	14	10	С	low	0.2	c	:	high	8
d	33	45	d	low	-0.2	c	d	high	-12
e	50	42	e	high	13	e	9	low	0.2
f	80	72	f	high	-14	f	;	low	-0.1
g	95	90		/					
h	44	50			1				
i	60	50		A		1			
etc	etc	etc	Cell1 PC1	1 score = (re	ead count * i	nflı	uence) +	. for all gen	es

Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

The original read

PC1

PC2

	count	5						
Gene a	Cell1	Cell2	Gene	Influence on PC1	In numbers	Gene	Influence on PC2	In nun
		2	a	high	10	a	medium	3
b	0		b	low	0.5	b	high	10
С	14	10	С	low	0.2	С	high	8
d	33	45	d	low	-0.2	d	high	-12
e	50	42	e	high	13	e	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90		/				
h	44	50				L		
i	60	50		7	V			
etc	etc	etc	Cell1 P	C1 score = (10) * 10) +			

Using the two Principal Components to plot cells Combining the read counts for all genes in a cell to get a single value.

The original read PC1 PC2 counts

		Cell2	Gene	Influence on PC1	In numbers	Gene	Influence on PC2	In numbers
a	10	8	a	high	10	a	medium	3
b	0	2	b	low	0.5	b	high	10
С	14	10	c	low	0.8	c	high	8
d	33	45	8	low	-0.2	d	high	-12
e	50	42	e	high	13	e	low	0.2
f	80	72	f	high	-14	f	low	-0.1
g	95	90						
h	44	50			$\overline{}$			
i	60	50			7 1	1		
etc	etc	etc	Cell1 PC	1 score = (10) * 10) + (0 * (0.5) +		

Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

The original read counts

PC1

PC2

Gene	Cell1	Cell2	Gene		ln .
a	10	8		on PC1	numbe
L		2	a	high	10
b	0		b	low	0.5
С	14	10	c	low	0.2
d	33	45	d	low	-0.2
e	50	42	e	high	13
f	80	72	f	high	-14
g	95	90			
h	44	50			
i	60	50	-		

Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1
•••		

Cell1 PC1 score = (10 * 10) + (0 * 0.5) + ... etc... = 12

Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

The original read counts

PC1

PC2

Gene	Cell1	Cell2	Gene
a	10	8	_
b	0	2	a
С	14	10	b c
d	33	45	d
e	50	42	e
f	80	72	f
g	95	90	
h	44	50	
i	60	50	
etc	etc	etc	Cell1 PC1

Gene	Influence on PC1	
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
e	high	13
f	high	-14

Gene	Influence on PC2	In numbers
a	medium	3
 b	high	1 0
С	high	8
d	high	-12
e /	low	0.2
f /	low	-0.1
	•••	

Cell1 PC1 score = (10 * 10) + (0 * 0.5) + ... etc... = 12

Cell1 PC2 score = (10 * 3) + ...

Using the two Principal Components to plot cells

Combining the read counts for all genes in a cell to get a single value.

The original read counts

etc

etc

PC1

PC2

Gene	Cell1	Cell2	
a	10	8	
b	0	2	a
С	14	10	b
d	33	45	d
е	50	42	e
f	80	72	f
g	95	90	
h	44	50	_
i	60	50	
etc	etc	etc	

Gene	Influence on PC1	
a	high	10
b	low	0.5
С	low	0.2
d	low	-0.2
e	high	13
f	high	-14
	<u> </u>	

Gene	on PC2	numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
e	low	0.2
f	løw	-0.1
	/	

Cell1 PC1 score = (10 * 10) + (0 * 0.5) + ... etc... = 12

Cell1 PC2 score = (10 * 3) + (0 * 10) + ...

Using the two Principal Components to plot cells

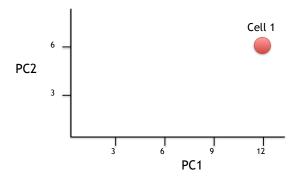
Combining the read counts for all genes in a cell to get a single value.

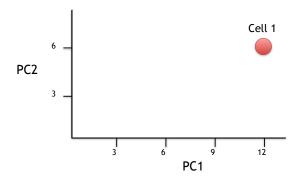
The original read counts

etc etc

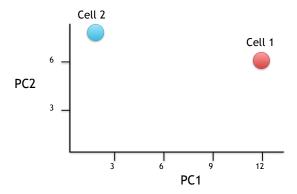
etc

PC1

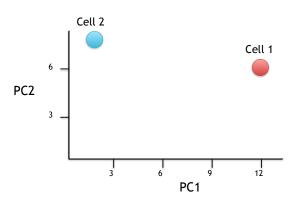

PC2


Gene	Cell1	Cell2	Gene Influence			
a	10	8		on PC1	numbers	
b	0	2	a	high	10	
-		2	b	low	0.5	
С	14	10	С	low	0.2	
d	33	45	d	low	-0.2	
e	50	42	е	high	13	
f	80	72	f	high	-14	
g	95	90				
h	44	50				
i	60	50				

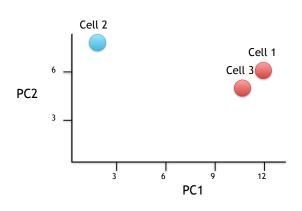
Gene	Influence on PC2	In numbers
a	medium	3
b	high	10
С	high	8
d	high	-12
е	low	0.2
f	low	-0.1


Cell1 PC1 score = (10 * 10) + (0 * 0.5) + ... etc... = 12

Cell1 PC2 score = (10 * 3) + (0 * 10) + ... etc... = 6

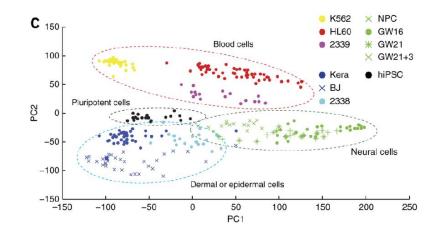


Now calculate scores for Cell2



Now calculate scores for Cell2

Cell2 PC1 score = (8 * 10) + (2 * 0.5) + ... etc... = 2Cell2 PC2 score = (8 * 3) + (2 * 10) + ... etc... = 8



If we sequenced a third cell, and its transcription was similar to cell 1, it would get scores similar to cell 1's.

If we sequenced a third cell, and its transcription was similar to cell 1, it would get scores similar to cell 1's.

Hooray! We know how they plotted all of the cells!!!

