

Today's Menu

Course Logistics	Website, screencasts, survey, ethics, assessment and grading.
Learning Objectives	What you need to learn to succeed in this course.
Course Structure	Major lecture topics and specific leaning goals.
Introduction to Bioinformatis	Introducing the <i>what</i> , <i>why</i> and <i>how</i> of bioinformatics?
Bioinformatics Database	Hands-on exploration of several major databases and their associated tools.

Introduce Yourself!

Your preferred name, Place you identify with, Major area of study/research, Favorite joke (optional)!

http://thegrantlab.org/bimm143/

UC San Diego

BIMM 143

A hands-on introduction

of genomic and biomolecu

data from the Division of

Biological Sciences, UCSD #

Overview

Lectures

Computer Setup

Learning Goals

Ethics Code

7

Assignments & Grading

0 🖂 🔊

he computer-based analysi

Bioinformatics (BIMM 143, Winter 2018)

Course Director Prof. Barry J. Grant 🗵 (Email: bjgrant@ucsd.edu)

Instructional Assistant Alexzander Sharp (Email: arsharp@ucsd.edu) Course Syllabus

Winter 2018 (PDF) 🗵

Overview

Bioinformatics - the application of computational and analytical methods to biological problems - is a rapidly maturing field that is driving the collection, analysis, and interpretation of the avalanche of data in modern life sciences and medical research.

This upper division 4-unit course is designed for biology majors and provides an Introduction to the principles and practical approaches of bioinformatics as applied to genes and proteins.

An integrated lecture/lab structure with hands-on exercises and small-scale projects

ts in genomics and proteomics. A detailed

http://thegrantlab.org/bimm143/

(BIMM 143, Winter 2018)

Bioinformatics

Course Director

Course Syllabus

Overview

Instructional Assistant

UC San Diego

<u>Courronce</u>

BIMM 143

A hands-on introduction to the computer-based analysis of genomic and biomolecular data from the Division of

Biological Sciences, UCSD

Overview Lectures Computer Setup Learning Goals Assignments & Grading Ethics Code

1

🖸 🖂 🔊

Winter 2018 (PDF) 🗠

Alexzander Sharp (Email: arsharp@ucsd.edu)

Prof. Barry I. Grant 🗵 (Email: bigrant@ucsd.edu)

Bioinformatics - the application of computational and analytical methods to biological problems - is a rapidly maturing field that is driving the collection, analysis, and interpretation of the avalanche of data in modern life sciences and medical research.

This upper division 4-unit course is designed for biology majors and provides an Introduction to the principles and practical approaches of bioinformatics as applied to genes and proteins.

An integrated lecture/lab structure with hands-on exercises and small-scale projects

What essential concepts and skills should YOU attain from this course?

hisbost.cithub.io/bimm143_W18/gcals/

UCSanDiego

BIMM 143

ds-on introducti

of genomic and biomolecul

Q 🖂

data from the Division of Biological Sciences, UCSD (

Computer Setur

Learning Goals

Ethics Code

uter-based analys

Learning Goals

At the end of this course students will:

- Understand the increasing necessity for computation in modern life sciences
 research.
- Be able to use and evaluate online bioinformatics resources including major biomolecular and genomic databases, search and analysis tools, genome browsers, structure viewers, and select quality control and analysis tools to solve problems in the biological sciences.
- Be able to use the R environment to analyze bioinformatics data at scale.
- Understand the process by which genomes are currently sequenced and the bioinformatics processing and analysis required for their interpretation.
- Be familiar with the research objectives of the bioinformatics related sub-disciplines
 of Genomics, Transcriptomics and Structural bioinformatics.

In short, students will develop a solid foundational knowledge of bioinformatics and be able to evaluate new biomolecular and genomic information using existing bioinformatic tools and resources.

Specific Learning Goals

At the end of this course students will:

- Understand the increasing necessity for computation in modern life sciences research.
- Be able to use and evaluate online bioinformatics resources and analysis tools to solve problems in the biological sciences.
- Be able to use the R environment to analyze bioinformatics data at scale.
- Be familiar with the research objectives of the bioinformatics related sub-disciplines of Genome informatics, Transcriptomics and Structural informatics.

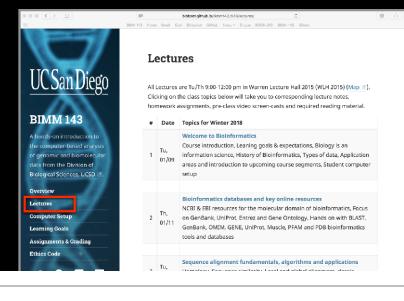
In short, you will develop a solid foundational knowledge of **bioinformatics** and be able to evaluate new biomolecular and genomic information using **existing bioinformatic tools and resources**.

Specific Learning Goals....

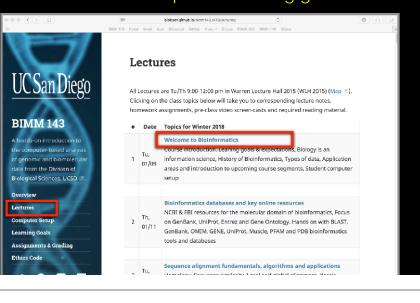
What I want you to know by course end!

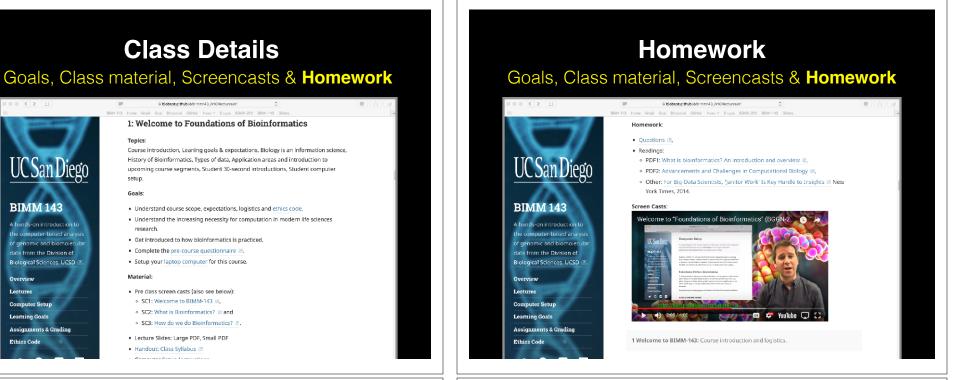
Specific Learning Goals

Gmell Geal Bitoucket GltHub News Y Discus BGGN-213 BIMM-143 GDec


Teaching toward the specific learning goals below is expected to occupy 60%-70% of class time. The remaining course content is at the discretion of the instructor with student body input. This includes student selected topics for peer presentation, as well as one student selected guest lecture from an industry based genomic scientist.

All students who receive a passing grade should be able to:


13			Lecture(s):
duction to	1	Appreciate and describe in general terms the role of computation in hypothesis-driven discovery processes within the life sciences.	1, 2, 20
sed analysis biomolecular vision of es, UCSD IZ.	2	Be able to query, search, compare and contrast the data contained in major bioinformatics databases and describe how these databases intersect (GenBank, GENE, UniProt, PFAM, OMIM, PDB, UCSC, ENSEMBLE).	2, 12, 13
4	3	Describe how nucleotide and protein sequence and structure data are represented (FASTA, FASTQ, GenBank, UniProt, PDB).	3, 10
	4	Be able to describe how dynamic programming works for pairwise sequence alignment and appreciate the differences between global and local alignment along with their major application areas.	4, 5
rading	5	Calculate the alignment score between two nucleotide or protein sequences using a provided scoring matrix and be able to perform	E 10


Course Structure

Derived from specific learning goals

Course Structure Derived from specific learning goals

Homework

Topics:

setup.

Goals

UCSanDiego

BIMM 143

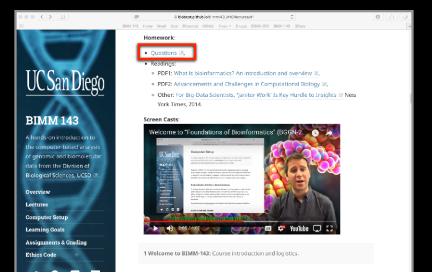
A hands-on introduction to

the computer-based analys

of genomic and biomolec

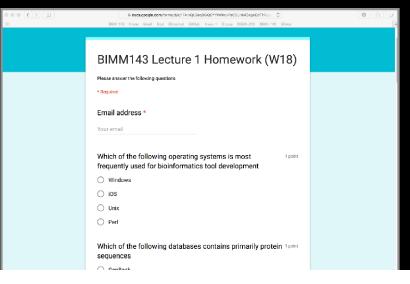
data from the Division of

Biological Sciences, UCSD


Computer Setup

Learning Goals

Ethics Code


Assignments & Grading

Goals, Class material, Screencasts & Homework

Homework

Goals, Class material, Screencasts & Homework

Homework

Goals, Class material, Screencasts & Homework

••• <> 1	ili docs.google.com/forms/d/e/1FA/bQLSeqDGQCYYIWKevPsCSUnk4SsgAEdThRup =	
	3889/143 Home Gmail Goal Bitbuckat GitHub News - D'sque BOGN-213 3889/-143 GDoos	
	BIMM143 Lecture 1 Homework (W18)	class!
	Please answer the following questions	
Home	BIMM143 Lecture 1 Homework (W1P) Please answer the following questions *Regulated *Regulated	
	Which of the following operating systems is most I point frequently used for bioinformatics tool development	
	O Windows	
	⊖ ios	
	O Unix	
	O Perl	
	Which of the following databases contains primarily protein $^{1{\rm point}}$ sequences	
	O CanDank	

Side Note: Why stick with this course?

Provides a hands-on practical introduction to major bioinformatics concepts and resources.

Covers modern hot topics and the intimate coupling of informatics with biology - highlighting the impact of computing advances and 'big data' on biology!

Designed for biology majors with no programing experience or high level math skills.

Provides a hook for increasing computational and data science competencies in the biosciences - valuable high demand translational skills!

Side Note: Why stick with this course?

Provides a hands-on practical introduction to major bioinformatics concepts and resources.

Covers modern hot topics and the intimate coupling of informatics with biology - highlighting the impact of computing advances and 'big data' on biology!

Designed for biology majors with no programing experience or high level math skills.

Provides a hook for increasing computational and data science competencies in the biosciences - valuable high demand translational skills!

BIMM-143 Learning Goals.... Data science R based learning goals

<> L	=	≅ bioboot.github.le/bimm143_W18/goals/ Č		•)[n](
_	BIMM 143 H	ame Gmail Geal Bitzueket GitHub News - Disquas BGGN-213 BIMM-143 GDoos		
C San Diego	5	Calculate the alignment score between two nucleotide or protein sequences using a provided scoring matrix and be able to perform BLAST, PSI-BLAST, HMMER and protein structure based database searches and interpret the results in terms of the biological significance of an e-value.	5, 10	
CoanDicgo	E	Use R to read and parse comma-separated (.csv) formatted files ready for subsequent analysis.	8, 9, 10, 11, 13, 15, 16	
IMM 143	7	Perform elementary statistical analysis on biomolecular and "omics" datasets with R and produce informative graphical displays and data summaries.	9, 10, 11, 13, 15, 16	
ands-on introduction to computer-based analysis	8	View and interpret the structural models in the PDB.	10, 11	
enomic and biomolecular from the Division of	S	Explain the outputs from structure prediction algorithms and small molecule docking approaches.	11	
ogical Sciences, UCSD 🗷. rview	1	Appreciate and describe in general terms the rapid advances in 0 sequencing technologies and the new areas of investigation that these advances have made accessible.	13, 14, 15	
nputer Setup ming Goals	1	Understand the process by which genomes are currently sequenced 1 and the bioinformatics processing and analysis required for their interpretation.	13	
ignments & Grading	1	For a genomic region of interest (e.g. the neighborhood of a 2 particular gene), use a genome browser to view nearby genes,	14	
		transcription factor binding regions, epigenetic information, etc. Given an RNA-Sed data file. find the set of significantly differentially		

BI

Com Lear

Ass

BIMM-143 Learning Goals....

Delve deeper into "real-world" bioinformatics

	-	iii bioboot.github.io/bimm143_W18/goals/		0 D F
BM	M 143 Home O	Grail Goal Bitouchet Github News - Disgue B3GN-213 BININ-143 GDoos View and interpret the structural models in the PDD.	10, 11	
	9	Explain the outputs from structure prediction algorithms and small molecule docking approaches.	11	
UC San Diego	10	Appreciate and describe in general terms the rapid advances in sequencing technologies and the new areas of investigation that these advances have made accessible.	13, 14, 15	
BIMM 143	11	Understand the process by which genomes are currently sequenced and the bioinformatics processing and analysis required for their interpretation.	13	
A hands-on introduction to the computer-based analysis	12	For a genomic region of interest (e.g. the neighborhood of a particular gene), use a genome browser to view nearby genes, transcription factor binding regions, epigenetic information, etc.	14	
of genomic and biomolecular data from the Division of Biological Sciences, UCSD 원.	13	Given an RNA-Seq data file, find the set of significantly differentially expressed genes and use online tools to interpret gene lists and annotate potential gene functions.	15, 16	
Overview Lectures	14	Perform a GO analysis to identify the pathways relevant to a set of genes (e.g. identified by transcriptomic study or a proteomic experiment).	16	
Computer Setup	15	Use the KEGG pathway database to look up interaction pathways.	17	
Learning Goals	16	Use graph theory to represent biological data networks.	17, 18	
Assignments & Grading		Understand the challenges in integrating and interpreting large		
Ethics Code	17	heterogenous high throughput data sets into their functional	19	

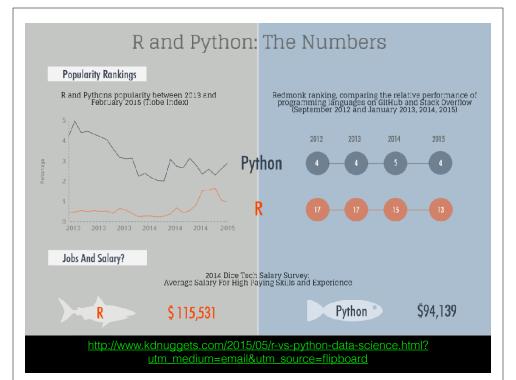
These support a major learning objective

At the end of this course students will:

- Understand the increasing necessity for computation in modern life sciences research.
- Be able to use and evaluate online bioinformatics resources and analysis tools to solve problems in the biological sciences.

• Be able to use the R environment to analyze bioinformatics data at scale.

• Be familiar with the research objectives of the bioinformatics related sub-disciplines of Genome informatics, Transcriptomics and Structural informatics.


IEEE 2016 Top Programming Languages

Language	Rank Type	s Sp	ectrum Ranking
1. C) 🖵 🌒 🔰 10	0.0
2. Java	\oplus .	98 🖵	1
3. Pythor	n 🌐	모 98	0
4. C++) 🖵 🌒 🦳 95	9
5. R		모 87	9
6. C#	\oplus [] 🖵 🛛 86	7
7. PHP	\bigoplus	82	8
8. JavaS	cript 🌐	82	2
9. Ruby	\oplus	모 74	5
10 . Go	\bigoplus	·모 71	9

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

Why use R?

Productivity Flexibility Designed for data analysis

- R is the "lingua franca" of data science in industry and academia.
- Large user and developer community.
 - As of Jan 8th 2018 there are 12,039 add on **R packages** on <u>CRAN</u> and 1,473 on <u>Bioconductor</u> - more on these later!
- Virtually every statistical technique is either already built into R, or available as a free package.
- Unparalleled exploratory data analysis environment.

Today's Menu

Website, screencasts, survey, ethics, assessment and grading.
What you need to learn to succeed in this course.
Major lecture topics and specific leaning goals.
Introducing the <i>what</i> , <i>why</i> and <i>how</i> of bioinformatics?
Ensuring your laptop is all set for future sections of this course.

OUTLINE

Overview of bioinformatics

- The what, why and how of bioinformatics?
- Major bioinformatics research areas.
- · Skepticism and common problems with bioinformatics.

Online databases and associated tools

- Primary, secondary and composite databases.
 - · Nucleotide sequence databases (GenBank & RefSeq).
 - Protein sequence database (UniProt).
 - Composite databases (PFAM & OMIM).

Database usage vignette

How-to productively navigate major databases.

Q. What is Bioinformatics?

"Bioinformatics is the application of computers to the collection, archiving, organization, and analysis of biological data."

... Bioinformatics is a hybrid of biology and computer science

Q. What is Bioinformatics?

"Bioinformatics is the application of computers to the collection, archiving, organization, and analysis of biological data."

... Bioinformatics is a hybrid of biology and computer science

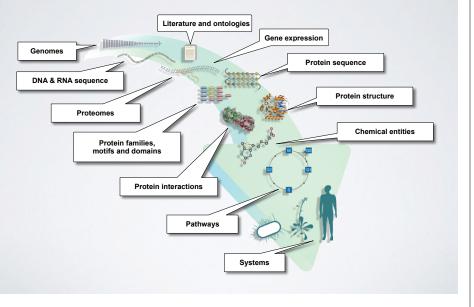
... Bioinformatics is computer aided biology!

Q. What is Bioinformatics?

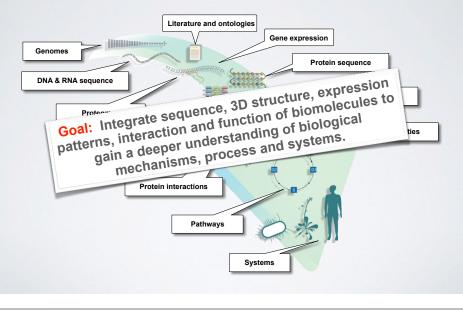
"Bioinformatics is the application of computers to the collection, archiving, organization, and analysis of biological data."

- ... Bioinformatics is a hybrid of biology and computer science
- ... Bioinformatics is computer aided biology!

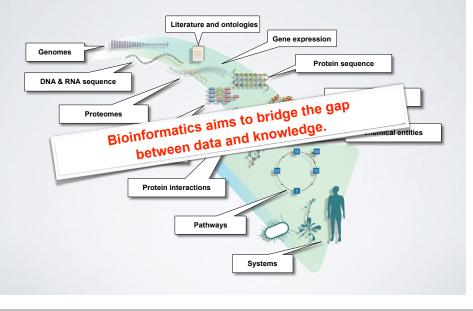
Computer based management and analysis of biological and biomedical data with useful applications in many disciplines, particularly genomics, proteomics, metabolomics, etc...


MORE DEFINITIONS

- "Bioinformatics is conceptualizing biology in terms of macromolecules and then applying "informatics" techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Luscombe NM, et al. Methods Inf Med. 2001;40:346.
- "Bioinformatics is research, development, or application of computational approaches for expanding the use of biological, medical, behavioral or health data, including those to acquire, store, organize and analyze such data." National Institutes of Health (NIH) (http://tinyurl.com/I3gxr6b)


MORE DEFINITIONS

- "Bioinformatics is conceptualizing biology in terms of macromolecules and then applying "informatics" macromolecules and then applying "informatics" iniques (derived from disciplines such as applied mathematics" is clearce, and statistics) to understand a Aided Biology are science, and statistics) to understand a Aided Biology are information associated with these information, on a large-scale.
 Luscombe NM, et al. Methods is Computer (40:346.)
 "Bioinformatics" is Computer (40:346.)
 "Bioinformatics" is provided by the store organize and analyze such data." niques
- to uire, store, organize and analyze such data." National Institutes of Health (NIH) (http://tinyurl.com/l3gxr6b)


Major types of Bioinformatics Data

Major types of Bioinformatics Data

Major types of Bioinformatics Data

BIOINFORMATICS RESEARCH AREAS

Include but are not limited to:

- Organization, classification, dissemination and analysis of biological and biomedical data (particularly '-omics' data).
- · Biological sequence analysis and phylogenetics.
- Genome organization and evolution.
- · Regulation of gene expression and epigenetics.
- · Biological pathways and networks in healthy & disease states.
- · Protein structure prediction from sequence.
- Modeling and prediction of the biophysical properties of biomolecules for binding prediction and drug design.
- Design of biomolecular structure and function.

With applications to Biology, Medicine, Agriculture and Industry

Where did bioinformatics come from?

Bioinformatics arose as molecular biology began to be transformed by the emergence of molecular sequence and structural data

Recap: The key dogmas of molecular biology

- DNA sequence determines protein sequence.
- Protein sequence determines protein structure.
- Protein structure determines protein function.
- Regulatory mechanisms (e.g. gene expression) determine the amount of a particular function in space and time.

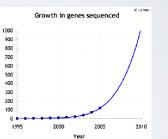
Bioinformatics is <u>now</u> essential for the archiving, organization and analysis of data related to all these processes.

Why do we need Bioinformatics?

Bioinformatics is necessitated by the rapidly expanding quantities and complexity of biomolecular data

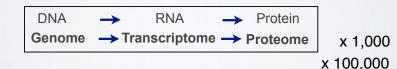
- Bioinformatics provides
 methods for the efficient:
 - storage
 - annotation
 - search and retrieval
 - data integration
 - data mining and analysis

E.G. data from sequencing, structural genomics, proteomics, new high throughput assays, *etc.*..


Why do we need Bioinformatics?

Bioinformatics is necessitated by the rapidly expanding quantities and complexity of biomolecular data

- Bioinformatics provides
 methods for the efficient:
 - storage
 - annotation
 - search and retrieval
 - data integration
 - data mining and analysis


Growth in solved 3D structures

E.G. data from sequencing, structural genomics, proteomics, new high throughput assays, *etc...*

How do we do Bioinformatics?

 A "bioinformatics approach" involves the application of computer algorithms, computer models and computer databases with the broad goal of understanding the action of both individual genes, transcripts, proteins and large collections of these entities.

How do we actually do Bioinformatics?

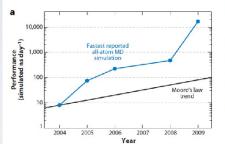
Pre-packaged tools and databases

- Many online
- Most are free to use
- Time consuming methods require downloading...

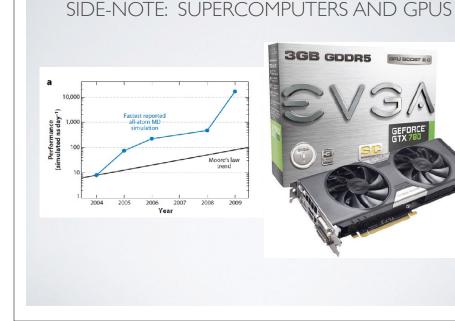
Advanced tool application & development

- Mostly on a UNIX environment
- Knowledge of programing languages frequently required (*e.g.* **R**, Python, Perl, C, Java, Fortran)
- May require specialized high performance computing...

How do we actually do Bioinformatics?


Pre-packaged tools and databases

- Many online
- Most are free to use
- Time consuming methods require downloading...


Advanced tool application & development

- Mostly on a UNIX environment
- Knowledge of programing languages frequently required (*e.g.* **R**, Python, Perl, C, Java, Fortran)
- May require specialized high performance computing...

SIDE-NOTE: SUPERCOMPUTERS AND GPUS

Skepticism & Bioinformatics

We have to approach computational results the same way we do wet-lab results:

- Do they make sense?
- Is it what we expected?
- Do we have adequate controls, and how did they come out?
- Modeling is modeling, but biology is different... What does this model actually contribute?
- Avoid the miss-use of 'black boxes'

Skepticism & Bioinformatics

Gunnar von Heijne in his old but quite readable treatise, *Sequence Analysis in Molecular Biology; Treasure Trove or Trivial Pursuit*, provides a very appropriate conclusion:

- "Think about what you're doing; use your knowledge of the molecular system involved to guide both your interpretation of results and your direction of inquiry; use as much information as possible; and do not blindly accept everything the computer offers you".
- Key-Point: Avoid the miss-use of 'black boxes'!

Common problems with Bioinformatics

Confusing multitude of tools available

Each with many options and settable parameters

Most tools and databases are written by and for nerds

Same is true of documentation - if any exists!

Most are developed independently

- Notable exceptions are found at the:
- EBI (European Bioinformatics Institute) and
- NCBI (National Center for Biotechnology Information)

Key Online	Bioinf	ormatic	S
Resources	S: NCE	SI & EBI	

The NCBI and EBI are invaluable, publicly available resources for biomedical research

National Center for Biotechnology Information (NCBI)

- Created in 1988 as a part of the National Library of Medicine (NLM) at the National Institutes of Health
- NCBI's mission includes:
 - Establish public databases
 - Develop software tools
 - Education on and dissemination of biomedical information

We will cover a number of core NCBI databases and software tools in the lecture

▶ + 8 bla	st.ncbi.nlm.nih.gov/Blast.cgi?PROG	GRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blast
General Parar	neters	
Max target sequences	Select the maximum number of a	iligned sequences to display 🤢
Short queries	Automatically adjust parame	eters for short input sequences 😡
Expect threshold	10	
Word size	3 ‡ 😡	
Max matches in a query range	0	
Scoring Paran	neters	Even Blact has many acttable peremeters
Matrix	BLOSUM62 ÷	Even Blast has many settable parameters
Gap Costs	Existence: 11 Extension: 1 +	0
Compositional adjustments	Conditional compositional sco	Related tools with different terminology
Filters and Ma	sking	FASTA
Filter	Low complexity regions @	MATRIX GAP OPEN GAP EXTEND KTUP EXPECTATION LOWER VALUE
Mask	Mask for lookup table only	BLOSUM50 \$ -10 \$ -2 \$ 2 \$ 10 \$ 0 (default) \$
	Mask lower case letters	DNA STRAND HISTOGRAM FILTER STATISTICAL ESTIMATES N/A + no + Regress +
PSI/PHI/DELT	ABLAST	SCORES ALIGNMENTS SEQUENCE RANGE DATABASE RANGE MULTI HSPs
Upload PSSM Optional	Choose File no file selected	SO + SO + START-END START-END no +
PSI-BLAST Threshold	0.005	Default ÷

http://www.ncbi.nlm.nih.gov

	National Center for Biotechnology Information	12 ³
e ا⊳ + S www.ncbi.nlr	m.nih.gov	C Reader
🗟 NCBI Resources 🕑 How	и То 🗵	Sign in to NCBI
SNCBI National Center for Biotechnology Information	Databases +	Search
NCBI Home	Welcome to NCBI	Popular Resources
Resource List (A-Z)	The National Center for Biotechnology Information advances science	PubMed
All Resources	and health by providing access to biomedical and genomic	Bookshelf
Chemicals & Bioassays	information.	PubMed Central
Data & Software	About the NCBI Mission Organization Research RSS Feeds	PubMed Health
DNA & RNA		BLAST
Domains & Structures	Get Started	Nucleotide
Genes & Expression	 Tools: Analyze data using NCBI software 	Genome
Genetics & Medicine	 <u>Downloads</u>: Get NCBI data or software 	SNP
Genomes & Maps	How-To's: Learn how to accomplish specific tasks at NCBI Submissions: Submit data to GenBank or other NCBI	Gene
Homology	databases	Protein
Literature		PubChem
Proteins		
Sequence Analysis	3D Structures	NCBI Announcements
Taxonomy	Explore three-dimensional structures of pro-	New version of Genome Workbench
Training & Tutorials	teins, DNA, and RNA molecules. Examine sequence-structure relationships, active sites,	available 06 Sec
	molecular interactions, biological activities of	An integrated, downloadable applicat

http://www.ncbi.nlm.nih.gov

< ▶ + S www.ncbi.nl			C Reader
S NCBI Resources 🕑 Ho	w To 🖸		Sign in to NCBI
National Center for Biotechnology Information	Databases +	Popular Resources	Search
NCBI Home	Welcome to NCBI	Bookshelf	Resources
Resource List (A-Z)	The National Center for Biotech	PubMed Central	
All Resources	and health by providing access information.		
Chemicals & Bioassays		PubMed Health	Central
Data & Software	About the NCBI Mission Or	BLAST	Health
DNA & RNA		Nucleotide	
Domains & Structures	Get Started	NUCleotide	e
Genes & Expression	<u>Tools</u> : Analyze data using I	Genome	
Genetics & Medicine	 <u>Downloads</u>: Get NCBI data How-To's: Learn how to acc 	SNP	******
Genomes & Maps	Submissions: Submit data		
Homology	databases	Gene	
Literature		Protein	
Proteins			
Sequence Analysis	3D Structures	PubChem	inouncements
Taxonomy	Explore three-dimensional structure	s of pro-	w version of Genome Workbench
Training & Tutorials	teins, DNA, and RNA molecules. Ex sequence-structure relationships, act		ailable 06 Se

http://www.ncbi.nlm.nih.gov

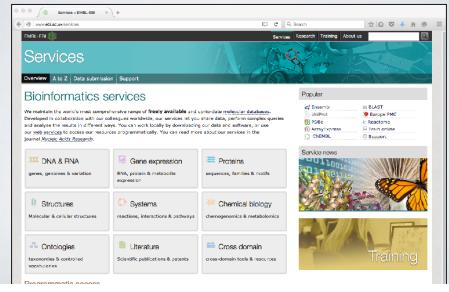
	National Center for Biotechnology Information	12
د اله الع	m.nih.gov	C Reader
🗟 NCBI 🛛 Resources 🕑 How	и To 🖂	Sign in to NCBI
SNCBI National Center for Biotechnology Information	Databases +	Search
NCBI Home Resource List (A-Z)	Welcome to NCBI	Popular Resources
Resource List (A-Z)	The National Center for Biotechnology Information advances	s science PubMed
Gen	table NCBI databases Bank, RefSeq, PubMe search tools ENTREZ	ed, dbSNP
Gen and the	Bank, <u>RefSeq</u> , <u>PubMe</u> search tools <u>ENTREZ</u>	ed, dbSNP
Gen and the	Bank, RefSeq, PubMe	ed, dbSNP
Gen and the	Bank, <u>RefSeq</u> , <u>PubMe</u> search tools <u>ENTREZ</u>	and <u>BLAST</u>
Gen and the Homology Literature Proteins	Bank, RefSeq, PubMe search tools ENTREZ	and BLAST
Gen and the Homology Literature Proteins Sequence Analysis	Bank, <u>RefSeq</u> , <u>PubMe</u> search tools <u>ENTREZ</u>	and BLAST
Gen and the Homology Literature Proteins Sequence Analysis Taxonomy	Bank, RefSeq, PubMe search tools ENTREZ databases 3D Structures Explore three-dimensional structures of pro-	and BLAST
Gen and the Homology Literature Proteins Sequence Analysis	Bank, RefSeq, PubMe e search tools ENTREZ	and BLAST

Key Online Bioinformatics Resources: NCBI & EBI

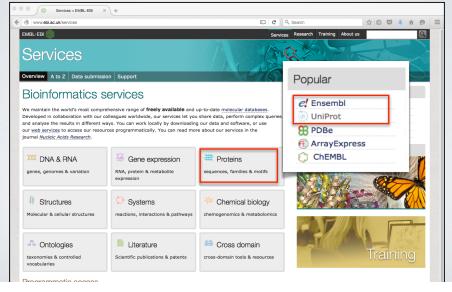
The NCBI and EBI are invaluable, publicly available resources for biomedical research

	Welcome to NCBI	Popular Resources
Resource List (A-Z)	The National Center for Bistechnology Information advances science and health by providing access to biomedical and genomic information	PubNed
All Resources		Bookshelf
Chemicals & Bioassays		PubNed Central
Daa & Sofiware	About the HODI Missish Organization Desearch DDD Feeds	Publied Health
DNA & RNA		BLAST
Donairs & Structures	Get Started	Nucleotide
Genes & Espression	 Tool: Analyze data using/NC8I software 	Benzine
Genetics & Medicine	 <u>Downloads</u>: Get NCBI data or software 	ann
Genomes 8 Maps	 <u>New Talk</u> Learn here to accomplish specific tasks at NCBI Submissions: Submit datato GenBank or other NCBI 	Our is
Honology	catabases	Protein
Literature		NéChen
Proteins		
Sequence Analysis	3D Structures	WCBI Announcements
Tasonomy	Tables Breadmonting) tradees of ma	New rension of Genome Workbench
Training & Tutolals	rein: DPA, and RNA notestes. Examine seguncestruture relationhips, active ster,	evaliable 06 Bep 201
Variation	monouse interactions, bronghos activities of bound chemicals, and issociated biorystems.	An integrated downloadable application
a 1 3	H 5 7 3 4 5 8 3 1	SCRIs July Newsletter is on the Bookshell
		13 Aug 201 Introduction to the 1000 Genomes Researce: Dubblicular Plantian Mancoura and

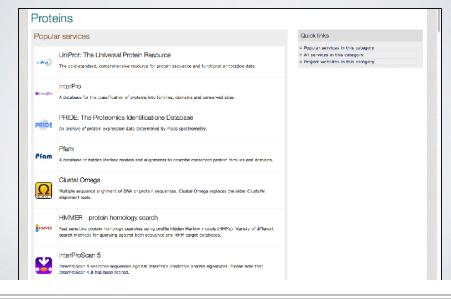
European Bioinformatics Institute (EBI)


- Created in 1997 as a part of the European Molecular Biology Laboratory (EMBL)
- EBI's mission includes:
 - providing freely available data and bioinformatics services
 - and providing advanced bioinformatics training
- We will briefly cover several EBI databases and tools that have advantages over those offered at NCBI

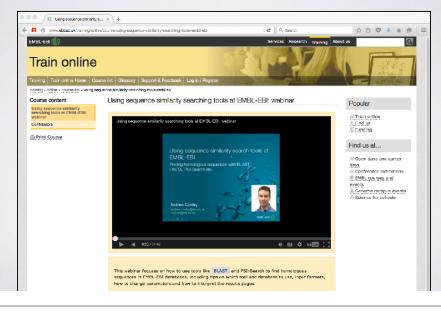
Hinxton,UK


The EBI maintains a number of high quality curated **secondary databases** and associated tools

The EBI maintains a number of high quality curated **secondary databases** and associated tools

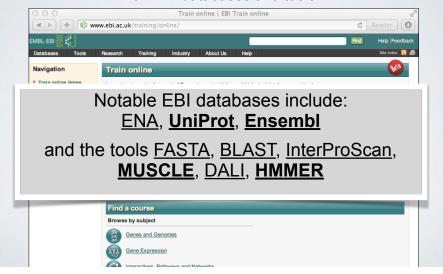


The EBI maintains a number of high quality curated **secondary databases** and associated tools



https://www.ebi.ac.uk

The EBI makes available a wider variety of online tools than NCBI


The EBI also provides a growing selection of **online tutorials** on EBI databases and tools

The EBI also provides a growing selection of **online tutorials** on EBI databases and tools

The EBI also provides a growing selection of **online tutorials** on EBI databases and tools


Next Class...

MAJOR BIOINFORMATICS DATABASES AND ASSOCIATED ONLINE TOOLS

Bioinformatics Databases

AATDB, AceDb, ACUTS, ADB, AFDB, AGIS, AMSdb, ARR, AsDb, BBDB, BCGD, Beanref, Biolmage, BioMagResBank, BIOMDB, BLOCKS, BovGBASE, BOVMAP, BSORF, BTKbase, CANSITE, CarbBank, CARBHYD, CATH, CAZY, CCDC, CD4OLbase, CGAP, ChickGBASE, Colibri, COPE, CottonDB, CSNDB, CUTG, CyanoBase, dbCFC, dbEST, dbSTS, DDBJ, DGP, DictyDb, Picty_cDB, DIP, DOGS, DOMO, DPD, DPInteract, ECDC, ECGC, EC02DBASE, EcoCyc, EcoGene, EMBL, EMD db, ENZYME, EPD, EpoDB, ESTHER, FlyBase, FlyView, GCRDB, GDB, GENATLAS, Genbank, GeneCards, Genlilesne, GenLink, GENOTK, GenProtEC, GIFTS, GPCRDB, GRAP, GRBase, gRNAsdb, GRR, GSDB, HAEMB, HAMSTERS, HEART-2DPAGE, HEXAdb, HGMD, HIDB, HIDC, HIVdb, HotMolecBase, HOVERGEN, HPDB, HSC-2DPAGE, ICN, ICTVDB, IL2RGbase, IMGT, Kabat, KDNA, KEGG, Klotho, LGIC, MAD, MaizeDb, MDB, Medline, Mendel, MEROPS, MGDB, MGL MHCPEP5 Micado, MitoDat, MITOMAP, MIDB, MmtDB, Mol-R-Us, MPDB, MRR, MutBase, MycDB, NDB, NRSub, 0-lycBase, OMIA, OMIM, OPD, ORDB, OWL, PAHdb, PatBase, PDB, PDD, Pfam, PhosphoBase, PigBASE, PIR, PKR, PMD, PPDB, PRESAGE, PRINTS, ProDom, Prolysis, PROSITE, PROTOMAP, RatMAP, RDP, REBASE, RGP, SBASE, SCOP, SegAnaiRef, SGD, SGP, SheepMap, Soybase, SPAD, SRNA db, SRPDB, STACK, StyGene.Sub2D. SubtiList. SWISS-2DPAGE. SWISS-3DIMAGE. SWISS- MODEL Repository, SWISS-PROT, TeIDB, TGN, tmRDB, TOPS, TRANSFAC, TRR, UniGene, URNADB, V BASE, VDRR, VectorDB, WDCM, WIT, WormPep, etc !!!!

Bioinformatics Databases

Side-note: Databases come in all shapes and sizes

Databases can be of variable quality and often there are multiple databases with overlapping content.

Primary, secondary & composite databases

Bioinformatics databases can be usefully classified into *primary*, *secondary* and *composite* according to their data source.

- Primary databases (or <u>archival databases</u>) consist of data derived experimentally.
 - GenBank: NCBI's primary nucleotide sequence database.
 - PDB: Protein X-ray crystal and NMR structures.
- Secondary databases (or <u>derived databases</u>) contain information derived from a primary database.
 - RefSeq: non redundant set of curated reference sequences primarily from GenBank
 - PFAM: protein sequence families primarily from UniProt and PDB
- Composite databases (or metadatabases) join a variety of different primary and secondary database sources.
 - · OMIM: catalog of human genes, genetic disorders and related literature
 - GENE: molecular data and literature related to genes with extensive links to other databases.

Today's Menu

Bioinformatics Database	Hands-on exploration of several major databases and their associated tools.	
Introduction to Bioinformatis	Introducing the <i>what</i> , <i>why</i> and <i>how</i> of bioinformatics?	
Course Structure	Major lecture topics and specific leaning goals.	
Learning Objectives	What you need to learn to succeed in this course.	
Course Logistics	Website, screencasts, survey, ethics, assessment and grading.	

Your Turn!

https://bioboot.github.io/bimm143_S18/lectures/#1

••• <> E

M

BIMM 143

A hands-on introduction to the computer-based analysis of genomic and biomolecula data from the Division of Biological Sciences, UCSD 12,

Overviev

Lectures Computer Setup Learning Goals

Assignments & Grading

de

BMM-143 GDaes

0 Û

1: Welcome to Foundations of Bioinformatics

Course introduction, Leaning goals & expectations, Biology is an information science, History of BioInformatics, Types of data, Application areas and introduction to upcoming course segments, Student 30-second introductions, Student computer setup.

Goals

Topics:

- · Understand course scope, expectations, logistics and ethics code.
- Understand the increasing necessity for computation in modern life sciences research.
- Get introduced to how bioinformatics is practiced.
- Complete the pre-course questionnaire
- Setup your laptop computer for this course.

Material:

Lecture Slides: Large PDF @, Small PDF @,
 Lab: Hands-on section worksheet @
 Feedback: Muddy Point Assessment @.

• Handout: Class Syllabus 🗵

Computer Setup Instructions

. . .

BIMM-143: INTRODUCTION TO BIOINFORMATICS (Lecture 1)

Bioinformatics Databases and Key Online Resources https://bioboot.github.io/bimm143_W18/lectures/#1 Dr. Barry Grant Jan 2018

Overview: The purpose of this lab session is to introduce a range of bioinformatics databases and associated services available on the Web whilst investigating the molecular basis of a common human disease.

Sections 1 and 2 deal with querying and searching GenBank, GENE and OMIM databases at NCBI. Sections 3 and 4 provide exposure to EBI resources for comparing proteins and visualizing protein structures. Finally, section 5 provides an opportunity to explore these and other databases further with additional examples.

Side-note: The Web is a dynamic environment, where information is constantly added and removed. Servers 'go down', links change without warning, etc. This can lead to "broken" links and results not being returned from services. Don't give up - give it a second go and try a search engine using terms related to the page you are trying to access.

Section 1

The following transcript was found to be abundant in a human patient's blood sample

>example1

A REGEGUTETOR CECCETORO MARA DE TORCO CETA CE DOCETO FOGO CENADO TENTE TEGETOS TORCECESTOS CASO EL CONSTRUCTORO DE LA CONSTRUCTIONA DE LA CONSTRUCTIONA GENERAL DE LA CONSTRUCTIONA DE CONSTRUCTOR DE LA CONSTRUCTIONA DE LA CONSTRUCTIONA DE LA CONSTRUCTIÓN DE LA CONSTRUCTIÓN DE LA CONSTRUCTIÓN DE CONSTRUCTOR DE LA CONSTRUCTIÓN DE LA

The only information you are given is the above sequence so you must begin your investigation with a sequence search - for this example we will use NCBI's **BLAST** service at: http://blast.ncbi.nlm.nih.gov/

Note that there are several different "basic BLAST" programs available at NCBI (including nucleotide BLAST, protein BLAST, and BLASTx).

YOUR TURN!

There are five major hands-on sections including:

- 1. BLAST, GenBank and OMIM @ NCBI
- [~35 mins] [~15 mins]

[~25 mins]

[~30 mins]

- 2. GENE database @ NCBI — BREAK —
- 3. UniProt & Muscle @ EBI
- 4. PFAM, PDB & NGL
 - BREAK —
- 5. Extension exercises

- [~30 mins]
- Please do answer the last review question (Q19).
- We encourage <u>discussion</u> and <u>exploration</u>!

YOUR TURN!

There are five major hands-on sections including:

		LITU UITIES.
1.	BLAST, GenBank and OMIM @ NCBI	[10:45 am]
2.	GENE database @ NCBI	[11:00 am]
	— BREAK —	— 11:10 am —
3.	UniProt & Muscle @ EBI	[11:35 am]
4.	PFAM, PDB & NGL	[12:05 pm]
	— BREAK —	— 12:15 am —
5.	Extension exercises	[12:45 pm]

End times

- Please do answer the last review question (Q19).
- We encourage <u>discussion</u> and <u>exploration</u>!

SUMMARY

- Bioinformatics is computer aided biology.
- Bioinformatics deals with the collection, archiving, organization, and interpretation of a wide range of biological data.
- There are a large number of primary, secondary and tertiary bioinformatics databases.
- The NCBI and EBI are major online bioinformatics service providers.
- Introduced Gene, UniProt, PDB databases as well as a number of 'boutique' databases including PFAM and OMIM.

HOMEWORK

https://bioboot.github.io/bimm143_S18/lectures/#1

- Complete the initial course questionnaire:
- Check out the "Background Reading" material online:
- Complete the lecture 1 homework questions:

